首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 257 毫秒
1.
Cytosolic calcium (Cai2+) is a second messenger that is important for the regulation of secretion in many types of tissues. Bile duct epithelial cells, or cholangiocytes, are polarized epithelia that line the biliary tree in liver and are responsible for secretion of bicarbonate and other solutes into bile. Cai2+ signaling plays an important role in the regulation of secretion by cholangiocytes, and this review discusses the machinery involved in the formation of Ca2+ signals in cholangiocytes, along with the evidence that these signals regulate ductular secretion. Finally, this review discusses the evidence that impairments in cholangiocyte Ca2+ signaling play a primary role in the pathogenesis of cholestatic disorders, in which hepatic bile secretion is impaired.  相似文献   

2.
The type III isoform of the inositol 1,4,5-trisphosphate receptor (InsP3R3) is apically localized and triggers Ca2+ waves and secretion in a number of polarized epithelia. However, nothing is known about epigenetic regulation of this InsP3R isoform. We investigated miRNA regulation of InsP3R3 in primary bile duct epithelia (cholangiocytes) and in the H69 cholangiocyte cell line, because the role of InsP3R3 in cholangiocyte Ca2+ signaling and secretion is well established and because loss of InsP3R3 from cholangiocytes is responsible for the impairment in bile secretion that occurs in a number of liver diseases. Analysis of the 3′-UTR of human InsP3R3 mRNA revealed two highly conserved binding sites for miR-506. Transfection of miR-506 mimics into cell lines expressing InsP3R3–3′UTR-luciferase led to decreased reporter activity, whereas co-transfection with miR-506 inhibitors led to enhanced activity. Reporter activity was abrogated in isolated mutant proximal or distal miR-506 constructs in miR-506-transfected HEK293 cells. InsP3R3 protein levels were decreased by miR-506 mimics and increased by inhibitors, and InsP3R3 expression was markedly decreased in H69 cells stably transfected with miR-506 relative to control cells. miR-506-H69 cells exhibited a fibrotic signature. In situ hybridization revealed elevated miR-506 expression in vivo in human-diseased cholangiocytes. Histamine-induced, InsP3-mediated Ca2+ signals were decreased by 50% in stable miR-506 cells compared with controls. Finally, InsP3R3-mediated fluid secretion was significantly decreased in isolated bile duct units transfected with miR-506, relative to control IBDU. Together, these data identify miR-506 as a regulator of InsP3R3 expression and InsP3R3-mediated Ca2+ signaling and secretion.  相似文献   

3.
Ductal epithelial cells of the exocrine pancreas secrete HCO3 rich, alkaline pancreatic juice, which maintains the intraluminal pH and washes the digestive enzymes out from the ductal system. Importantly, damage of this secretory process can lead to pancreatic diseases such as acute and chronic pancreatitis. Intracellular Ca2+ signaling plays a central role in the physiological regulation of HCO3 secretion, however uncontrolled Ca2+ release can lead to intracellular Ca2+ overload and toxicity, including mitochondrial damage and impaired ATP production. Recent findings suggest that the most common pathogenic factors leading to acute pancreatitis, such as bile acids, or ethanol and ethanol metabolites can evoke different types of intracellular Ca2+ signals, which can stimulate or inhibit ductal HCO3 secretion. Therefore, understanding the intracellular Ca2+ pathways and the mechanisms which can switch a good signal to a bad signal in pancreatic ductal epithelial cells are crucially important. This review summarizes the variety of Ca2+ signals both in physiological and pathophysiological aspects and highlight molecular targets which may strengthen our old friend or release our nasty enemy.  相似文献   

