首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
Advanced glycation end products (AGEs) that arise from the reaction of sugars with protein side chains are supposed to be involved in the pathogenesis of several diseases and therefore the effects of AGEs on cells are the objective of numerous investigations. Although different cellular responses to AGEs can be measured in cell culture studies, knowledge about the nature of AGE-binding and the involved cell surface receptors is poor. The measurement of AGE-binding to cell surfaces bears the potential to gain a deeper understanding about the nature of AGE-binding to cell surface proteins and could be applied as a preliminary test before performing cell culture studies on AGE effects. Herein, a new material and method for the detection of AGE-binding to cell surfaces is introduced, which has the potential to facilitate the detection of binding. In the present paper, the detection of AGE-binding to cell surface proteins using an artificial system of cellular membrane proteins reconstituted on beads (TRANSIL CaCo-2) is described. The binding of a BSA-AGE derived from a 37 degrees C incubation with 500 mM Glc (BSA-Glc 500) and the corresponding control to this artificial system was compared with the binding to intact cells and was found to be in good agreement. Additionally, the K(d) for the binding of the BSA-Glc 500 used in the study to CaCo-2 surfaces was determined using FITC-labelled samples in a flow cytometric approach. Competitive binding studies were performed using a set of non-labelled BSA-AGEs to compete with FITC-labelled BSA-Glc 500 for the cell surface binding sites. The binding was found to be inhibited to different extends, virtually depending on the degree of arginine modifications within the modified protein used for competition. Additionally, the effects of all AGEs used in the study on CaCo-2 cells was measured using the detection of reactive oxygen species (ROS), which are known to be induced as a primary result of AGE-receptor binding. The induction of ROS was found to linearly correlate to the capacity of the individual AGE to displace FITC-labelled BSA-Glc 500 in competitive binding studies. Therefore, the data indicate, that at least in case of CaCo-2 cells the detection of cell surface binding can serve as a reliable preliminary test for a potential cell-damaging effect of AGEs.  相似文献   

3.
Advanced glycation end products (AGEs) that arise from the reaction of sugars with protein side chains are supposed to be involved in the pathogenesis of several diseases and therefore the effects of AGEs on cells are the objective of numerous investigations. Although different cellular responses to AGEs can be measured in cell culture studies, knowledge about the nature of AGE-binding and the involved cell surface receptors is poor. The measurement of AGE-binding to cell surfaces bears the potential to gain a deeper understanding about the nature of AGE-binding to cell surface proteins and could be applied as a preliminary test before performing cell culture studies on AGE effects. Herein, a new material and method for the detection of AGE-binding to cell surfaces is introduced, which has the potential to facilitate the detection of binding. In the present paper, the detection of AGE-binding to cell surface proteins using an artificial system of cellular membrane proteins reconstituted on beads (TRANSIL CaCo-2) is described. The binding of a BSA-AGE derived from a 37 °C incubation with 500 mM Glc (BSA-Glc 500) and the corresponding control to this artificial system was compared with the binding to intact cells and was found to be in good agreement. Additionally, the Kd for the binding of the BSA-Glc 500 used in the study to CaCo-2 surfaces was determined using FITC-labelled samples in a flow cytometric approach. Competitive binding studies were performed using a set of non-labelled BSA-AGEs to compete with FITC-labelled BSA-Glc 500 for the cell surface binding sites. The binding was found to be inhibited to different extends, virtually depending on the degree of arginine modifications within the modified protein used for competition. Additionally, the effects of all AGEs used in the study on CaCo-2 cells was measured using the detection of reactive oxygen species (ROS), which are known to be induced as a primary result of AGE-receptor binding. The induction of ROS was found to linearly correlate to the capacity of the individual AGE to displace FITC-labelled BSA-Glc 500 in competitive binding studies. Therefore, the data indicate, that at least in case of CaCo-2 cells the detection of cell surface binding can serve as a reliable preliminary test for a potential cell-damaging effect of AGEs.  相似文献   

