首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously observed that collagen IV regulates Caco-2 intestinal epithelial cell spreading and migration via Src kinase and stimulates Src-dependent tyrosine phosphorylation of p130cas. We observed that collagen IV also stimulated Src-dependent phosphorylation of both paxillin Tyr31 and paxillin Tyr118. Caco-2 transfection with paxillin or p130cas siRNAs inhibited expression of these proteins by more than 90% for at least 5 days after transfection. Although p130cas siRNA inhibited cell spreading on collagen IV by 33%, three different paxillin siRNAs did not inhibit cell spreading. p130cas siRNA did not affect Src Tyr416 or Src Tyr527 phosphorylation, FAK Tyr397 phosphorylation, or Src-dependent phosphorylation of FAK Tyr925, suggesting that p130cas did not inhibit cell spreading by altering FAK or Src activity. Rat p130cas expression after siRNA knock-out of endogenous human p130cas in Caco-2 cells reduced cell spreading inhibition by 71%. In contrast, expression of rat p130cas from which the Src-phosphorylated substrate domain was deleted did not rescue siRNA inhibition of cell spreading. Combined treatment with siRNAs to Crk and CrkL, which bind to the p130cas substrate domain, inhibited cell spreading by 54%. Both p130cas siRNA and the combined Crk/CrkL siRNAs strongly inhibited (52 and 46% inhibition, respectively) Caco-2 sheet migration on collagen IV and noticeably inhibited lamellipodial extension, whereas paxillin siRNA only inhibited migration by 18% and did not noticeably affect lamellipodial extension. These results suggest that Src may regulate Caco-2 migration on collagen IV via both p130cas and paxillin but that Src phosphorylation of p130cas is more important for this process.  相似文献   

2.
Activation of the hepatocyte growth factor (HGF) receptor in epithelial cells results in lamellipodia protrusion, spreading, migration, and tubule formation. We have previously reported that these morphogenic effects are dependent on MAPK activation at focal adhesions. In the present study we demonstrate that activated ERK phosphorylates paxillin on serine 83 and that mutation of this site eliminates HGF-stimulated increased association of paxillin and FAK in subconfluent cells. Failure to activate FAK at focal adhesions results in a loss of FAK-PI 3-kinase association and the marked reduction of Rac activation after HGF stimulation. Expression of paxillin mutants that disrupt ERK association or phosphorylation inhibits HGF-induced cell spreading, migration, and tubulogenesis. These data demonstrate that the paxillin-MAPK complex serves as a central regulator of HGF-stimulated FAK and Rac activation in the vicinity of focal adhesions, thus promoting the rapid focal adhesion turnover and lamellipodia extension that are required for migratory and tubulogenic responses.  相似文献   

3.
Huang Z  Yan DP  Ge BX 《Cellular signalling》2008,20(11):2002-2012
The adaptor protein paxillin plays an important role in cell migration. Although the c-Jun amino-terminal kinase (JNK) phosphorylation of paxillin on Ser 178 has been found to be critical for cell migration, the precise mechanism by which JNK regulates cell migration is still not very clear. Here, the migration of human corneal epithelial (HCE) cells was used to determine which signaling pathways are involved in EGF-induced paxillin phosphorylation. Paxillin was phosphorylated on Tyr 31 and Tyr 118 after induction of migration by EGF in HCE cells. Specific inhibition of JNK activation by inhibitor SP600125 or overexpression of a dominant-negative JNK mutant not only blocked EGF-induced cell migration, but also eliminated tyrosine phosphorylation of paxillin on Tyr 31 and Tyr 118. HCE cells overexpressing paxillin-S178A mutant also exhibited lower mobility, and reduced phosphorylation of Tyr 31 and Tyr 118. However, paxillin-S178A-inhibited cell migration can be rescued by overexpression of paxillin-Y31E/Y118E mutant. Importantly, inhibition of JNK by SP600125 or overexpression of paxillin-S178A mutant prevented the association of FAK with paxillin. Taken together, these results suggest that phosphorylation of paxillin on Ser 178 by JNK is required for the association of paxillin with FAK, and subsequent tyrosine phosphorylation of paxillin.  相似文献   