4.
Extended synaptotagmins (E-Syts) are a recently identified family of proteins that tether the endoplasmic reticulum (ER) to the plasma membrane (PM) in part by conferring regulation of cytosolic calcium (Ca2+) at these contact sites (Cell, 2013). However, the mechanism by which E-Syts link this tethering to Ca2+ signaling is unknown. Ca2+ waves in polarized epithelia are initiated by inositol 1,4,5-trisphosphate receptors (InsP3Rs), and these waves begin in the apical region because InsP3Rs are targeted to the ER adjacent to the apical membrane. In this study we investigated whether E-Syts are responsible for this targeting. Primary rat hepatocytes were used as a model system, because a single InsP3R isoform (InsP3R-II) is tethered to the peri-apical ER in these cells. Additionally, it has been established in hepatocytes that the apical localization of InsP3Rs is responsible for Ca2+ waves and secretion and is disrupted in disease states in which secretion is impaired. We found that rat hepatocytes express two of the three identified E-Syts (E-Syt1 and E-Syt2). Individual or simultaneous siRNA knockdown of these proteins did not alter InsP3R-II expression levels, apical localization or average InsP3R-II cluster size. Moreover, apical secretion of the organic anion 5-chloromethylfluorescein diacetate (CMFDA) was not changed in cells lacking E-Syts but was reduced in cells in which cytosolic Ca2+ was buffered. These data provide evidence that E-Syts do not participate in the targeting of InsP3Rs to the apical region. Identifying tethers that bring InsP3Rs to the apical region remains an important question, since mis-targeting of InsP3Rs leads to impaired secretory activity.  相似文献   

5.
In hepatocytes, as in other cell types, Ca2+ signaling is subject to complex regulations, which result largely from the intrinsic characteristics of the different inositol 1,4,5-trisphosphate receptor (InsP3R) isoforms and from their interactions with other proteins. Although sigma1 receptors (Sig-1Rs) are widely expressed in the liver, their involvement in hepatic Ca2+ signaling remains unknown. We here report that in this cell type Sig-1R interact with type 1 isoforms of the InsP3 receptors (InsP3R-1). These results obtained by immunoprecipitation experiments are confirmed by the observation that Sig-1R proteins and InsP3R-1 colocalize in hepatocytes. However, Sig-1R ligands have no effect on InsP3-induced Ca2+ release in hepatocytes. This can be explained by the rather low expression level expression of InsP3R-1. In contrast, we find that Sig-1R ligands can inhibit agonist-induced Ca2+ signaling via an inhibitory effect on InsP3 synthesis. We show that this inhibition is due to the stimulation of PKC activity by Sig-1R, resulting in the well-known down-regulation of the signaling pathway responsible for the transduction of the extracellular stimulus into InsP3 synthesis. The PKC sensitive to Sig-1R activity belongs to the family of conventional PKC, but the precise molecular mechanism of this regulation remains to be elucidated.  相似文献   

6.
7.
Calcium (Ca2+) signaling has a major role in regulating a wide range of cellular mechanisms, including gene expression, proliferation, metabolism, cell death, muscle contraction, among others. Recent evidence suggests that ~ 1600 genes are related to the Ca2+ signaling. Some of these genes’ expression is altered in several pathological conditions, including different cancer types, and epigenetic mechanisms are involved. However, their expression and regulation in hepatocellular carcinoma (HCC) and the liver are barely known. Here, we aimed to explore the expression of genes involved in the Ca2+-signaling in HCC, liver regeneration, and hepatocyte differentiation, and whether their expression is regulated by epigenetic mechanisms such as DNA methylation and histone posttranslational modifications (HPM). Results show that several Ca2+-signaling genes’ expression is altered in HCC samples; among these, a subset of twenty-two correlate with patients’ survival. DNA methylation correlates with eight of these genes’ expression, and Guadecitabine, a hypomethylating agent, regulates the expression of seven down-regulated and three up-regulated genes in HepG2 cells. The down-regulated genes displayed a marked decrease of euchromatin histone marks, whereas up-regulated genes displayed gain in these marks. Additionally, the expression of these genes is modulated during liver regeneration and showed similar profiles between in vitro differentiated hepatocytes and liver-derived hepatocytes. In conclusion, some components of the Ca2+-signaling are altered in HCC and displayed a correlation with patients’ survival. DNA methylation and HMP are an attractive target for future investigations to regulate their expression. Ca2+-signaling could be an important regulator of cell proliferation and differentiation in the liver.Electronic supplementary materialThe online version of this article (10.1007/s12079-020-00597-w) contains supplementary material, which is available to authorized users.  相似文献   