4.
Advanced glycation end products (AGEs) are produced by the non-enzymatic glycation of proteins and lipids. AGE levels are pathologically elevated in a number of inflammatory diseases and in diabetes mellitus. There is evidence that AGEs, acting through the receptor for AGEs, contribute to diabetic complications. Nephropathy is a major complication of diabetes mellitus. However, the initiating molecular events that trigger diabetic renal disease are unknown. Renal mesangial cells produce excess extracellular matrix in response to treatment with transforming growth factor-beta, and excess mesangial cell matrix production, by impairing glomerular filtration, contributes to diabetic nephropathy. AGEs are known to trigger the autocrine production and release of transforming growth factor-beta. However, it is unclear how AGEs signal in mesangial cells. Here we show that treatment of mesangial cells with AGEs and with the receptor for AGEs agonist S100 triggers activation of the extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3'-kinase (PI3K) pathways. AGEs trigger the GTP loading of mesangial cell Ras, and AGE activation of ERK requires Ras. We observe that Ki-Ras, but not Ha-Ras, is the target of AGE action. Surprisingly, inhibition of PI3K blocks both ERK and Ki-Ras activation. We also observe that activation of ERK and the PI3K target kinase protein kinase-B is blocked with free radical scavengers, indicating a role for reactive oxygen species in AGE recruitment of PI3K. Thus, AGEs signal to Ki-Ras and ERK through reactive oxygen species-dependent activation of PI3K.  相似文献   

5.
Advanced glycation is the irreversible attachment of reducing sugars onto the free amino groups of proteins. Its physiological roles are thought to include the identification of senescent proteins and hence there is a time dependent accumulation of advanced glycation end products (AGEs). AGE labelled proteins are catabolised by cells into low molecular weight peptides and amino acids and excreted primarily via the kidneys. This process appears to be tightly controlled by AGE clearance receptor complexes containing AGE-R1, AGE-R2 and AGE-R3 and scavenger receptors such as CD36, SR-AII and SR-BI. Conditions such as diabetes, however, which have a metabolic overload of reducing sugars, rapidly accelerate AGE formation. In addition, advanced glycation is facilitated by oxidative stress and renal disease even in the absence of increases in reducing sugar concentrations. As part of our western diet, we also ingest AGEs of which approximately 50-80% are absorbed, catabolised and excreted over a period of two days. As AGE levels rise during diabetes, interruption of normal function occurs via three distinct mechanisms, namely AGE induced cross-linking of extracellular matrices, stiffening elastic fibres, disturbing cellular adhesion and preventing turnover. The second is by intracellular formation of AGEs, which causes generalised cellular dysfunction. The third is via the chronic activation of specific receptors such as RAGE, the receptor for advanced glycation end products, which produces excesses in inflammatory molecule production. Due to the range of dysfunction produced by the accumulation of AGEs in diabetes, there is a growing need for early recognition and intervention in this process.  相似文献   

6.
Han C  Lu Y  Wei Y  Liu Y  He R 《PloS one》2011,6(9):e24623

Background

D-Ribose, an important reducing monosaccharide, is highly active in the glycation of proteins, and results in the rapid production of advanced glycation end products (AGEs) in vitro. However, whether D-ribose participates in glycation and leads to production of AGEs in vivo still requires investigation.

Methodology/Principal Findings

Here we treated cultured cells and mice with D-ribose and D-glucose to compare ribosylation and glucosylation for production of AGEs. Treatment with D-ribose decreased cell viability and induced more AGE accumulation in cells. C57BL/6J mice intraperitoneally injected with D-ribose for 30 days showed high blood levels of glycated proteins and AGEs. Administration of high doses D-ribose also accelerated AGE formation in the mouse brain and induced impairment of spatial learning and memory ability according to the performance in Morris water maze test.

