首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the murine cell line LBRM-331A5, phytohemagglutinin (PHA) induces secretion of the T cell growth factor interleukin 2 (IL2). IL1 augments PHA-induced IL2 production. In this cell line, PHA stimulates a number of biochemical changes including phospholipid hydrolysis, increases in cytosolic free calcium [( Ca2+]i), membrane hyperpolarization, cytosolic alkalinization, and tyrosine phosphorylation of specific substrates. Using LBRM cells, we have studied the interrelationship between these events and the secretion of IL2. Increases in [Ca2+]i triggered by PHA or following addition of ionomycin result in membrane hyperpolarization but are not required for PHA-induced cytosolic alkalinization or tyrosine phosphorylation. Addition of IL1 to PHA-stimulated cells did not affect any of the biochemical parameters, although it significantly augmented PHA-induced IL2 secretion. Increasing [Ca2+]i with ionomycin did not trigger IL2 secretion, increases in cytosolic pH, or tyrosine phosphorylation in the presence or absence of IL1. Preventing increases in cytosolic pH did not alter PHA-induced changes in [Ca2+]i or membrane potential. These data are compatible with PHA including activation of phospholipase C and production of inositol phosphates resulting in both release of Ca2+ from internal stores and transmembrane uptake of Ca2+ as well as activation of protein kinase C. However, unlike other growth factor or mitogen-stimulated systems, the changes stimulated by PHA and IL1 in LBRM cells including IL2 secretion are not regulated by a pertussis toxin-sensitive G protein.  相似文献   

2.
Chloride ion efflux is an early event occurring after exposure of human neutrophils to several soluble agonists. Under these circumstances, a rapid and reversible fall in the high basal intracellular chloride (Cl-i) levels is observed. This event is thought to play a crucial role in the modulation of several critical neutrophil responses including activation and up-regulation of adhesion molecules, cell attachment and spreading, cytoplasmic alkalinization, and activation of the respiratory burst. At present, however, no data are available on chloride ion movements during neutrophil phagocytosis. In this study, we provide evidence that phagocytosis of Candida albicans opsonized with either whole serum, complement-derived opsonins, or purified human IgG elicits an early and long-lasting Cl- efflux accompanied by a marked, irreversible loss of Cl-i. Simultaneous assessment of Cl- efflux and phagocytosis in cytochalasin D-treated neutrophils indicated that Cl- efflux occurs without particle ingestion. These results suggest that engagement of immune receptors is sufficient to promote chloride ion movements. Several structurally unrelated chloride channel blockers inhibited phagocytosis-induced Cl- efflux as well as the release of azurophilic-but not specific-granules. It implicates that different neutrophil secretory compartments display distinct sensitivity to Cl-i modifications. Intriguingly, inhibitors of Cl- exchange inhibited cytosolic Ca2+ elevation, whereas Cl- efflux was not impaired in Ca2+-depleted neutrophils. We also show that FcgammaR(s)- and CR3/CR1-mediated Cl- efflux appears to be dependent on protein tyrosine phosphorylation but independent of PI3K and phospholipase C activation.  相似文献   

3.
Platelet activation is accompanied by an increase of cytosolic free Ca2+ concentration, [Ca2+]i, (due to both extracellular Ca2+ influx and Ca2+ movements from the dense tubular system) and an Na+ influx associated with H+ extrusion. The latter event is attributable to the activation of Na+/H+ exchange, which requires Na+ in the extracellular medium and is inhibited by amiloride and its analogs. The present study was carried out to determine whether a link exists between Ca2+ transients (measured by the quin2 method and the 45CaCl2 technique) and Na+/H+ exchange activation (studied with the pH-sensitive intracellular probe, 6-carboxyfluorescein) during platelet stimulation. Washed human platelets, stimulated with thrombin and arachidonic acid, showed: (1) a large and rapid [Ca2+]i rise, mostly due to a Ca2+ influx through the plasma membrane; (2) a marked intracellular alkalinization. Both phenomena were markedly inhibited in the absence of extracellular Na+ or in the presence of an amiloride analog (EIPA). Monensin, a cation exchanger which elicits Na+ influx and alkalinization, and NH4Cl, which induces alkalinization only, were able to evoke an increase in [Ca2+]i, mostly as an influx from the extracellular medium. Our results suggest that Ca2+ influx induced by thrombin and arachidonic acid in human platelets is strictly dependent on Na+/H+-exchange activation.  相似文献   