8.
Cholangiocytes actively contribute to the final composition of secreted bile. These cells are exposed to abnormal mechanical stimuli during obstructive cholestasis, which has a deep impact on their function. However, the effects of mechanical insults on cholangiocyte function are not understood. Combining gene silencing and pharmacological assays with live calcium imaging, we probed molecular candidates essential for coupling mechanical force to ATP secretion in mouse cholangiocytes. We show that Piezo1 and Pannexin1 are necessary for eliciting the downstream effects of mechanical stress. By mediating a rise in intracellular Ca2+, Piezo1 acts as a mechanosensor responsible for translating cell swelling into activation of Panx1, which triggers ATP release and subsequent signal amplification through P2X4R. Co-immunoprecipitation and pull-down assays indicated physical interaction between Piezo1 and Panx1, which leads to stable plasma membrane complexes. Piezo1–Panx1–P2X4R ATP release pathway could be reconstituted in HEK Piezo1 KO cells. Thus, our data suggest that Piezo1 and Panx1 can form a functional signaling complex that controls force-induced ATP secretion in cholangiocytes. These findings may foster the development of novel therapeutic strategies for biliary diseases.  相似文献   

9.
The secretion of fluid and electrolytes by salivary gland acinar cells requires the coordinated regulation of multiple ion channel and transporter proteins, signaling components, and water transport. Importantly, neurotransmitter stimulated increase in the cytosolic free [Ca2+] ([Ca2+]i) is critical for the regulation of salivary gland secretion as it regulates several major ion fluxes that together establish the sustained osmotic gradient to drive fluid secretion. The mechanisms that act to modulate these increases in [Ca2+]i are therefore central to the process of salivary fluid secretion. Such modulation involves membrane receptors for neurotransmitters, as well as mechanisms that mediate intracellular Ca2+ release, and Ca2+ entry, as well as those that maintain cellular Ca2+ homeostasis. Together, these mechanisms determine the spatial and temporal aspects of the [Ca2+]i signals that regulate fluid secretion. Molecular cloning of these transporters and channels as well as development of mice lacking these proteins has established the physiological significance of key components that are involved in regulating [Ca2+]i in salivary glands. This review will discuss these important studies and the findings which have led to resolution of the Ca2+ signaling mechanisms that determine salivary gland fluid secretion.  相似文献   

10.
More than 65% of patients with diabetes mellitus die from cardiovascular disease or stroke. Hyperglycemia, due to either reduced insulin secretion or reduced insulin sensitivity, is the hallmark feature of diabetes mellitus. Vascular dysfunction is a distinctive phenotype found in both types of diabetes and could be responsible for the high incidence of stroke, heart attack, and organ damage in diabetic patients. In addition to well-documented endothelial dysfunction, Ca2+ handling alterations in vascular smooth muscle cells (VSMCs) play a key role in the development and progression of vascular complications in diabetes. VSMCs provide not only structural integrity to the vessels but also control myogenic arterial tone and systemic blood pressure through global and local Ca2+ signaling. The Ca2+ signalosome of VSMCs is integrated by an extensive number of Ca2+ handling proteins (i.e. channels, pumps, exchangers) and related signal transduction components, whose function is modulated by endothelial effectors. This review summarizes recent findings concerning alterations in endothelium and VSMC Ca2+ signaling proteins that may contribute to the vascular dysfunction found in the diabetic condition.  相似文献   

