首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Receptor-interacting protein kinase (RIPK) 1 and RIPK3 have emerged as essential kinases mediating a regulated form of necrosis, known as necroptosis, that can be induced by tumor necrosis factor (TNF) signaling. As a consequence, inhibiting RIPK1 kinase activity and repressing RIPK3 expression levels have become commonly used approaches to estimate the contribution of necroptosis to specific phenotypes. Here, we report that RIPK1 kinase activity and RIPK3 also contribute to TNF-induced apoptosis in conditions of cellular inhibitor of apoptosis 1 and 2 (cIAP1/2) depletion or TGF-β-activated kinase 1 (TAK1) kinase inhibition, implying that inhibition of RIPK1 kinase activity or depletion of RIPK3 under cell death conditions is not always a prerequisite to conclude on the involvement of necroptosis. Moreover, we found that, contrary to cIAP1/2 depletion, TAK1 kinase inhibition induces assembly of the cytosolic RIPK1/Fas-associated protein with death domain/caspase-8 apoptotic TNF receptor 1 (TNFR1) complex IIb without affecting the RIPK1 ubiquitylation status at the level of TNFR1 complex I. These results indicate that the recruitment of TAK1 to the ubiquitin (Ub) chains, and not the Ub chains per se, regulates the contribution of RIPK1 to the apoptotic death trigger. In line with this, we found that cylindromatosis repression only provided protection to TNF-mediated RIPK1-dependent apoptosis in condition of reduced RIPK1 ubiquitylation obtained by cIAP1/2 depletion but not upon TAK1 kinase inhibition, again arguing for a role of TAK1 in preventing RIPK1-dependent apoptosis downstream of RIPK1 ubiquitylation. Importantly, we found that this function of TAK1 was independent of its known role in canonical nuclear factor-κB (NF-κB) activation. Our study therefore reports a new function of TAK1 in regulating an early NF-κB-independent cell death checkpoint in the TNFR1 apoptotic pathway. In both TNF-induced RIPK1 kinase-dependent apoptotic models, we found that RIPK3 contributes to full caspase-8 activation independently of its kinase activity or intact RHIM domain. In contrast, RIPK3 participates in caspase-8 activation by acting downstream of the cytosolic death complex assembly, possibly via reactive oxygen species generation.  相似文献   

2.
Although TRAIL (tumor necrosis factor (TNF)-related apoptosis inducing ligand) is a well-known apoptosis inducer, we have previously demonstrated that acidic extracellular pH (pHe) switches TRAIL-induced apoptosis to regulated necrosis (or necroptosis) in human HT29 colon and HepG2 liver cancer cells. Here, we investigated the role of RIPK1 (receptor interacting protein kinase 1), RIPK3 and PARP-1 (poly (ADP-ribose) polymerase-1) in TRAIL-induced necroptosis in vitro and in concanavalin A (Con A)-induced murine hepatitis. Pretreatment of HT29 or HepG2 with pharmacological inhibitors of RIPK1 or PARP-1 (Nec-1 or PJ-34, respectively), or transient transfection with siRNAs against RIPK1 or RIPK3, inhibited both TRAIL-induced necroptosis and PARP-1-dependent intracellular ATP depletion demonstrating that RIPK1 and RIPK3 were involved upstream of PARP-1 activation and ATP depletion. In the mouse model of Con A-induced hepatitis, where death of mouse hepatocytes is dependent on TRAIL and NKT (Natural Killer T) cells, PARP-1 activity was positively correlated with liver injury and hepatitis was prevented both by Nec-1 or PJ-34. These data provide new insights into TRAIL-induced necroptosis with PARP-1 being active effector downstream of RIPK1/RIPK3 initiators and suggest that pharmacological inhibitors of RIPKs and PARP-1 could be new treatment options for immune-mediated hepatitis.  相似文献   