4.
Functional interactions between Fcgamma-receptors (FcgammaR) and the beta2 integrin Mac-1 (CD11b/CD18) have been described, but the molecular basis of this relationship remains unclear. Although the glycosylphosphatidylinositol-linked receptor FcgammaRIIIB of human neutrophils is constitutively associated with Mac-1, we found no evidence for direct physical association between Mac-1 and the FcgammaR of mouse macrophages, which are transmembrane proteins. Nevertheless, Mac-1 accumulated in the phagocytic cup following engagement of FcgammaR by IgG-opsonized particles. Blocking the CD18 chains of beta2 integrins by using specific antibodies reduced Mac-1 accumulation in the cup. These antibodies or the addition of the recombinant CD11b I-domain inhibited the ingestion of IgG-opsonized particles. FcgammaR cross-linking stimulated cell adhesion to surfaces coated with Mac-1 ligands and in addition enabled macrophages to bind C3bi-opsonized particles, indicating that FcgammaR-derived signals induce activation of Mac-1. Measurements of fluorescence recovery after photobleaching revealed that whereas most (>80%) of Mac-1 is immobile in resting cells, stimulation of FcgammaR markedly increases the mobile fraction of the integrin. Activation of Mac-1 by FcgammaR required the activity of Src family tyrosine kinases, phosphatidylinositol 3-kinase and phospholipase C, with the release of diacylglycerol and stimulation of protein kinase C. Because elevated cytosolic Ca2+ was not required, we suggest that novel protein kinase C isoforms are involved in Mac-1 activation. These results suggest that FcgammaR stimulation promotes Mac-1 clustering into high avidity complexes in phagocytic cups by releasing the integrin from cytoskeletal constraints and enhancing its lateral diffusion. FcgammaR can enhance host defense by activating Mac-1 (and possibly other integrins), having a synergistic effect on pathogen engulfment and promoting the adherence of phagocytes at sites of infection.  相似文献   

5.
Intracellular pH regulation during spreading of human neutrophils   总被引:4,自引:0,他引:4       下载免费PDF全文
《The Journal of cell biology》1996,133(6):1391-1402
The regulation of the intracelluar pH (pHi) during spreading of human neutrophils was studied by a combination of fluorescence imaging and video microscopy. Spreading on adhesive substrates caused a rapid and sustained cytosolic alkalinization. This pHi increase was prevented by the omission of external Na+, suggesting that it results from the activation of Na+/H+ exchange. Spreading-induced alkalinization was also precluded by the compound HOE 694 at concentrations that selectively block the NHE-1 isoform of the Na+H+ antiporter. Inhibition of Na+/H+ exchange by either procedure unmasked a sizable cytosolic acidification upon spreading, indicative of intracellular acid production. The excess acid generation was caused, at least in part, by the activation of the respiratory burst, since the acidification closely correlated with superoxide production, measured in single spreading neutrophils with dihydrorhodamine-123, and little acid production was observed in the presence of diphenylene iodonium, a blocker of the NADPH oxidase. Moreover, neutrophils from chronic granulomatous disease patients, which do not produce superoxide, failed to acidify. Comparable pHi changes were observed when beta 2 integrins were selectively activated during spreading on surfaces coated with anti-CD18 antibodies. When integrin engagement was precluded by pretreatment with soluble anti-CD18 antibody, the pHi changes associated with spreading on fibrinogen were markedly reduced. Inhibition of microfilament assembly with cytochalasin D precluded spreading and concomitantly abolished superoxide production and the associated pHi changes, indicating that cytoskeletal reorganization and/or an increase in the number of adherence receptors engaged are required for the responses. Neutrophils spread normally when the oxidase was blocked or when pHi was clamped near physiological values with nigericin. Spreading, however, was strongly inhibited when pHi was clamped at acidic values. Our results indicate that neutrophils release superoxide upon spreading, generating a burst of intracellular acid production. The concomitant activation of the Na+/H+ antiport not only prevents the deleterious effects of the acid released by the NADPH oxidase, but induces a net cytosolic alkalinization. Since several functions of neutrophils are inhibited at an acidic pHi, the coordinated activation of pHi regulatory mechanisms along with the oxidase is essential for sustained microbicidal activity.  相似文献   