11.
Pancreatic acinar cells are classical exocrine gland cells. The apical regions of clusters of coupled acinar cells collectively form a lumen which constitutes the blind end of a tube created by ductal cells – a structure reminiscent of a “bunch of grapes”. When activated by neural or hormonal secretagogues, pancreatic acinar cells are stimulated to secrete a variety of proteins. These proteins are predominately inactive digestive enzyme precursors called “zymogens”. Acinar cell secretion is absolutely dependent on secretagogue-induced increases in intracellular free Ca2+. The increase in [Ca2+]i has precise temporal and spatial characteristics as a result of the exquisite regulation of the proteins responsible for Ca2+ release, Ca2+ influx and Ca2+ clearance in the acinar cell. This brief review discusses recent studies in which transgenic animal models have been utilized to define in molecular detail the components of the Ca2+ signaling machinery which contribute to these characteristics.  相似文献   

12.
PACAP is a critical regulator of long-term catecholamine secretion from the adrenal medulla in vivo, however the receptor or pathways for Ca2+ entry triggering acute and sustained secretion have not been adequately characterized. We have previously cloned the bovine adrenal chromaffin cell PAC1 receptor that contains the molecular determinants required for PACAP-induced Ca2+ elevation and is responsible for imparting extracellular Ca2+ influx-dependent secretory competence in PC12 cells. Here, we use this cell model to gain mechanistic insights into PAC1hop-dependent Ca2+ pathways responsible for catecholamine secretion. PACAP-modulated extracellular Ca2+ entry in PC12 cells could be partially blocked with nimodipine, an inhibitor of L-type VGCCs and partially blocked by 2-APB, an inhibitor and modulator of various transient receptor potential (TRP) channels. Despite the co-existence of these two modes of Ca2+ entry, sustained catecholamine secretion in PC12 cells was exclusively modulated by 2-APB-sensitive Ca2+ channels. While IP3 generation occurred after PACAP exposure, most PACAP-induced Ca2+ mobilization involved release from ryanodine-gated cytosolic stores. 2-APB-sensitive Ca2+ influx, and subsequent catecholamine secretion was however not functionally related to intracellular Ca2+ mobilization and store depletion. The reconstituted PAC1hop-expessing PC12 cell model therefore recapitulates both PACAP-induced Ca2+ release from ER stores and extracellular Ca2+ entry that restores PACAP-induced secretory competence in neuroendocrine cells. We demonstrate here that although bPAC1hop receptor occupancy induces Ca2+ entry through two independent sources, VGCCs and 2-APB-sensitive channels, only the latter contributes importantly to sustained vesicular catecholamine release that is a fundamental characteristic of this neuropeptide system. These results emphasize the importance of establishing functional linkages between Ca2+ signaling pathways initiated by pleotrophic signaling molecules such as PACAP, and physiologically important downstream events, such as secretion, triggered by them.  相似文献   

13.
Chloride secretion by airway epithelial cells is defective in cystic fibrosis (CF). The conventional paradigm is that CFTR is activated through cAMP and protein kinase A (PKA), whereas the Ca2+-activated chloride channel (CaCC) is activated by Ca2+ agonists like UTP. We found that most chloride current elicited by Ca2+ agonists in primary cultures of human bronchial epithelial cells is mediated by CFTR by a mechanism involving Ca2+ activation of adenylyl cyclase I (AC1) and cAMP/PKA signaling. Use of selective inhibitors showed that Ca2+ agonists produced more chloride secretion from CFTR than from CaCC. CFTR-dependent chloride secretion was reduced by PKA inhibition and was absent in CF cell cultures. Ca2+ agonists produced cAMP elevation, which was blocked by adenylyl cyclase inhibition. AC1, a Ca2+/calmodulin-stimulated adenylyl cyclase, colocalized with CFTR in the cell apical membrane. RNAi knockdown of AC1 selectively reduced UTP-induced cAMP elevation and chloride secretion. These results, together with correlations between cAMP and chloride current, suggest that compartmentalized AC1–CFTR association is responsible for Ca2+/cAMP cross-talk. We further conclude that CFTR is the principal chloride secretory pathway in non-CF airways for both cAMP and Ca2+ agonists, providing a novel mechanism to link CFTR dysfunction to CF lung disease.  相似文献   