Conclusions/Significance

These data demonstrate that D-ribose but not D-glucose reacts rapidly with proteins and produces significant amounts of AGEs in both cultured cells and the mouse brain, leading to accumulation of AGEs which may impair mouse spatial cognition.  相似文献   

7.
Nε-acetylation occurs on select lysine residues in α-crystallin of the human lens and alters its chaperone function. In this study, we investigated the effect of Nε-acetylation on advanced glycation end product (AGE) formation and consequences of the combined Nε-acetylation and AGE formation on the function of α-crystallin. Immunoprecipitation experiments revealed that Nε-acetylation of lysine residues and AGE formation co-occurs in both αA- and αB-crystallin of the human lens. Prior acetylation of αA- and αB-crystallin with acetic anhydride (Ac2O) before glycation with methylglyoxal (MGO) resulted in significant inhibition of the synthesis of two AGEs, hydroimidazolone (HI) and argpyrimidine. Similarly, synthesis of ascorbate-derived AGEs, pentosidine and Nε-carboxymethyl lysine (CML), was inhibited in both proteins by prior acetylation. In all cases, inhibition of AGE synthesis was positively related to the degree of acetylation. While prior acetylation further increased the chaperone activity of MGO-glycated αA-crystallin, it inhibited the loss of chaperone activity by ascorbate-glycation in both proteins. BioPORTER-mediated transfer of αA- and αB-crystallin into CHO cells resulted in significant protection against hyperthermia-induced apoptosis. This effect was enhanced in acetylated and MGO-modified αA- and αB-crystallin. Caspase-3 activity was reduced in α-crystallin transferred cells. Glycation of acetylated proteins with either MGO or ascorbate produced no significant change in the anti-apoptotic function. Collectively, these data demonstrate that lysine acetylation and AGE formation can occur concurrently in α-crystallin of human lens, and that lysine acetylation improves anti-apoptotic function of α-crystallin and prevents ascorbate-mediated loss of chaperone function.  相似文献   

8.
Advanced glycation end products (AGEs) are sugar-modified proteins that are known to appear in vivo and are suspected to be involved in the pathogenesis of several diseases. Although different cellular responses to AGEs can be measured in cell culture studies, knowledge about the nature of AGE-binding and their cell surface receptors is poor. In the present paper a method for the purification of AGE-binding proteins from membrane fractions derived from different rat organs as well as a method for assaying the binding of fluorescein labelled AGEs to the surface of cells of different cell lines are described. The presence of more than 10 proteins interacting with AGEs could be shown in membrane fractions obtained from rat organs. Additionally, binding of AGE-modified BSA to different cells could be shown using fluorescence-labelled ligands in a flow cytometric approach. The presented methods provide an option to isolate AGE-interacting proteins which is a precondition for the identification of these proteins. Furthermore, the measurement of AGE-binding to cell surfaces bears the potential to gain a deeper understanding about the nature of AGE-binding to cell surface proteins and might be applied as a preliminary test before performing cell culture studies about AGE effects.  相似文献   

9.
10.
Advanced glycation end products (AGEs) are involved in bone quality deterioration in diabetes mellitus. We previously showed that AGE2 or AGE3 inhibited osteoblastic differentiation and mineralization of mouse stromal ST2 cells, and also induced apoptosis and decreased cell growth. Although quality management for synthesized proteins in endoplasmic reticulum (ER) is crucial for the maturation of osteoblasts, the effects of AGEs on ER stress in osteoblast lineage are unknown. We thus examined roles of ER stress in AGE2- or AGE3-induced suppression of osteoblastogenesis of ST2 cells. An ER stress inducer, thapsigargin (TG), induced osteoblastic differentiation of ST2 cells by increasing the levels of Osterix, type 1 collagen (Col1), alkaline phosphatase (ALP) and osteocalcin (OCN) mRNA. AGE2 or AGE3 suppressed the levels of ER stress sensors such as IRE1α, ATF6 and OASIS, while they increased the levels of PERK and its downstream molecules, ATF4. A reduction in PERK level by siRNA did not affect the AGEs-induced suppression of the levels of Osterix, Col1 and OCN mRNA. In conclusion, AGEs inhibited the osteoblastic differentiation of stromal cells by suppressing ER stress sensors and accumulating abnormal proteins in the cells. This process might accelerate AGEs-induced suppression of bone formation found in diabetes mellitus.  相似文献   