4.
5.
Background information. FAK (focal adhesion kinase), an essential non‐receptor tyrosine kinase, plays pivotal roles in migratory responses, adhesive signalling and mechanotransduction. FAK‐dependent regulation of cell migration involves focal adhesion turnover dynamics as well as actin cytoskeleton polymerization and lamellipodia protrusion. Whereas roles for FAK in migratory and mechanosensing responses have been established, the contribution of FAK to the generation of adhesive forces is not well understood. Results. Using FAK‐null cells expressing wild‐type and mutant FAK under an inducible tetracycline promoter, we analysed the role of FAK in the generation of steady‐state adhesive forces using micropatterned substrates and a hydrodynamic adhesion assay. FAK expression reduced steady‐state strength by 30% compared with FAK‐null cells. FAK expression reduced VCL (vinculin) localization to focal adhesions by 35% independently of changes in integrin binding and localization of talin and paxillin. RNAi (RNA interference) knock‐down of VCL abrogated the FAK‐dependent differences in adhesive forces. FAK‐dependent changes in VCL localization and adhesive forces were confirmed in human primary fibroblasts with FAK knocked down by RNAi. The autophosphorylation Tyr‐397 and kinase domain Tyr‐576/Tyr‐577 sites were differentially required for FAK‐mediated adhesive responses. Conclusions. We demonstrate that FAK reduces steady‐state adhesion strength by modulating VCL recruitment to focal adhesions. These findings provide insights into the role of FAK in mechanical interactions between a cell and the extracellular matrix.  相似文献   

6.
Exposure of endothelial cells to vascular endothelial growth factor (VEGF) induced tyrosine phosphorylation of focal adhesion kinase (FAK) on site Tyr(407), an effect that required the association of VEGF receptor 2 (VEGFR2) with HSP90. The association of VEGFR2 with HSP90 involved the last 130 amino acids of VEGFR2 and was blocked by geldanamycin, a specific inhibitor of HSP90. Moreover, geldanamycin inhibited the VEGF-induced activation of the small GTPase RhoA, which resulted in an inhibition of phosphorylation of FAK on site Tyr(407). In this context, the inhibition of RhoA kinase (ROCK) with Y27632 or by expression of dominant negative forms of RhoA or ROCK impaired the VEGF-induced phosphorylation of Tyr(407) within FAK. In contrast to phosphorylation of Tyr(861), the phosphorylation of site Tyr(407) was insensitive to Src kinase inhibition by 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2). We also found that the recruitment of paxillin to FAK was inhibited by geldanamycin but not by PP2, whereas both geldanamycin and PP2 inhibited the recruitment of vinculin to FAK. In accordance, the recruitment of paxillin and vinculin to FAK was inhibited in cells that express the mutant FAK-Y407F, whereas the expression of the mutant Y861F inhibited the recruitment of paxillin but not of vinculin. Importantly, cell migration was abolished in cells in which the signal from the VEGFR2-HSP90 pathway was blocked by the expression of Delta130VEGFR2, a deletant of VEGFR2 that does not associate with HSP90. Our findings underscore for the first time the key role played by the VEGFR2-HSP90-RhoA-ROCK-FAK/Tyr(407) pathway in transducing the VEGF signal that leads to the assembly of focal adhesions and endothelial cell migration.  相似文献   

7.
Paxillin and HIC5 are closely related adapter proteins that regulate cell migration and are tyrosine-phosphorylated by focal adhesion kinase (FAK). Paxillin, HIC5, and FAK tyrosine phosphorylation increase upon cell attachment and decrease upon detachment from extracellular matrix. Unexpectedly, we found that although FAK tyrosine phosphorylation in attached cells did not require paxillin, in detached fibroblasts there was remaining FAK tyrosine phosphorylation that required expression of paxillin and was not supported by HIC5. The support of attachment-independent FAK tyrosine phosphorylation required the paxillin LIM domains and suggested that paxillin might facilitate oncogenic transformation. Paxillin but not HIC5 augmented anchorage-independent cell proliferation induced by RAS. Both anchorage-independent FAK tyrosine phosphorylation and RAS-induced colony formation required multiple docking sites on paxillin, including LD4 (docking sites for FAK-Src and GIT1/2-PIX-NCK-PAK complex), LD5, and all four carboxyl-terminal LIM domains (that bind tubulin and PTP-PEST). Analysis using paxillin mutants dissociated domains of paxillin that are required for regulation of cell migration from domains that are required for anchorage-independent cell proliferation and demonstrated essential functions of the paxillin LIM domains that are not found in HIC5 LIM domains. These results highlight the role of paxillin in facilitating attachment-independent signal transduction implicated in cancer.  相似文献   