14.
Ca2+ is now firmly established as the most important intracellular regulator of physiological and pathological events in a vast number of different cell types, including secretory epithelia. In these tissues, Ca2+ signalling is crucially important for the control of both fluid secretion and electrolyte secretion as well as the regulation of macromolecule secretion. In this overview article, I shall attempt to give some general background to the concepts underlying our current thinking about Ca2+ signalling in epithelia and its roles in regulating secretion. It is outside the scope of this review to provide a comprehensive account of Ca2+ signalling and the many different processes in the many different secretory epithelia that are controlled by Ca2+ signals. It is my aim to draw attention to some general features of Ca2+ signalling processes in secretory epithelia, which are rather different from those in, for example, endocrine glands. The principal examples will be taken from studies of exocrine cells and, in particular, pancreatic acinar cells, as they are the pioneer cells with regard to investigations of Ca2+ signalling due to primary intracellular Ca2+ release. They also represent the cell type which has been characterized in most detail with regard to Ca2+ transport events and mechanisms.  相似文献   

15.
Cytoplasmic Ca2+ is a master regulator of airway physiology; it controls fluid, mucus, and antimicrobial peptide secretion, ciliary beating, and smooth muscle contraction. The focus of this review is on the role of cytoplasmic Ca2+ in fluid secretion by airway exocrine secretory cells. Airway submucosal gland serous acinar cells are the primary fluid secreting cell type of the cartilaginous conducting airways, and this review summarizes the current state of knowledge of the molecular mechanisms of serous cell ion transport, with an emphasis on their regulation by intracellular Ca2+. Many neurotransmitters that regulate secretion from serous acinar cells utilize Ca2+ as a second messenger. Changes in intracellular Ca2+ concentration regulate the activities of ion transporters and channels involved in transepithelial ion transport and fluid secretion, including Ca2+-activated K+ channels and Cl channels. We also review evidence of interactions of Ca2+ signaling with other signaling pathways (cAMP, NO) that impinge upon different ion transport pathways, including the cAMP/PKA-activated cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel. A better understanding of Ca2+ signaling and its targets in airway fluid secretion may identify novel strategies to intervene in airway diseases, for example to enhance fluid secretion in CF airways.  相似文献   

16.
Ca2+ is a ubiquitous intracellular messenger in malaria parasites with important functions in asexual blood stages responsible for malaria symptoms, the preceding liver‐stage infection and transmission through the mosquito. Intracellular messengers amplify signals by binding to effector molecules that trigger physiological changes. The characterisation of some Ca2+ effector proteins has begun to provide insights into the vast range of biological processes controlled by Ca2+ signalling in malaria parasites, including host cell egress and invasion, protein secretion, motility and cell cycle regulation. Despite the importance of Ca2+ signalling during the life cycle of malaria parasites, little is known about Ca2+ homeostasis. Recent findings highlighted that upstream of stage‐specific Ca2+ effectors is a conserved interplay between second messengers to control critical intracellular Ca2+ signals throughout the life cycle. The identification of the molecular mechanisms integrating stage‐transcending mechanisms of Ca2+ homeostasis in a network of stage‐specific regulator and effector pathways now represents a major challenge for a meaningful understanding of Ca2+ signalling in malaria parasites.  相似文献   