3.
Apoptosis-inducing factor (AIF) is critical for poly(ADP-ribose) polymerase-1 (PARP-1)-dependent cell death (parthanatos). The molecular mechanism of mitochondrial AIF release to the nucleus remains obscure, although a possible role of calpain I has been suggested. Here we show that calpain is not required for mitochondrial AIF release in parthanatos. Although calpain I cleaved recombinant AIF in a cell-free system in intact cells under conditions where endogenous calpain was activated by either NMDA or N -methyl- N '-nitro- N -nitrosoguanidine (MNNG) administration, AIF was not cleaved, and it was released from mitochondria to the nucleus in its 62-kDa uncleaved form. Moreover, NMDA administration under conditions that failed to activate calpain still robustly induced AIF nuclear translocation. Inhibition of calpain with calpastatin or genetic knockout of the regulatory subunit of calpain failed to prevent NMDA- or MNNG-induced AIF nuclear translocation and subsequent cell death, respectively, which was markedly prevented by the PARP-1 inhibitor, 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-iso-quinolinone. Our study clearly shows that calpain activation is not required for AIF release during parthanatos, suggesting that other mechanisms rather than calpain are involved in mitochondrial AIF release in parthanatos.  相似文献   

4.
Continuously generated hydrogen peroxide (H2O2) inhibits typical apoptosis and instead initiates a caspase‐independent, apoptosis‐inducing factor (AIF)‐mediated pyknotic cell death. This may be related to H2O2‐mediated DNA damage and subsequent ATP depletion, although the exact mechanisms by which the mode of cell death is decided after H2O2 exposure are still unclear. Accumulated evidence and our previous data led us to hypothesize that continuously generated H2O2, not an H2O2 bolus, induces severe DNA damage, signaling poly(ADP‐ribose) polymerase‐1 (PARP‐1) activation, ATP depletion, and eventually caspase‐independent cell death. Results from the present study support that H2O2 generated continuously by glucose oxidase causes excessive DNA damage and PARP‐1 activation. Blockage of PARP‐1 by a siRNA transfection or by pharmacological inhibitor resulted in the significant inhibition of ATP depletion, loss of mitochondrial membrane potential, nuclear translocation of AIF and endonuclease G, and eventually conversion to caspase‐dependent apoptosis. Overall, the current study demonstrates the different roles of PARP‐1 inhibition in modulation of cell death according to the method of H2O2 exposure, that is, continuous generation versus a direct addition. J. Cell. Biochem. 108: 989–997, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Carbon tetrachloride (CCl4) is routinely used as a model compound for eliciting centrilobular hepatotoxicity. It can be bioactivated to the trichloromethyl radical, which causes extensive lipid peroxidation and ultimately cell death by necrosis. Overactivation of poly(ADP-ribose) polymerase-1 (PARP-1) can rapidly reduce the levels of β-nicotinamide adenine dinucleotide and adenosine triphosphate and ultimately promote necrosis. The aim of this study was to determine whether inhibition of PARP-1 could decrease CCl4-induced hepatotoxicity, as measured by degree of poly(ADP-ribosyl)ation, serum levels of lactate dehydrogenase (LDH), lipid peroxidation, and oxidative DNA damage. For this purpose, male ICR mice were administered intraperitoneally a hepatotoxic dose of CCl4 with or without 6(5H)-phenanthridinone, a potent inhibitor of PARP-1. Animals treated with CCl4 exhibited extensive poly(ADP-ribosyl)ation in centrilobular hepatocytes, elevated serum levels of LDH, and increased lipid peroxidation. In contrast, animals treated concomitantly with CCl4 and 6(5H)-phenanthridinone showed significantly lower levels of poly(ADP-ribosyl)ation, serum LDH, and lipid peroxidation. No changes were observed in the levels of oxidative DNA damage regardless of treatment. These results demonstrated that the hepatotoxicity of CCl4 is dependent on the overactivation of PARP-1 and that inhibition of this enzyme attenuates the hepatotoxicity of CCl4.  相似文献   