6.
Mechanical load is an important regulator of cardiac force. Stretching human atrial and ventricular trabeculae elicited a biphasic force increase: an immediate increase (Frank-Starling mechanism) followed by a further slow increase (slow force response, SFR). In ventricle, the SFR was unaffected by AT- and ET-receptor antagonism, by inhibition of protein-kinase-C, PI-3-kinase, and NO-synthase, but attenuated by inhibition of Na+/H+- (NHE) and Na+/Ca2+ exchange (NCX). In atrium, however, neither NHE- nor NCX-inhibition affected the SFR. Stretch elicited a large NHE-dependent [Na+]i increase in ventricle but only a small, NHE-independent [Na+]i increase in atrium. Stretch-activated non-selective cation channels contributed to basal force development in atrium but not ventricle and were not involved in the SFR in either tissue. Interestingly, inhibition of AT receptors or pre-application of angiotensin II or endothelin-1 reduced the atrial SFR. Furthermore, stretch increased phosphorylation of atrial myosin light chain 2 (MLC2) and inhibition of myosin light chain kinase (MLCK) attenuated the SFR in atrium and ventricle. Thus, in human heart both atrial and ventricular myocardium exhibit a stretch-dependent SFR that might serve to adjust cardiac output to increased workload. In ventricle, there is a robust NHE-dependent (but angiotensin II- and endothelin-1-independent) [Na+]i increase that is translated into a [Ca2+]i and force increase via NCX. In atrium, on the other hand, there is an angiotensin II- and endothelin-dependent (but NHE- and NCX-independent) force increase. Increased myofilament Ca2+ sensitivity through MLCK-induced phosphorylation of MLC2 is a novel mechanism contributing to the SFR in both atrium and ventricle.  相似文献   

7.
We have studied the activation of the Na+/H+ exchanger which leads to the intracellular alkalinization in cultured bovine aortic endothelial cells stimulated by extracellular ATP. The alkalinization induced by ATP was largely dependent on extracellular Ca2+ and the rate of alkalinization was decreased by about 60% in the absence of extracellular Ca2+. ATP caused a rapid and transient increase and a subsequent sustained increase of the intracellular Ca2+ concentration ([Ca2+]i) in the Ca2+ buffer, while only the rapid and transient increase of [Ca2+]i was observed in the absence of extracellular Ca2+. The Ca2+-depleted cells prepared by incubation in Ca2+-free buffer containing 0.1 mM EGTA showed only a slight increase of [Ca2+]i with no alkalinization on stimulation by ATP. The alkalinization was inhibited by 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), an inhibitor of protein kinase C, but not by another isoquinoline analogue (HA 1004), which has a less inhibitory effect on the kinase. Phorbol 12-myristate 13-acetate also induced the alkalinization by the activation of the Na+/H+ exchanger. Neither dibutyryl cyclic AMP nor dibutyryl cyclic GMP affected the alkalinization induced by ATP. Treatment of the cells by pertussis and cholera toxins had no effect on the alkalinization. The results suggest that the increase in [Ca2+]i is essential for the ATP-induced activation of the Na+/H+ exchanger in cultured bovine aortic endothelial cells and a protein kinase C-dependent pathway is involved in the activation.  相似文献   