17.
Epithelial ion transport is mainly under the control of intracellular cAMP and Ca2+ signaling. Although the molecular mechanisms of cAMP-induced epithelial ion secretion are well defined, those induced by Ca2+ signaling remain poorly understood. Because calcium-sensing receptor (CaSR) activation results in an increase in cytosolic Ca2+ ([Ca2+]cyt) but a decrease in cAMP levels, it is a suitable receptor for elucidating the mechanisms of [Ca2+]cyt-mediated epithelial ion transport and duodenal bicarbonate secretion (DBS). CaSR proteins have been detected in mouse duodenal mucosae and human intestinal epithelial cells. Spermine and Gd3+, two CaSR activators, markedly stimulated DBS without altering duodenal short circuit currents in wild-type mice but did not affect DBS and duodenal short circuit currents in cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice. Clotrimazole, a selective blocker of intermediate conductance Ca2+-activated K+ channels but not chromanol 293B, a selective blocker of cAMP-activated K+ channels (KCNQ1), significantly inhibited CaSR activator-induced DBS, which was similar in wild-type and KCNQ1 knockout mice. HCO3 fluxes across epithelial cells were activated by a CFTR activator, but blocked by a CFTR inhibitor. CaSR activators induced HCO3 fluxes, which were inhibited by a receptor-operated channel (ROC) blocker. Moreover, CaSR activators dose-dependently raised cellular [Ca2+]cyt, which was abolished in Ca2+-free solutions and inhibited markedly by selective CaSR antagonist calhex 231, and ROC blocker in both animal and human intestinal epithelial cells. Taken together, CaSR activation triggers Ca2+-dependent DBS, likely through the ROC, intermediate conductance Ca2+-activated K+ channels, and CFTR channels. This study not only reveals that [Ca2+]cyt signaling is critical to modulate DBS but also provides novel insights into the molecular mechanisms of CaSR-mediated Ca2+-induced DBS.  相似文献   

18.
Cyclic adenosine monophosphate (cAMP) and calcium ions (Ca2+) are two chemical molecules that play a central role in the stimulus-dependent secretion processes within cells. Ca2+ acts as the basal signaling molecule responsible to initiate cell secretion. cAMP primarily acts as an intracellular second messenger in a myriad of cellular processes by activating cAMP-dependent protein kinases through association with such kinases in order to mediate post-translational phosphorylation of those protein targets. Put succinctly, both Ca2+ and cAMP act by associating or activating other proteins to ensure successful secretion. Calcineurin is one such protein regulated by Ca2+; its action depends on the intracellular levels of Ca2+. Being a phosphatase, calcineurin dephosphorylate and other proteins, as is the case with most other phosphatases, such as protein phosphatase 2A (PP2A), PP2C, and protein phosphatase-1 (PP1), will likely be activated by phosphorylation. Via this process, calcineurin is able to affect different intracellular signaling with clinical importance, some of which has been the basis for development of different calcineurin inhibitors. In this review, the cAMP-dependent calcineurin bio-signaling, protein-protein interactions and their physiological implications as well as regulatory signaling within the context of cellular secretion are explored.  相似文献   