11.
The blood-brain barrier (BBB) is a biological unit composed of capillary endothelial cells and astrocytes. Here we examined the effects of various types of advanced glycation end-products (AGEs) on astrocytes and BBB-forming endothelial cells. While no type of AGE we examined changed the permeability of endothelial sheets, glyceraldehyde-derived AGE induced VEGF expression most significantly in astrocytes. The expression of glial cell line-derived neurotrophic factor (GDNF), which reduces the vascular permeability, was decreased in the astrocytes by treatment with glyceraldehyde-derived AGE. These results indicate that glyceraldehyde-derived AGE is the biologically active substance for astrocytes by regulating the VEGF and GDNF expression, which is causally contributing to an increase in the permeability of the BBB.  相似文献   

12.
Nonenzymatic glycation results in the formation of advanced glycation end products (AGEs) through a nonenzymatic multistep reaction of reducing sugars with proteins. AGEs have been suspected to be involved in the pathogenesis of several chronic clinical neurodegenerative complications including Alzheimer's disease, which is characterized with the activation of microglial cells in neuritic plaques. To find out the consequence of this activation on microglial cells, we treated the cultured microglial cells with different glycation levels of Bovine Serum Albumin (BSA) which were prepared in vitro. Extent of glycation of protein has been characterized during 16 weeks of incubation with glucose. Treatment of microglial cells with various levels of glycated albumin induced nitric oxide (NO) production and consequently cell death. We also tried to find out the mode of death in AGE-activated microglial cells. Altogether, our results suggest that AGE treatment causes microglia to undergo NO-mediated apoptotic and necrotic cell death in short term and long term, respectively. NO production is a consequence of iNOS expression in a JNK dependent RAGE signalling after activation of RAGE by AGE-BSA.  相似文献   

13.
Interaction of advanced glycation end products (AGE) with AGE receptors induces several cellular phenomena potentially relating to diabetic complications. Five AGE receptors identified so far are RAGE (receptor for AGE), galectin-3, 80K-H, OST-48, and SRA (macrophage scavenger receptor class A types I and II). Since SRA is known to belong to the class A scavenger receptor family, and the scavenger receptor collectively represents a family of multiligand lipoprotein receptors, it is possible that CD36, although belonging to the class B scavenger receptor family, can recognize AGE proteins as ligands. This was tested at the cellular level in this study using Chinese hamster ovary (CHO) cells overexpressing human CD36 (CD36-CHO cells). Cellular expression of CD36 was confirmed by immunoblotting and immunofluorescent microscopy using anti-CD36 antibody. Upon incubation at 37 degrees C, (125)I-AGE-bovine serum albumin (AGE-BSA) and (125)I-oxidized low density lipoprotein (LDL), an authentic ligand for CD36, were endocytosed in a dose-dependent fashion and underwent lysosomal degradation by CD36-CHO cells, but not wild-type CHO cells. In binding experiments at 4 degrees C, (125)I-AGE-BSA exhibited specific and saturable binding to CD36-CHO cells (K(d) = 5.6 microg/ml). The endocytic uptake of (125)I-AGE-BSA by these cells was inhibited by 50% by oxidized LDL and by 60% by FA6-152, an anti-CD36 antibody inhibiting cellular binding of oxidized LDL. Our results indicate that CD36 expressed by these cells mediates the endocytic uptake and subsequent intracellular degradation of AGE proteins. Since CD36 is one of the major oxidized LDL receptors and is up-regulated in macrophage- and smooth muscle cell-derived foam cells in human atherosclerotic lesions, these results suggest that, like oxidized LDL, AGE proteins generated in situ are recognized by CD36, which might contribute to the pathogenesis of diabetic macrovascular complications.  相似文献   