8.
The role of the activation of phosphoinositide turnover and of the increase in cytosolic free calcium, [Ca2+]i, in the phagocytosis and associated activation of the respiratory burst was investigated. We report the results obtained on the phagocytosis of yeast cells mediated by Con A in normal and in Ca2+-depleted human neutrophils. In normal neutrophils the phagocytosis was associated with a respiratory burst, a stimulation in the formation of [3H] inositol phosphates and [32P]phosphatidic acid, the release of [3H]arachidonic acid, and a rise in [Ca2+]i. Ca2+-depleted neutrophils are able to perform the phagocytosis of yeast cells mediated by Con A and to activate the respiratory burst without stimulation of [3H]inositol phosphates and [32P]phosphatidic acid formation, [3H]arachidonic acid release, and rise in [Ca2+]i. In both normal and Ca2+-depleted neutrophils the phagocytosis and the associated respiratory burst, 1) were inhibited by cytochalasin B; 2) were insensitive to H-7, an inhibitor of protein kinase C; and 3) did not involve GTP-binding protein sensitive to pertussis toxin. These findings indicate that the activation of phosphoinositide turnover, the liberation of arachidonic acid, the rise in [Ca2+]i, and the activity of protein kinase C are not necessarily required for ingestion of Con A-opsonized particles and for associated activation of the NADPH oxidase, the enzyme responsible for the respiratory burst. The molecular mechanisms of these phosphoinositide and Ca2+-independent responses are discussed.  相似文献   

9.
The signaling pathways by which cell volume regulates ion transporters, e.g. Na+/H+ exchangers (NHEs), and affects cytoskeletal organization are poorly understood. We have previously shown that shrinkage induces tyrosine phosphorylation in CHO cells, predominantly in an 85-kDa band. To identify volume-sensitive kinases and their substrates, we investigated the effect of hypertonicity on members of the Src kinase family. Hyperosmolarity stimulated Fyn and inhibited Src. Fyn activation was also observed in nystatin-permeabilized cells, where shrinkage cannot induce intracellular alkalinization. In contrast, osmotic inhibition of Src was prevented by permeabilization or by inhibiting NHE-1. PP1, a selective Src family inhibitor, strongly reduced the hypertonicity-induced tyrosine phosphorylation. We identified one of the major targets of the osmotic stress-elicited phosphorylation as cortactin, an 85-kDa actin-binding protein and well known Src family substrate. Cortactin phosphorylation was triggered by shrinkage and not by changes in osmolarity or pHi and was abrogated by PP1. Hyperosmotic cortactin phosphorylation was reduced in Fyn-deficient fibroblasts but remained intact in Src-deficient fibroblasts. To address the potential role of the Src family in the osmotic regulation of NHEs, we used PP1. The drug affected neither the hyperosmotic stimulation of NHE-1 nor the inhibition of NHE-3. Thus, members of the Src family are volume-sensitive enzymes that may participate in the shrinkage-related reorganization of the cytoskeleton but are probably not responsible for the osmotic regulation of NHE.  相似文献   

10.
Platelet membrane phosphatidylserine (PS) exposure that regulates the production of thrombin represents an important link between platelet activation and the coagulation cascade. Here, we have evaluated the involvement of the Na+/H+ exchanger (NHE) in this process in human platelets. PS exposure induced in human platelets by thrombin, TRAP, collagen or TRAP+ collagen was abolished in a Na+ -free medium. Inhibition of the Na+/H+ exchanger (NHE) by 5-(N-Ethyl-N-Isopropyl) Amiloride (EIPA) reduced significantly PS exposure, whereas monensin or nigericin, which mimic or cause activation of NHE, respectively, reproduced the agonist effect. These data suggest a role for Na+ influx through NHE activation in the mechanism of PS exposure. This newly identified pathway does not discount a role for Ca2+, whose cytosolic concentration varies together with that of Na+ after agonist stimulation. Ca2+ deprivation from the incubation medium only attenuated PS exposure induced by thrombin, measured from the uptake of FM1-43 (a marker of phospholipid scrambling independent of external Ca2+). Surprisingly, removal of external Ca2+ partially reduced FM1-43 uptake induced by A23187, known as a Ca2+ ionophore. The residual effect can be attributed to an increase in [Na+]i mediated by the ionophore due to a lack of its specificity. Finally, phosphatidylinositol 4,5-bisphosphate (PIP2), previously reported as a target for Ca2+ in the induction of phospholipid scrambling, was involved in PS exposure through a regulation of NHE activity. All these results would indicate that the mechanism that results in PS exposure uses redundant pathways inextricably linked to the physio-pathological requirements of this process.  相似文献   