19.
Preceding studies using the hamster insulinoma cell line, HIT, and isolated rat hepatocytes have shown that two essential components of the Ca2+signaling pathway, the ATP-dependent Ca2+store and the store-coupled Ca2+influx pathway, are both located in microvilli covering the surface of these cells. Microvilli-derived vesicles from both cell types exhibited anion and cation pathways which could be inhibited by anion and cation channel-specific inhibitors. These findings suggested that the microvillar tip compartment forms a space which is freely accessible for external Ca2+, ATP, and IP3. The entry of Ca2+into the cytoplasm, however, is largely restricted by the microvillar core structure, the dense bundle of actin microfilaments acting as a diffusion barrier between the microvillar tip compartment and the cell body. Moreover, evidence has been presented that F-actin may function as ATP-dependent and IP3-sensitive Ca2+store that can be emptied by profilin-induced depolymerization or reorganization [K. Lange and U. Brandt (1996)FEBS Lett.395, 137–142]. Here we demonstrate the tight connection between microvillar shape changes and the activation of the Ca2+signaling system in isolated rat hepatocytes. Using a combination of scanning electron microscopy (SEM) and fura-2 fluorescence technique, we confirmed a consequence of the “diffusion barrier” concept of Ca2+signaling: Irrespective of the type of the applied stimulus, activation of the Ca2+influx pathway is accompanied by changes in the structural organization of microvilli indicative of the loss of their diffusion barrier function. We further show that the cell surfaces of unstimulated hepatocytes isolated by either the collagenase or the EDTA perfusion technique are densely covered with microvilli predominantly of a short and slender type. Beside this rather uniformly shaped type of microvilli, a number of dilated surface protrusions were observed. Under these conditions the cells displayed the well known rather high basal [Ca2+]iof 200–250 nMas repeatedly demonstrated for freshly isolated hepatocytes. However, addition of the serine protease inhibitor, phenylmethanesulfonyl fluoride (PMSF), to the cell suspension immediately after its preparation reduced the basal cytoplasmic Ca2+level to about 100 nM.Concomitantly, dilated surface protrusions disappeared, and cell surfaces exclusively displayed short, slender microvilli. Activation of the Ca2+signaling pathway by vasopressin, as well as by the IP3-independent acting Ca2+store inhibitor, thapsigargin, was accompanied by a conspicuous shortening and dilation of microvilli following the same time courses as the respective increases of [Ca2+]iinduced by the effectors. Furthermore, the abundance of the large form of surface protrusions on isolated hepatocytes positively correlated with the size of a cellular Ca2+/Fura-2 compartment which is rapidly depleted from Ca2+by extracellular EGTA. These findings support the postulated localization of the store-coupled Ca2+influx pathway in microvilli of HIT cells also for hepatocytes and are in accord with the notion of a cytoskeletal diffusion barrier regulating the flux of external Ca2+via the microvillar tip region in the cytoplasm.  相似文献   

20.
Salivary glands secrete saliva, a mixture of proteins and fluids, which plays an extremely important role in the maintenance of oral health. Loss of salivary secretion causes a dry mouth condition, xerostomia, which has numerous deleterious consequences including opportunistic infections within the oral cavity, difficulties in eating and swallowing food, and problems with speech. Saliva secretion is regulated by stimulation of specific signaling mechanisms within the acinar cells of the gland. Neurotransmitter-stimulated increase in cytosolic [Ca2+] ([Ca2+]i) in acinar cells is the primary trigger for salivary fluid secretion from salivary glands, the loss of which is a critical factor underlying dry mouth conditions in patients. The increase in [Ca2+]i regulates multiple ion channel and transport activities that together generate the osmotic gradient which drives fluid secretion across the apical membrane. Ca2+ entry mediated by the Store-Operated Ca2+ Entry (SOCE) mechanism provides the essential [Ca2+]i signals to trigger salivary gland fluid secretion. Under physiological conditions depletion of ER-Ca2+ stores is caused by activation of IP3R by IP3 and this provides the stimulus for SOCE. Core components of SOCE in salivary gland acinar cells are the plasma membrane Ca2+ channels, Orai1 and TRPC1, and STIM1, a Ca2+-sensor protein in the ER, which regulates both channels. In addition, STIM2 likely enhances the sensitivity of cells to ER-Ca2+ depletion thereby tuning the cellular response to agonist stimulation. Two major, clinically relevant, conditions which cause irreversible salivary gland dysfunction are radiation treatment for head-and-neck cancers and the autoimmune exocrinopathy, Sjögren's syndrome (pSS). However, the exact mechanism(s) that causes the loss of fluid secretion, in either condition, is not clearly understood. A number of recent studies have identified that defects in critical Ca2+ signaling mechanisms underlie salivary gland dysfunction caused by radiation treatment or Sjögren's syndrome (pSS). This chapter will discuss these very interesting and important studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号