14.
Chinese hamster ovary (CHO) cells are regarded as one of the most commonly used mammalian hosts, which decreases the productivity due to loss in culture viability. Overexpressing antiapoptosis genes in CHO cells was developed as a means of limiting cell death upon exposure to environmental insults. Glucose‐regulated protein 78 (GRP78) is traditionally regarded as a major ER chaperone that participates in protein folding and other cell processes. It is also a potent antiapoptotic protein and plays a critical role in cell survival, proliferation, and metastasis. In this study, the impact of GRP78 on CHO cells in response to environmental insults such as serum deprivation and oxidative stress was investigated. First, it was confirmed that CHO cells were very sensitive to environmental insults. Then, GRP78 overexpressing CHO cell line was established and exposed to serum deprivation and H2O2. Results showed that GRP78 engineering increased the viability and decreased the apoptosis of CHO cells. The survival advantage due to GRP78 engineering could be mediated by suppression of caspase‐3 involved in cell death pathways in stressed cells. Besides, GRP78 engineering also enhanced yields of antibody against transferrin receptor in CHO cells. GRP78 should be a potential application in the biopharmaceutical industries.  相似文献   

15.
Advanced glycation end products (AGEs) from the Maillard reaction contribute to protein aging and the pathogenesis of age- and diabetes-associated complications. The alpha-dicarbonyl compound methylglyoxal (MG) is an important intermediate in AGE synthesis. Recent studies suggest that pyridoxamine inhibits formation of advanced glycation and lipoxidation products. We wanted to determine if pyridoxamine could inhibit MG-mediated Maillard reactions and thereby prevent AGE formation. When lens proteins were incubated with MG at 37 degrees C, pH 7.4, we found that pyridoxamine inhibits formation of methylglyoxal-derived AGEs concentration dependently. Pyridoxamine reduces MG levels in red blood cells and plasma and blocks formation of methylglyoxal-lysine dimer in plasma proteins from diabetic rats and it prevents pentosidine (an AGE derived from sugars) from forming in plasma proteins. Pyridoxamine also decreases formation of protein carbonyls and thiobarbituric-acid-reactive substances in plasma proteins from diabetic rats. Pyridoxamine treatment did not restore erythrocyte glutathione (which was reduced by almost half) in diabetic animals, but it enhanced erythrocyte glyoxalase I activity. We isolated a major product of the reaction between MG and pyridoxamine and identified it as methylglyoxal-pyridoxamine dimer. Our studies show that pyridoxamine reduces oxidative stress and AGE formation. We suspect that a direct interaction of pyridoxamine with MG partly accounts for AGE inhibition.  相似文献   

16.
GRP78 is a resident protein of the endoplasmic reticulum (ER) and a member of the glucose regulated protein (GRP) family. Many secretion incompetent proteins are found in stable association with GRP78 and are retained in the ER. Some proteins which are destined for secretion transiently associate with GRP78. To further increase our understanding of the role of GRP78 in secretion, we have stably overexpressed GRP78 in Chinese hamster ovary (CHO) cells and examined the effect on protein secretion and the stress response. GRP78 overexpressing cells treated with tunicamycin or A23187 exhibited a reduced induction of endogenous GRP78 and GRP94 mRNAs compared to wild-type CHO cells. This suggests that GRP78 overexpression either alleviates the stress or is directly involved in signaling stress-induced expression of GRPs. Transient expression of secreted proteins was used to measure secretion efficiency in the GRP78 overexpressing cells. Secretion of von Willebrand factor and a mutant form of factor VIII, two proteins which transiently associate with GRP78, was reduced by GRP78 overexpression. In contrast, secretion of M-CSF, which was not detected in association with GRP78, was unaffected. This indicates that elevated levels of GRP78 may increase stable association and decrease the secretion efficiency of proteins which normally transiently associate with GRP78. These results indicate that one function of GRP78 is selective protein retention in the ER.  相似文献   