11.
Intracellular free Ca2+ [( Ca2+]i) and pH (pHi) were measured simultaneously by dual wavelength excitation in thrombin-stimulated human platelets double-labeled with the fluorescent probes fura2 and 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein to determine the relationship between changes in [Ca2+]i and pHi, respectively. At 37 degrees C, thrombin (0.5 or 0.1 units/ml) increased [Ca2+]i with no detectable lag period to maximum levels within 13 s followed by a slow return to resting levels. There was a transient decrease in pHi within 9 s that was immediately followed by an alkalinization response, attributable to activation of Na+/H+ exchange, that raised pHi above resting levels within 22 s. At 10-15 degrees C, thrombin-induced changes in [Ca2+]i and pHi were delayed and therefore better resolved, although no differences in the magnitude of changes in [Ca2+]i and pHi were observed. However, the increase in [Ca2+]i had peaked or was declining before the alkalinization response was detected, suggesting that Ca2+ mobilization occurs before activation of Na+/H+ exchange. In platelets preincubated with 5-(N-ethyl-N-isopropyl)amiloride or gel-filtered in Na+-free buffer (Na+ replaced with N-methyl-D-glutamine) to inhibit Na+/H+ exchange, thrombin stimulation caused a rapid, sustained decrease in pHi. Under these conditions there was complete inhibition of the alkalinization response, whereas Ca2+ mobilization was only partially inhibited. Nigericin (a K+/H+ ionophore) caused a rapid acidification of more than 0.3 pH unit that was sustained in the presence of 5-(N-ethyl-N-isopropyl)amiloride. Subsequent stimulation with thrombin resulted in slight inhibition of Ca2+ mobilization. These data show that, in human platelets stimulated with high or low concentrations of thrombin, Ca2+ mobilization can occur without a functional Na+/H+ exchanger and in an acidified cytoplasm. We conclude that Ca2+ mobilization does not require activation of Na+/H+ exchange or preliminary cytoplasmic alkalinization.  相似文献   

12.
We previously showed that the cannabinoid receptor CB1 stably transfected in Chinese hamster ovary cells was constitutively active and could be inhibited by the inverse agonist SR 141716A. In the present study, we demonstrate that the cannabinoid agonist CP-55940 induced cytosol alkalinization of CHO-CB1 cells in a dose- and time-dependent manner via activation of the Na+/H+ exchanger NHE-1 isoform. By contrast, the inverse agonist SR 141716A induced acidification of the cell cytosol, suggesting that the Na+/H+ exchanger NHE-1 was constitutively activated by the CB1 receptor. CB1-mediated NHE1 activation was prevented by both pertussis toxin treatment and the specific MAP kinase inhibitor PD98059. NHE-1 and p42/p44 MAPK had a similar time course of activation in response to the addition of CP-55940 to CHO-CB1 cells. These results suggest that CB1 stimulates NHE-1 by G(i/o)-mediated activation of p42/p44 MAP kinase and highlight a cellular physiological process targeted by CB1.  相似文献   

13.
The type 1 sodium-hydrogen exchanger (NHE-1) is a ubiquitous electroneutral membrane transporter that is activated by hypertonicity in many cells. NHE-1 may be an important pathway for Na(+) entry during volume restoration, yet the molecular mechanisms underlying the osmotic regulation of NHE-1 are poorly understood. In the present study we conducted a screen for important signaling molecules that could be involved in hypertonicity-induced activation of NHE-1 in CHO-K1 cells. Hypertonicity rapidly activated NHE-1 in a concentration-dependent manner as assessed by proton microphysiometry and by measurements of intracellular pH on a FLIPR (fluorometric imaging plate reader). Inhibitors of Ca(2+)/calmodulin (CaM) and Janus kinase 2 (Jak2) attenuated this activation, whereas neither calcium chelation nor inhibitors of protein kinase C, the Ras-ERK1/2 pathway, Src kinase, and Ca(2+)/calmodulin-dependent enzymes had significant effects. Hypertonicity also resulted in the rapid tyrosine phosphorylation of Jak2 and STAT3 (the major substrate of Jak2) and CaM. Phosphorylation of Jak2 and CaM were blocked by AG490, an inhibitor of Jak2. Immunoprecipitation studies showed that hypertonicity stimulates the assembly of a signaling complex that includes CaM, Jak2, and NHE-1. Formation of the complex could be blocked by AG490. Thus, we propose that hypertonicity induces activation of NHE-1 in CHO-K1 cells in large part through the following pathway: hypertonicity --> Jak2 phosphorylation and activation --> tyrosine phosphorylation of CaM --> association of CaM with NHE-1 --> NHE-1 activation.  相似文献   