8.
Zinc importer proteins (ZIPs) have been proven as important molecular regulators in different cancers. As a member of the solute carrier family, ZIP9/SLC39A9 is overexpressed in prostate and breast cancer and affects B-cell receptor signaling. Here, we present data indicating that changes in intracellular zinc levels in glioblastoma cells can cause enhanced cell survival and cell migration, both hallmarks of the disease process. In particular, treatment of human glioblastoma cells with sublethal doses of cell-permeable heavy metal (Zn2+ > Fe2+ > Mn2+) chelator (N,N,N′,N′-tetrakis (2-pyridylmethyl)ethylenediamine (TPEN)) induced ZIP9 expression. Either TPEN treatment or expression of ZIP9 cDNA causes enhanced migration behavior of glioblastoma cells. Compared to untreated glioblastoma cells TPEN treatment or expression of ZIP9 results in activation of the tumor suppressor p53 by phosphorylation at serine residue 46 (Ser46) and in inactivation of the migration relevant glycogen synthase kinase 3 beta (GSK-3β) by phosphorylation at serine residue 9 (Ser9). Whilst p53 activation affects cell survival in response to TPEN, GSK-3β inactivation directly affects glioblastoma cell migration. Therefore, ZIP9 expression could regulate the migratory behavior of glioblastoma cells, so that ZIP9 may be of biological, but not of clinical relevance for glioblastomas, since in GBM tumor tissues, ZIP9 expression is not significantly increased compared to normal brain.  相似文献   

9.
Naphtho[1,2-b]furan-4,5-dione (NFD), a bioactive component of Avicennia marina, has been demonstrated to display anti-cancer activity. Breast cancer is a highly malignant carcinoma and most deaths of breast cancer are caused by metastasis. In this study, we showed that NFD blocked migration and invasion of MDA-MB-231 breast cancer cells without affecting apoptosis or growth arrest. NFD caused significant block of Src kinase activity in MDA-MB-231 cells. Moreover, NFD treatment was correlated with reduced phosphorylation of FAK at Tyr 576/577, 861 and 925 sites, p130Cas at Tyr 410, and paxillin at Tyr 118. NFD also suppressed the activation of phosphatidylinositol 3-kinase/Akt. Consistent with inhibition of these signaling pathways and invasion, NFD reduced the expression of matrix metalloproteinase-9. Furthermore, Src antagonist PP2 caused a significant decrease in the phosphorylation of FAK, p130Cas, paxillin, and PI3K/Akt. Our findings provide evidences that NFD inhibits Src-mediated signaling pathways involved in controlling breast cancer migration and invasion, suggesting that it has a therapeutic potential in breast cancer treatment.  相似文献   

10.
Networks of actin filaments, controlled by the Arp2/3 complex, drive membrane protrusion during cell migration. How integrins signal to the Arp2/3 complex is not well understood. Here, we show that focal adhesion kinase (FAK) and the Arp2/3 complex associate and colocalize at transient structures formed early after adhesion. Nascent lamellipodia, which originate at these structures, do not form in FAK-deficient cells, or in cells in which FAK mutants cannot be autophosphorylated after integrin engagement. The FERM domain of FAK binds directly to Arp3 and can enhance Arp2/3-dependent actin polymerization. Critically, Arp2/3 is not bound when FAK is phosphorylated on Tyr 397. Interfering peptides and FERM-domain point mutants show that FAK binding to Arp2/3 controls protrusive lamellipodia formation and cell spreading. This establishes a new function for the FAK FERM domain in forming a phosphorylation-regulated complex with Arp2/3, linking integrin signalling directly with the actin polymerization machinery.  相似文献   