6.
Parthanatos is a programmed necrotic demise characteristic of ATP (adenosine triphosphate) consumption due to NAD+ (nicotinamide adenine dinucleotide) depletion by poly(ADP-ribose) polymerase 1 (PARP1)-dependent poly(ADP-ribosyl)ation on target proteins. However, how the bioenergetics is adaptively regulated during parthanatos, especially under the condition of macroautophagy deficiency, remains poorly characterized. Here, we demonstrated that the parthanatic inducer N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) triggered ATP depletion followed by recovery in mouse embryonic fibroblasts (MEFs). Notably, Atg5−/− MEFs showed great susceptibility to MNNG with disabled ATP-producing capacity. Moreover, the differential energy-adaptive responses in wild-type (WT) and Atg5−/− MEFs were unequivocally worsened by inhibition of AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and mitochondrial activity. Importantly, Atg5−/− MEFs disclosed diminished SIRT1 and mitochondrial activity essential to the energy restoration during parthanatos. Strikingly, however, parthanatos cannot be exasperated by bafilomycin A1 and MNNG neither provokes microtubule-associated protein 1A/1B-light chain 3 (LC3) lipidation and p62 elimination, suggesting that parthanatos does not induce autophagic flux. Intriguingly, we reported unexpectedly that PD98059, even at low concentration insufficient to inhibit MEK, can promote mitochondrial activity and facilitate energy-restoring process during parthanatos, without modulating DNA damage responses as evidenced by PARP1 activity, p53 expression, and γH2AX (H2A histone family, member X (H2AX), phosphorylated on Serine 139) induction. Therefore, we propose that Atg5 deficiency confers an infirmity to overcome the energy crisis during parthanatos and further underscore the deficits in mitochondrial quality control, but not incapability of autophagy induction, that explain the vulnerability in Atg5-deficient cells. Collectively, our results provide a comprehensive energy perspective for an improved treatment to alleviate parthanatos-related tissue necrosis and disease progression and also provide a future direction for drug development on the basis of PD98059 as an efficacious compound against parthanatos.  相似文献   

7.
Poly(ADP-ribose) polymerases or PARPs are a family of NAD+-dependent enzymes that modify themselves and other substrate proteins with ADP-ribose polymers. The founding member PARP1 is localized predominantly in the nucleus and is activated by binding to DNA lesions. Excessive PARP1 activation following genotoxin treatment causes NAD+ depletion and cell death, whereas pharmacological PARP1 inhibition protects cells from genotoxicity. This study investigates whether cellular viability and NAD+ metabolism are regulated by tankyrase-1, a PARP member localized predominantly in the cytosol. Using a tetracycline-sensitive promoter to regulate tankyrase-1 expression in Madin–Darby canine kidney (MDCK) cells, we found that a 40-fold induction of tankyrase-1 (from 1500 to 60,000 copies per cell) lowers steady-state NAD+ levels but does not affect basal cellular viability. Moreover, the induction confers protection against the oxidative agent H2O2 and the alkylating agent MNNG, genotoxins that kill cells by activating PARP1. The cytoprotective effect of tankyrase-1 is not due to enhanced scavenging of oxidants or altered expression of Mcl-1, an anti-apoptotic molecule previously shown to be down-regulated by tankyrase-1 in CHO cells. Instead, tankyrase-1 appears to protect cells by preventing genotoxins from activating PARP1-mediated reactions such as PARP1 automodification and NAD+ consumption. Our findings therefore indicate a cytoprotective function of tankyrase-1 mediated through altered NAD+ homeostasis and inhibition of PARP1 function.  相似文献   