17.
Glucosamine (GlcN) is an amino sugar sold over-the-counter and is widely used as a dietary supplement to relieve symptoms of osteoarthritis. It is not known whether it is the GlcN alone or one of its many possible nonenzymatic glycation products that is responsible for this effect. The current study demonstrates that reducing sugars form advanced glycation endproducts (AGEs) with GlcN and, as a result, decrease GlcN autocondensation by reducing the availability of the GlcN amino group. Capillary electrophoresis (CE) was used to analyze the in vitro Maillard reaction of GlcN with glyceraldehyde (GA), glucose (Glc), and fructose (Fru) as well as their inhibition of GlcN autocondensation under physiological conditions. Formation of AGEs was monitored by UV and fluorescence spectroscopy. Major components were separated by CE using a bare capillary and UV detection at 214 nm. AGE species were separated by HPLC and were complementary to the CE results. The effects of sugar concentration and incubation time on the AGE profile are also reported for each of the GlcN reducing sugar model systems. A simple and rapid CE method was developed to analyze the AGE formation in this initial report of the reaction of reducing sugars with the amino group of GlcN.  相似文献   

18.
Amino groups in proteins can non-enzymatically react with reducing sugars to generate a structurally diverse group of compounds referred to as advanced glycation end products (AGEs). The in vivo formation of AGEs contributes to some of the complications of diabetes including atherosclerosis, cataract formation, and renal failure. The formation of AGEs is dependent on both sugar and protein concentrations. Increases in temperature, pH, and exposure time of sugars to the proteins also play a significant role in the rate of AGE formation. This study focuses on the use of a combination of analytical techniques to study the in vitro AGE formation of HSA with dihydroxyacetone phosphate (DHAP), a ketose generated during glycolysis, and its dephosphorylated analog, dihydroxy acetone (DHA), commonly used as a browning reagent in skin tanning preparations. The extent of AGE formation was affected by DHAP and DHA concentrations and by the duration of HSA exposure to these glycating agents. Increases in temperature and pH sped the glycation process and enhanced the formation of the AGEs of HSA. MALDI-TOF mass spectroscopic data provided a reliable result to evaluate the extent of the AGE formation.  相似文献   

19.
The advanced stage of the glycation process (also called the "Maillard reaction") that leads to the formation of advanced glycation end-products (AGEs) plays an important role in the pathogenesis of angiopathy in diabetic patients and in the aging process. AGEs elicit a wide range of cell-mediated responses that might contribute to diabetic complications, vascular disease, renal disease, and Alzheimer's disease. Recently, it has been proposed that AGE are not only created from glucose per se, but also from dicarbonyl compounds derived from glycation, sugar autoxidation, and sugar metabolism. However, this advanced stage of glycation is still only partially characterized and the structures of the different AGEs that are generated in vivo have not been completely determined. Because of their heterogeneity and the complexity of the chemical reactions involved, only some AGEs have been characterized in vivo, including N-carboxymethyllysine (CML), pentosidine, pyrraline, and crosslines. In this article, we provide a brief overview of the pathways of AGE formation and of the immunochemical methods for detection of AGEs, and we also provide direct immunological evidence for the existence of five distinct AGE classes (designated as AGE-1 to -5) within the AGE-modified proteins and peptides in the serum of diabetic patients on hemodialysis. We also propose pathways for the in vivo formation of various AGEs by glycation, sugar autoxidation, and sugar metabolism.  相似文献   

20.
Recent studies suggested that interruption of the interaction of advanced glycation end products (AGEs), with the signal-transducing receptor receptor for AGE (RAGE), by administration of the soluble, extracellular ligand-binding domain of RAGE, reversed vascular hyperpermeability and suppressed accelerated atherosclerosis in diabetic rodents. Since the precise molecular target of soluble RAGE in those settings was not elucidated, we tested the hypothesis that predominant specific AGEs within the tissues in disorders such as diabetes and renal failure, N(epsilon)-(carboxymethyl)lysine (CML) adducts, are ligands of RAGE. We demonstrate here that physiologically relevant CML modifications of proteins engage cellular RAGE, thereby activating key cell signaling pathways such as NF-kappaB and modulating gene expression. Thus, CML-RAGE interaction triggers processes intimately linked to accelerated vascular and inflammatory complications that typify disorders in which inflammation is an established component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号