11.
Chalcones (benzylideneacetophenone) are cancer-preventive food components found in a human diet rich in fruits and vegetables. In this study, we first report the chemopreventive effect of chalcone in human gastric adenocarcinoma cell lines: AGS. The results showed that chalcone could inhibit the abilities of the adhesion, invasion, and migration by cell–matrix adhesion assay, Boyden chamber invasion/migration assay, and wound-healing assay. Molecular data showed that the effect of chalcone in AGS cells might be mediated via sustained inactivation of the phosphorylation of focal adhesion kinase (FAK) and c-Jun N-terminal kinase 1 and 2 (JNK1/2) signal involved in the downregulation of the expressions of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). Next, chalcone-treated AGS cells showed tremendous decrease in the phosphorylation and degradation of inhibitor of kappaBα (IκBα), the nuclear level of NF-κB, and the binding ability of NF-κB to NF-κB response element. Furthermore, treating FAK small interfering RNA (FAK siRNA) and specific inhibitor for JNK (SP600125) to AGS cells could reduce the phosphorylation of JNK1/2 and the activity of MMP-2 and MMP-9. Our results revealed that chalcone significantly inhibited the metastatic ability of AGS cells by reducing MMP-2 and MMP-9 expressions concomitantly with a marked reduction on cell invasion and migration through suppressing and JNK signaling pathways. We suggest that chalcone may offer the application in clinical medicine.  相似文献   

12.
Histone deacetylase inhibitors (HDACi) represent a promising class of epigenetic agents with anticancer properties. Here, we report that (S)-2, a novel hydroxamate-based HDACi, shown previously to be effective against acute myeloid leukemia cells, was also a potent inducer of apoptosis/differentiation in human prostate LNCaP and PC3 cancer cells. In LNCaP cells (S)-2 was capable of triggering H3/H4 histone acetylation, H2AX phosphorylation as a marker of DNA damage and producing G0/G1 cell cycle arrest. Consistently, (S)-2 led to enhanced expression of both the protein and mRNA p21 levels in LNCaP cells but, contrary to SAHA, not in normal non-tumorigenic prostate PNT1A cells. Mechanistic studies demonstrated that (S)-2-induced apoptosis in LNCaP cells developed through the cleavage of pro-caspase 9 and 3 and of poly(ADP-ribose)-polymerase accompanied by the dose-dependent loss of mitochondrial membrane potential. Indeed, the addition of the pan-caspase inhibitor Z-VAD-fmk greatly reduced drug-mediated apoptosis while the antioxidant N-acetyl-cysteine was virtually ineffective. Importantly, preliminary data with nude mice xenografted with LNCaP cells showed that (S)-2 prompted a decrease in the tumor volume and an increase in H2AX phosphorylation within the cancer cells. Moreover, the highly metastatic prostate cancer PC3 cells were also sensitive to (S)-2 that: i) induced growth arrest and moderate apoptosis; ii) steered cells towards differentiation and neutral lipid accumulation; iii) reduced cell invasiveness potential by decreasing the amount of MMP-9 activity and up-regulating TIMP-1 expression; and iv) inhibited cell motility and migration through the Matrigel. Overall, (S)-2 has proven to be a powerful HDACi capable of inducing growth arrest, cell death and/or differentiation of LNCaP and PC3 prostate cancer cells and, due to its low toxicity and efficacy in vivo, might also be of clinical interest to support conventional prostate cancer therapy.  相似文献   