8.
Endothelial cells (EC) are subject to oxidative-induced cell death. Activation of poly(ADP-ribose) polymerase (PARP) occurs early in oxidant-induced EC injury and putatively mediates cell death by depleting its substrate, NAD+. In this study, the role of PARP in H2O2-induced EC death was investigated. EC were exposed to oxidant stress and viability continuously monitored using fluorescent dye exclusion. Inhibition of PARP with 1,5-dihydroxyisoquinoline (DIQ) delayed the time course of oxidant-induced EC death. Concurrent addition of the protein synthesis inhibitor, cycloheximide, or the endonuclease inhibitor, aurintricarboxylic acid, to PARP-inhibited cells further delayed the onset and attenuated the extent of H2O2-induced cell lysis, consistent with an active mode of cell death. Caspase-3-like activity, a hallmark of apoptosis, was negligible in oxidant-treated EC alone, however, inhibition of PARP by 3-aminobenzamide or DIQ dramatically increased caspase-3-like activity. Morphological assessment confirmed that the primary mode of death in oxidant-stressed EC was oncosis. However, following PARP inhibition, the cells switched to apoptosis. Since inflammation is associated with oncosis and not apoptosis, the results presented here could explain the beneficial effects seen with PARP inhibition in various in vivo models of oxidant injury and provide a mechanism to manipulate this injury into a state of cell death that could ultimately be controlled.  相似文献   

9.
Necroptosis is a newly described form of regulated necrosis that contributes to neuronal death in experimental models of stroke and brain trauma. Although much work has been done elucidating initiating mechanisms, signaling events governing necroptosis remain largely unexplored. Akt is known to inhibit apoptotic neuronal cell death. Mechanistic target of rapamycin (mTOR) is a downstream effector of Akt that controls protein synthesis. We previously reported that dual inhibition of Akt and mTOR reduced acute cell death and improved long term cognitive deficits after controlled-cortical impact in mice. These findings raised the possibility that Akt/mTOR might regulate necroptosis. To test this hypothesis, we induced necroptosis in the hippocampal neuronal cell line HT22 using concomitant treatment with tumor necrosis factor α (TNFα) and the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. TNFα/zVAD treatment induced cell death within 4 h. Cell death was preceded by RIPK1–RIPK3–pAkt assembly, and phosphorylation of Thr-308 and Thr473 of AKT and its direct substrate glycogen synthase kinase-3β, as well as mTOR and its direct substrate S6 ribosomal protein (S6), suggesting activation of Akt/mTOR pathways. Pretreatment with Akt inhibitor viii and rapamycin inhibited Akt and S6 phosphorylation events, mitochondrial reactive oxygen species production, and necroptosis by over 50% without affecting RIPK1–RIPK3 complex assembly. These data were confirmed using small inhibitory ribonucleic acid-mediated knockdown of AKT1/2 and mTOR. All of the aforementioned biochemical events were inhibited by necrostatin-1, including Akt and mTOR phosphorylation, generation of oxidative stress, and RIPK1–RIPK3–pAkt complex assembly. The data suggest a novel, heretofore unexpected role for Akt and mTOR downstream of RIPK1 activation in neuronal cell death.  相似文献   

10.
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which catalyzes the transfer of ADP-ribose units from NAD+ to a variety of nuclear proteins under the stimulation of DNA strand break. To examine its role in DNA repair, we have been studying the interaction of PARP with other nuclear proteins using disulfide cross-linking, initiated by sodium tetrathionate (NaTT). Chinese Hamster Ovary (CHO) cells were extracted sequentially with Nonidet P40 (detergent), nucleases (DNase + RNase), and high salt (1.6 M NaCl) with and without the addition of a sulfhydryl reducing agent. The residual structures are referred to as the nuclear matrix, and are implicated in the organization of DNA repair and replication. Treatment of the cells with NaTT causes the crosslinking of PARP to the nuclear matrix. Activating PARP by pretreating the cells with H2O2 did not increase the cross-linking of PARP with the nuclear matrix, suggesting a lack of additional interaction of the enzyme with the nuclear matrix during DNA repair. Both NaTT and H2O2 induced crosslinks of PARP that were extractable with high salt. To shorten the procedure, these crosslinks were extracted from cells without nucleases and high salt treatment, using phosphate buffer. Using western blotting, these crosslinks appeared as a smear of high molecular weight species including a possible dimer of PARP at 230 kDa, which return to 116 kDa following reduction with -mercaptoethanol.  相似文献   