14.
Generation of reactive oxygen species (ROS) and intracellular Ca(2+) overload are key mechanisms involved in ischemia-reperfusion (I/R)-induced myocardial injury. The relationship between I/R injury and Ca(2+) overload has not been fully characterized. The increase in Na(+)/H(+) exchanger (NHE-1) activity observed during I/R injury is an attractive candidate to link increased ROS production with Ca(2+) overload. We have shown that low doses of H(2)O(2) increase NHE-1 activity in an extracellular signal-regulated kinase (ERK)-dependent manner. In this study, we examined the effect of low doses of H(2)O(2) on intracellular Ca(2+) in fura 2-loaded, spontaneously contracting neonatal rat ventricular myocytes. H(2)O(2) induced a time- and concentration-dependent increase in diastolic intracellular Ca(2+) concentration that was blocked by inhibition of ERK1/2 activation with 5 microM U-0126 (88%) or inhibition of NHE-1 with 5 microM HOE-642 (50%). Increased NHE activity was associated with phosphorylation of the NHE-1 carboxyl tail that was blocked by U-0126. These results suggest that H(2)O(2) induced Ca(2+) overload is partially mediated by NHE-1 activation secondary to phosphorylation of NHE-1 by the ERK1/2 MAP kinase pathway.  相似文献   

15.
Although an increase in cytosolic pH (pHi) caused by Na+/H+ exchange enhances Ca2+ mobilization in platelets stimulated by low concentrations of thrombin [Siffert & Akkerman (1987) Nature (London) 325, 456-458], studies using fluorescent indicators for pHi (BCECF) and [Ca2+]i (fura2) suggest that Ca2+ is mobilized while the cytosolic pH decreases. Several lines of evidence indicate that the initial fall in BCECF fluorescence is not due to cytosolic acidification but is caused by a platelet shape change. (1) Pulse stimulation of platelets by successive addition of hirudin (4 unit/ml) and thrombin (0.2 unit/ml) induced a shape change of 43 +/- 8% and a fall in BCECF fluorescence, which both remained unchanged when Na+/H+ exchange was inhibited by ethylisopropylamiloride (EIPA, 100 microM). (2) Increasing the thrombin concentration to 0.4 unit/ml doubled the shape change and the fall in BCECF fluorescence, but again EIPA had no effect on these responses. (3) Treating platelets with 2 microM-ADP induced shape change and a decline in BCECF fluorescence that was unaffected by EIPA. (4) A second addition of thrombin to platelets that had already undergone shape change induced an immediate increase in BCECF fluorescence without a prior decrease. (5) Activation of protein kinase C by 1,2-dioctanoyl-sn-glycerol (DiC8) neither induced shape change nor a decline in BCECF fluorescence; in contrast BCECF fluorescence rapidly increased indicating an immediate cytosolic alkalinization. Concurrent analysis of [Ca2+]i under conditions in which shape change did not interfere with BCECF fluorescence showed that cytosolic alkalinization and Ca2+ mobilization started almost simultaneously. These observations suggest that cytosolic alkalinization is not preceded by a fall in pHi and can support Ca2+ mobilization induced by weak agonists.  相似文献   