13.
14.
15.
Paxillin is an adapter protein regulating signaling and focal adhesion assembly that has been linked to malignant potential in many malignancies. Overexpression of paxillin has been noted in aggressive tumors. Integrin-mediated binding through the focal adhesion complex is important in metastatic adhesion and is upregulated by extracellular pressure in malignant colonocytes through FAK and Src activation. Neither head and neck cancers nor paxillin have been studied in this regard. We hypothesized that paxillin would play a role in modulating squamous cancer adhesion both at baseline and under conditions of increased extracellular pressure. Using SCC25 tongue squamous cancer cells stably transfected with either an empty selection vector or paxillin expression and selection vectors, we studied adhesion to collagen, paxillin, FAK, and Src expression and phosphorylation in cells maintained for 30 min under ambient or 15 mmHg increased pressure conditions. Paxillin-overexpressing cells exhibited adhesion 121 +/- 2.9% of that observed in vector-only cells (n = 6, P < 0.001) under ambient pressure. Paxillin-overexpression reduced FAK phosphorylation. Pressure stimulated adhesion to 118 +/- 2.3% (n = 6, P < 0.001) of baseline in vector-only cells, similar to its effect in the parental line, and induced paxillin, FAK, and Src phosphorylation. However, increased pressure did not stimulate adhesion or phosphorylate paxillin, FAK, or Src further in paxillin-overexpressing cells. Metastasizing squamous cancer cell adhesiveness may be increased by paxillin-overexpression or by paxillin activation by extracellular pressure during surgical manipulation or growth within a constraining compartment. Targeting paxillin in patients with malignancy and minimal tumor manipulation during surgical resection may be important therapeutic adjuncts.  相似文献   

16.
The bombesin/gastrin-releasing peptide (GRP) family of neuropeptides has been implicated in various in vitro and in vivo models of human malignancies including prostate cancers. It was previously shown that bombesin and/or neurotensin (NT) acts as a survival and migratory factor(s) for androgen-independent prostate cancers. However, a role in the transition from an androgen-dependent to -refractory state has not been addressed. In this study, we investigate the biological effects and signal pathways of bombesin and NT on LNCaP, a prostate cancer cell line which requires androgen for growth. We show that both neurotrophic factors can induce LNCaP growth in the absence of androgen. Concurrent transactivation of reporter genes driven by the prostate-specific antigen promoter or a promoter carrying an androgen-responsive element (ARE) indicate that growth stimulation is accompanied by androgen receptor (AR) activation. Furthermore, neurotrophic factor-induced gene activation was also present in PC3 cells transfected with the AR but not in the parental line which lacks the AR. Given that bombesin does not directly bind to the AR and is known to engage a G-protein-coupled receptor, we investigated downstream signaling events that could possibly interact with the AR pathway. We found that three nonreceptor tyrosine kinases, focal adhesion kinase (FAK), Src, and Etk/BMX play important parts in this process. Etk/Bmx activation requires FAK and Src and is critical for neurotrophic factor-induced growth, as LNCaP cells transfected with a dominant-negative Etk/BMX fail to respond to bombesin. Etk's activation requires FAK, Src, but not phosphatidylinositol 3-kinase. Likewise, bombesin-induced AR activation is inhibited by the dominant-negative mutant of either Src or FAK. Thus, in addition to defining a new G-protein pathway, this report makes the following points regarding prostate cancer. (i) Neurotrophic factors can activate the AR, thus circumventing the normal growth inhibition caused by androgen ablation. (ii) Tyrosine kinases are involved in neurotrophic factor-mediated AR activation and, as such, may serve as targets of future therapeutics, to be used in conjunction with current antihormone and antineuropeptide therapies.  相似文献   

17.
Prostate cancer is dependent on circulating testosterone in its early stages and is treatable with radiation and surgery. However, recurrent prostate tumors advance to an androgen-independent state in which they progress in the absence of circulating testosterone, leading to metastasis and death. During the development of androgen independence, prostate cancer cells are known to increase intracellular testosterone synthesis, which maintains cancer cell growth in the absence of significant amounts of circulating testosterone. Overexpression of the androgen receptor (AR) occurs in androgen-independent prostate cancer and has been proposed as another mechanism promoting the development of androgen independence. The LNCaP-AR cell line is engineered to overexpress AR but is otherwise similar to the widely studied LNCaP cell line. We have previously shown that pomegranate extracts inhibit both androgen-dependent and androgen-independent prostate cancer cell growth. In this study, we examined the effects of pomegranate polyphenols, ellagitannin-rich extract and whole juice extract on the expression of genes for key androgen-synthesizing enzymes and the AR. We measured expression of the HSD3B2 (3beta-hydroxysteroid dehydrogenase type 2), AKR1C3 (aldo-keto reductase family 1 member C3) and SRD5A1 (steroid 5alpha reductase type 1) genes for the respective androgen-synthesizing enzymes in LNCaP, LNCaP-AR and DU-145 human prostate cancer cells. A twofold suppression of gene expression was considered statistically significant. Pomegranate polyphenols inhibited gene expression and AR most consistently in the LNCaP-AR cell line (P=.05). Therefore, inhibition by pomegranate polyphenols of gene expression involved in androgen-synthesizing enzymes and the AR may be of particular importance in androgen-independent prostate cancer cells and the subset of human prostate cancers where AR is up-regulated.  相似文献   