11.
underlying mechanism of ROS-induced cell injury remains to be defined. This study was undertaken to examine the role of lipid peroxidation and poly (ADP-ribose) polymerase (PARP) activation in H2O2-induced cell death in A172 cells, a human glioma cell line. H2O2 induced a dose- and time-dependent cell death. The cell death was prevented by thiols (dithiothreitol and glutathione), iron chelators (deferoxamine and phenanthroline), H2O2 scavengers (catalase and pyruvate), and a hydroxyl radical scavenger (dimethylthiourea). Antioxidants N,N-diphenyl-p-phenylenediamine (DPPD) and Trolox had no effect on the H2O2-induced cell death. Lipid peroxidation did not increase in human glioma cells exposed to H2O2. The PARP inhibitor 3-aminobenzamide prevented the cell death induced by H2O2. The PARP activity was increased by H2O2 and the H2O2 effect was prevented by 3-aminobenzamide, dithiothreitol, and phenanthroline. The ATP depletion induced by H2O2 was prevented by catalase, dithiothreitol, phenanthroline, and 3-aminobenzamide, but not by DPPD. These results indicate that the H2O2-induced cell death is mediated by PARP activation but not by lipid peroxidation in human glioma cells.  相似文献   

12.
Oxidative stress-induced cell death is common in many neurological diseases. However, the role of poly(ADP-ribose) polymerase-1-induced cell death (parthanatos) has not been fully elucidated. Here, we found that hydrogen peroxide (H2O2) could lead to PARP-1 activation and apoptosis-inducing factor nuclear translocation in a concentration dependent manner. Iduna, as a novel regulator of parthanatos, was also induced by H2O2. Down-regulation of Iduna by genetic ablation promoted H2O2-induced cell damage. Up-regulation of Iduna reduced the loss of mitochondrial potential and ATP and NAD + production, but did not affect the mitochondrial dysfunction-induced cytochrome c release, increase of Bax/Bcl-2 ratio, and Caspase-9/Caspase-3 activity. In contrast, overexpression of Iduna inhibited activation of PARP-1 and nuclear translocation of AIF. Further study showed that PARP-1 specific inhibitor, DPQ, blocked the protective effect of Iduna against H2O2-induced oxidative stress. Moreover, in the presence of proteasome inhibitor (MG-132) or ubiquitin E1 inhibitor (PYR-41), protective effect of Iduna was significantly weaken. These results indicate that Iduna acts as a potential antioxidant by improving mitochondrial function and inhibiting oxidative stress-induced parthanatos, and these protective effects are dependent on the involvement of ubiquitin–proteasome system.  相似文献   

13.
Poly(ADP-ribose) polymerase-1-dependent cell death (known as parthanatos) plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor), but not calpain-hydrolysed truncated-AIF, was rapidly released from the mitochondria during parthanatos, implicating a second pool of AIF that might be present in brain mitochondria contributing to the rapid release. In the present study, a novel AIF pool is revealed in brain mitochondria by multiple biochemical analyses. Approx. 30% of AIF loosely associates with the outer mitochondrial membrane on the cytosolic side, in addition to its main localization in the mitochondrial intermembrane space attached to the inner membrane. Immunogold electron microscopic analysis of mouse brain further supports AIF association with the outer, as well as the inner, mitochondrial membrane in vivo. In line with these observations, approx. 20% of uncleaved AIF rapidly translocates to the nucleus and functionally causes neuronal death upon NMDA (N-methyl-d-aspartate) treatment. In the present study we show for the first time a second pool of AIF in brain mitochondria and demonstrate that this pool does not require cleavage and that it contributes to the rapid release of AIF. Moreover, these results suggest that this outer mitochondrial pool of AIF is sufficient to cause cell death during parthanatos. Interfering with the release of this outer mitochondrial pool of AIF during cell injury paradigms that use parthanatos hold particular promise for novel therapies to treat neurological disorders.  相似文献   