16.
HIV-1 infection impairs a number of macrophage effector functions, thereby contributing to development of opportunistic infections and the pathogenesis of AIDS. FcgammaR-mediated phagocytosis by human monocyte-derived macrophages (MDM) is inhibited by HIV-1 infection in vitro, and the underlying mechanism was investigated in this study. Inhibition of phagocytosis directly correlated with the multiplicity of HIV-1 infection. Expression of surface FcgammaRs was unaffected by HIV-1 infection, suggesting that inhibition of phagocytosis occurred during or after receptor binding. HIV-1 infection of MDM markedly inhibited tyrosine phosphorylation of the cellular proteins, which occurs following engagement of FcgammaRs, suggesting a defect downstream of initial receptor activation. FcgammaR-mediated phagocytosis in HIV-infected MDM was associated with inhibition of phosphorylation of tyrosine kinases from two different families, Hck and Syk, defective formation of Syk complexes with other tyrosine-phosphorylated proteins, and inhibition of paxillin activation. Down-modulation of protein expression but not mRNA of the gamma signaling subunit of FcgammaR (a docking site for Syk) was observed in HIV-infected MDM. Infection of MDM with a construct of HIV-1 in which nef was replaced with the gene for the gamma signaling subunit augmented FcgammaR-mediated phagocytosis, suggesting that down-modulation of gamma-chain protein expression in HIV-infected MDM caused the defective FcgammaR-mediated signaling and impairment of phagocytosis. This study is the first to demonstrate a specific alteration in phagocytosis signal transduction pathway, which provides a mechanism for the observed impaired FcgammaR-mediated phagocytosis in HIV-infected macrophages and contributes to the understanding of how HIV-1 impairs cell-mediated immunity leading to HIV-1 disease progression.  相似文献   

17.
Extracellular superoxide dismutase in the vascular system of mammals.   总被引:11,自引:3,他引:8       下载免费PDF全文
NIH 3T3 cells, which express a small number of EGF (epidermal growth factor) receptors, are poorly responsive to EGF. However, when the same cells overexpress the cloned human EGF receptor (EGFR T17 cells), they display EGF-dependent transformation. In EGFR T17 cells (but not in the parental NIH 3T3 cells), EGF is shown here to trigger polyphosphoinositide hydrolysis as well as the generation of the ensuing intracellular signals, the increase in the cytosolic Ca2+ concentration ([Ca2+]i) and pH. EGF induced a large accumulation of inositol 1,4,5-trisphosphate, with a peak at 15-30 s and a slow decline thereafter. Other inositol phosphates (1,3,4-trisphosphate and 1,3,4,5-tetrakisphosphate) increased less rapidly and to a lesser degree. [Ca2+]i increased after a short lag, reached a peak at 25 s and remained elevated for several minutes. By use of incubation media with and without Ca2+, the initial phase of the EGF-induced [Ca2+]i increase was shown to be due largely to Ca2+ release from intracellular stores. In contrast with previous observations in human A431 cells, the concentration-dependence of the EGF-triggered [Ca2+]i increase in EGFR T17 cells paralleled that of [3H]thymidine incorporation. It is concluded that polyphosphoinositide hydrolysis, [Ca2+]i increase and cytoplasmic alkalinization are part of the spectrum of intracellular signals generated by the activation of one single EGF receptor type. These processes might be triggered by the receptor via activation of the intrinsic tyrosine kinase activity. Large stimulation of DNA synthesis and proliferation by EGF in EGFR T17 cells could be due to a synergistic interplay between the two signal pathways initiated by tyrosine phosphorylation and polyphosphoinositide hydrolysis.  相似文献   

18.
Cytoplasmic Ca2+ is necessary for thrombin-induced platelet activation   总被引:1,自引:0,他引:1  
alpha-Thrombin induces a dose-dependent rapid transient increase in platelet cytosolic Ca2+ levels, coming solely from intracellular stores, since EGTA has no effect. In contrast, the post-stimulation equilibrium [Ca2+]in depends upon an influx from the extracellular milieu, and is lower in the presence of EGTA. We measured the Ca2+ transient (with Indo-1, 1-[2-amino-5-(6-carboxyindol-2-yl)-phenoxy]-2-(2'-amino-5'-methylp henoxy)- ethane-N,N,N',N'-tetraacetic acid), cytosolic alkalinization (with BCECF, 2',7-bis-(2-carboxyethyl)-5(and 6)-carboxyfluorescein), membrane depolarization (with diS-C3-(5), 3,3'-dipropylthiodi-carbocyanide iodide), and degranulation (by beta-glucuronidase release) induced in washed human platelets by 9 nM thrombin in the absence or presence of extracellular or intracellular Ca2+ chelating agents (EGTA and BAPTA, 5,5'-dimethyl-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, respectively). Platelets loaded simultaneously with 2 microM Indo-1 and 15 microM BAPTA (each as the acetoxymethyl ester) before addition of thrombin exhibited no cytoplasmic Ca2+ transient or alkalinization, no depolarization or degranulation. Replenishment of such cells with extracellular CaCl2 restored resting [Ca2+]in. Upon stimulation with 9 nM thrombin these replenished platelets exhibited no Ca2+ transient, and a slow gradual increase in [Ca2+]in from extracellular stores, a slow alkalinization and depolarization, and partial degranulation, all abolished by extracellular EGTA. Thus thrombin-induced platelet activation exhibits a biphasic Ca2+ requirement: the initial transient increase in [Ca2+]in comes from intracellular stores only, while the later steps of depolarization, alkalinization, and degranulation can proceed, albeit more slowly, if only extracellular Ca2+ is available.  相似文献   