18.
Differential regulation of cell motility and invasion by FAK   总被引:41,自引:0,他引:41  
Cell migration and invasion are fundamental components of tumor cell metastasis. Increased focal adhesion kinase (FAK) expression and tyrosine phosphorylation are connected with elevated tumorigenesis. Null mutation of FAK results in embryonic lethality, and FAK-/- fibroblasts exhibit cell migration defects in culture. Here we show that viral Src (v-Src) transformation of FAK-/- cells promotes integrin-stimulated motility equal to stable FAK reexpression. However, FAK-/- v-Src cells were not invasive, and FAK reexpression, Tyr-397 phosphorylation, and FAK kinase activity were required for the generation of an invasive cell phenotype. Cell invasion was linked to transient FAK accumulation at lamellipodia, formation of a FAK-Src-p130Cas-Dock180 signaling complex, elevated Rac and c-Jun NH2-terminal kinase activation, and increased matrix metalloproteinase expression and activity. Our studies support a dual role for FAK in promoting cell motility and invasion through the activation of distinct signaling pathways.  相似文献   

19.
Cervical cancer is a cancer arising from the cervix, and it is the fourth most common cause of death in women. Overexpression of fibronectin 1 (FN1) was observed in many tumors and associated with the survival and metastasis of cancer cells. However, the mechanism by which FN1 promotes cervical cancer cell viability, migration, adhesion, and invasion, and inhibits cell apoptosis through focal adhesion kinase (FAK) signaling pathway remains to be investigated. Our results demonstrated that FN1 was upregulated in patients with cervical cancer and higher FN1 expression correlated with a poor prognosis for patients with cervical cancer. FN1 knockdown by small interfering RNA (siRNA) inhibited SiHa cell viability, migration, invasion, and adhesion, and promoted cell apoptosis. FN1 overexpression in CaSki cell promoted cell viability, migration, invasion, and adhesion, and inhibited cell apoptosis. Further, phosphorylation of FAK, a main downstream signaling molecule of FN1, and the protein expression of Bcl-2/Bax, matrix metalloproteinase 2 (MMP-2), matrix metalloproteinase 9 (MMP-9), and N-cadherin was upregulated in CaSki cells with FN1 overexpression, but caspase-3 protein expression was downregulated. The FAK phosphorylation inhibitor PF573228 inhibited FN1 overexpression-induced expression of those proteins in CaSki cells with FN1 overexpression. In vivo experiment demonstrated that FN1 knockdown significantly inhibited FN1 expression, phosphorylation of FAK, and tumor growth in xenograft from the nude mice. These results suggest that FN1 regulates the viability, apoptosis, migration, invasion, and adhesion of cervical cancer cells through the FAK signaling pathway and is a potential therapeutic target in the treatment of cervical cancer.  相似文献   

20.
Hamster fibroblasts transformed by Rous sarcoma virus (RSV) display different metastatic potentials that are associated with specific structural features of the v-src oncoprotein. This diverse metastatic activity could be due to various tyrosine phosphorylation levels of specific src protein substrates. To check this hypothesis, phosphorylation of the FAK and paxillin proteins, involved in signal transduction pathways and known as src protein substrates, was tested. It was shown that FAK and paxillin are hyperphosphorylated in the high metastatic cell lines as compared with the phosphotyrosine level of these proteins found in the low metastatic cell lines. In addition, our data confirm that v-src protein plays a direct role in paxillin phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号