14.
Wenxian Wu 《Autophagy》2020,16(8):1544-1546
ABSTRACT

The mammalian ULK1 is the central initiating kinase of bulk and selective macroautophagy/autophagy processes. In the past, both autophagy-relevant and non-autophagy-relevant substrates of this Ser/Thr kinase have been reported. Here, we describe our recent finding that ULK1 also regulates TNF signaling pathways. We find that inhibition of autophagy or specifically ULK1 increases TNF-induced cell death. This autophagy-independent pro-survival function of ULK1 is mediated via the phosphorylation of RIPK1 at Ser357. RIPK1 is the central mediator of pro-inflammatory or pro-death signaling pathways induced by TNF, and ULK1-dependent phosphorylation regulates RIPK1 activation and distribution to different intracellular signaling complexes. Our results indicate that ULK1 exerts a cyto-protective function not only by initiating autophagy, but also by controlling RIPK1-mediated cell death.  相似文献   

15.
16.
Persistent poly (ADP-ribose) polymerase 1 (PARP-1) activation has proven detrimental and can lead to PARP-1-dependent cell death. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) serve as essential hubs for many biological pathways, such as autophagy and mitochondria fission and fusion. This study aimed to alleviate the effects of hydrogen peroxide (H2O2)-induced persistent PARP-1 activation and MAM dysregulation by the usage of a PARP-1 inhibitor. Results showed that receptor-interacting protein kinase (RIPK) 1 inhibitor (necrostatin-1) and PARP-1 inhibitor (olaparib) protected retinal precursor cells from H2O2-induced death, while a pan-caspase inhibitor (Z-VAD-FMK) failed to protect R28 cells. Olaparib also alleviated H2O2-induced MAM dysregulation, as evidenced by decreased VDAC1/ITPR3 interactions and reduced mitochondrial membrane potential collapse. Additionally, olaparib also inhibited H2O2-induced autophagy. Inhibiting autophagic flux increased MAM signaling under both normal and oxidative conditions. Furthermore, H2O2 treatment caused a reduction in the protein level of mitofusin-2 (MFN2) in a dose- and time-dependent manner. Mfn2 knockdown was found to further magnify MAM dysregulation and mitochondrial dysfunction under normal and oxidative conditions. Mfn2 overexpression surprisingly enhanced H2O2-induced MAM signaling and failed to rescue H2O2-induced mitochondrial dysfunction. These results indicate that MAMs probably serve as a membrane source for oxidative stress-associated autophagy. MAM dysregulation also contributed to H2O2-induced PARP-1-dependent cell death. However, more studies are required to decipher the link between the modulation of Mfn2 expression, changes in MAM integrity, and alterations in mitochondrial performances.  相似文献   

17.
Eukaryotic microalgae serve as indicators of environmental change when exposed to severe seasonal fluctuations. Several environmental stress conditions are known to produce reactive oxygen species in cellular compartments, resulting in oxidative damage and apoptosis. The study of cell death in higher plants and animals has revealed the existence of an active ‘programmed cell death’ (PCD) process and similarities between such processes suggest an evolutionary origin. A study was undertaken to examine the morphological, biochemical and molecular responses of the unicellular green alga Chlamydomonas reinhardtii after exposure to oxidative (10 mM H2O2) and osmotic (200 mM NaCl and 360 mM sorbitol) stress. Concentrations of H2O2 (2–50 mM), NaCl and sorbitol (100–800 mM) were negatively correlated with growth. Biochemical analyses showed an increase in intracellular H2O2 production (2.2-fold with H2O2 and ~1.2–1.4-fold with NaCl and sorbitol) and activities of some antioxidant enzymes [super oxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX)]. Alteration of mitochondrial membrane potential (MMP) was observed upon treatment with H2O2 and NaCl, but not with sorbitol, indicating that the ionic stress component of NaCl altered the MMP. In addition, H2O2 led to the activation of a caspase-3-like protein, increase in the cleavage of a poly(ADP) ribose polymerase-1 (PARP-1)-like enzyme and formation of DNA nicks and laddering. With NaCl and sorbitol, no caspase activation, nor oligonucleosomal DNA laddering was observed, indicating non-apoptotic death. However, genomic DNA of NaCl (800 mM)-stressed cells, but not those of sorbitol-treated cells showed complete shearing. We conclude that the ionic rather than the osmotic component of NaCl leads to necrosis. These results unequivocally suggest that the vegetative cells of C. reinhardtii respond differentially to various stress agents, leading to different death types in the same organism. Moreover, unlike most other organisms, when exposed to NaCl this alga does not undergo PCD.  相似文献   