19.
The Na+/H+ exchanger isoform-1 (NHE-1) is the key member of a family of exchangers that regulates intracellular pH and cell volume. Activation of NHE-1 by growth factors is rapid, correlates with increased NHE-1 phosphorylation and cell alkalinization, and plays a role in cell cycle progression. By two-dimensional tryptic peptide mapping of immunoprecipitated NHE-1, we identify serine 703 as the major serum-stimulated amino acid. Mutation of serine 703 to alanine had no effect on acid-stimulated Na+/H+ exchange but completely prevented the growth factor-mediated increase in NHE-1 affinity for H+. In addition, we show that p90 ribosomal S6 kinase (p90(RSK)) is a key NHE-1 kinase since p90(RSK) phosphorylates NHE-1 serine 703 stoichiometrically in vitro, and transfection with kinase-inactive p90(RSK) inhibits serum-induced phosphorylation of NHE-1 serine 703 in transfected 293 cells. These findings establish p90(RSK) as a serum-stimulated NHE-1 kinase and a mediator of increased Na+/H+ exchange in vivo.  相似文献   

20.
Activation of neutrophils by most soluble stimuli is associated with a marked increase in intracellular free Ca2+ ([Ca2+]i). However, under physiological conditions (Na+-rich media), the potent activator 12-O-tetradecanoylphorbol-13-acetate (TPA) causes no change or a decrease in [Ca2+]i. We report here that the [Ca2+]i response to phorbol esters varies depending on the ionic composition of the medium. A marked increase in [Ca2+]i was detected in Na+-free solutions. Maximal effects were observed when N-methyl-D-glucammonium+ or choline+ were substituted for Na+, whereas an intermediate response was recorded in K+ medium. The increase in [Ca2+]i was substantially (approximately 65%) inhibited by removal of external Ca2+. A [Ca2+]i increase was also elicited by other beta-phorbol diesters and by diacylglycerol, but not by unesterified phorbol or by alpha-phorbol diesters, indicating involvement of protein kinase C. The increase in [Ca2+]i observed in Na+-free media is not due to inhibition of Na+/Ca2+ exchange, since no change in [Ca2+]i in response to TPA was observed in: 1) cells suspended in Li+, which is not countertransported for Ca2+; 2) cells preloaded with Na+ to eliminate the driving force for Na+/Ca2+ exchange; and 3) cells treated with 3',4'-dichlorobenzamyl, an inhibitor of Na+/Ca2+ exchange. Similarly, the [Ca2+]i increase in Na+-free media is not linked to the absence of Na+/H+ exchange and the associated cytoplasmic acidification since: 1) it was not observed in Na+ media in the presence of inhibitors of the Na+/H+ antiport and 2) it was not mimicked by inducing acidification with nigericin. Pretreatment with pertussis toxin largely inhibited the phorbol ester-induced change in [Ca2+]i, while activation of protein kinase C under these conditions was unaffected. It is concluded that in the absence of extracellular Na+ (or Li+), activation of protein kinase C leads to a net Ca2+ influx into the cytoplasm through a process mediated by a GTP-binding or G protein. Opening of a Na+-sensitive Ca2+ channel could partially explain these observations. Alternatively, the nature of the monovalent cation could conceivably affect the conformation of a G protein or of an associated receptor, inducing the appearance of a site susceptible to an activating phosphorylation by protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号