18.
Neurodegenerative disorders are strongly associated with oxidative stress, which is induced by reactive oxygen species including hydrogen peroxide (H2O2). Epidemiological studies have suggested that coffee may be neuroprotective, but the molecular mechanisms underlying this effect have not been clarified. In this study, we investigated the protective effects of caffeinated coffee, decaffeinated coffee, and the phenolic phytochemical chlorogenic acid (5-O-caffeoylquinic acid), which is present in both caffeinated and decaffeinated coffee, against oxidative neuronal death. H2O2-induced apoptotic nuclear condensation in neuronal cells was strongly inhibited by pretreatment with caffeinated coffee, decaffeinated coffee, or chlorogenic acid. Pretreatment with caffeinated coffee, decaffeinated coffee, or chlorogenic acid inhibited the H2O2-induced down-regulation of anti-apoptotic proteins Bcl-2 and Bcl-XL while blocking H2O2-induced pro-apoptotic cleavage of caspase-3 and pro-poly(ADP-ribose) polymerase. We also found that caffeinated coffee, decaffeinated coffee, and chlorogenic acid induced the expression of NADPH:quinine oxidoreductase 1 (NQO1) in neuronal cells, suggesting that these substances protect neurons from H2O2-induced apoptosis by up-regulation of this antioxidant enzyme. The neuroprotective efficacy of caffeinated coffee was similar to that of decaffeinated coffee, indicating that active compounds present in both caffeinated and decaffeinated coffee, such as chlorogenic acid, may drive the effects.  相似文献   

19.
聚腺苷二磷酸核糖基聚合酶(poly (ADP-ribose) polyerase, PARP)是存在于多数真核细胞中的一个蛋白质翻译后修饰酶,它可催化组蛋白H1等重要核蛋白及它自身的聚腺苷二磷酸核糖基化作用.细胞受到外界损伤因子作用时, DNA发生链断裂,PARP结合到DNA断裂口,其催化活性被激活,修饰受体蛋白,进而引发一系列级联反应.这种性质使PARP有可能作为细胞内的分子感受器和传感器,启动细胞内对损伤作出反应的信号传导机制,从而根据细胞受损程度决定细胞的命运:修复或是死亡.  相似文献   

20.
The repair of DNA damage is fundamental to normal cell development and replication. Hydrogen sulfide (H2S) is a novel gasotransmitter that has been reported to protect cellular aging. Here, we show that H2S attenuates DNA damage in human endothelial cells and fibroblasts by S‐sulfhydrating MEK1 at cysteine 341, which leads to PARP‐1 activation. H2S‐induced MEK1 S‐sulfhydration facilitates the translocation of phosphorylated ERK1/2 into nucleus, where it activates PARP‐1 through direct interaction. Mutation of MEK1 cysteine 341 inhibits ERK phosphorylation and PARP‐1 activation. In the presence of H2S, activated PARP‐1 recruits XRCC1 and DNA ligase III to DNA breaks to mediate DNA damage repair, and cells are protected from senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号