首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N:P ratio of leaf litter may determine if decomposability is N-limited (litter with low N:P ratio) or P-limited (litter with high N:P ratio). To test this hypothesis and to determine the threshold between N and P limitation, we studied relationships between litter N and P concentrations, litter mass loss and effects of fertilisation on litter mass loss in laboratory experiments. Leaf litter of 11 graminoid species was collected in Swiss and Dutch wetlands, yielding 84 litter samples with a broad range of N and P concentrations (3.2–15.1 mg N g−1, 0.04–1.93 mg P g−1) and with N:P mass ratios ranging from 5 to 100. On nutrient-free sand, dry mass loss after five or ten weeks (5.5–53% of initial mass) correlated positively with the N and P concentrations of the litter. Within species, mass loss correlated mainly with N for litter with low N:P ratio, and with P for litter with high N:P ratio, in agreement with our hypothesis. Among species, however, these relationships did not exist, and decomposition rather correlated with the specific leaf area. When the litter was incubated on fertilised sand, 35 out of 50 litter samples decomposed faster than on nutrient-free sand. Decomposition was generally accelerated by P fertilisation (i.e. P-limited) when the N:P ratio of the litter was above 25 and the P concentration below 0.22 mg g−1, supporting our hypothesis. N-limited decomposition was not significantly related to the litter N:P ratio but occurred rarely for litter with N:P ratio greater than 25, and only for litter with N concentration below 11.3 mg g−1. We conclude that the N:P ratio of leaf litter indicates whether its decomposability is more likely to be N- or P-limited. The critical N:P ratio (threshold between N and P limitation) appeared to be 25 for graminoid leaf litter.  相似文献   

2.
The relative requirement of N and P (the optimum N:P ratio)by Dunaliella tertiolecta, Phaeodactylum tricornutum, Prymnesiumparvum and Thalassiosira pseudonana was studied under variouslight intensities and spectra. The ratio was determined as theratio of the minimum cell N and P concentrations (q0N and q0pwhen either nutrient was limiting. The ratio varied widely amongspecies; under light-saturation for growth (116 µEin m–2s–1 it ranged from 11.8 in D. tertiolecta to 36.6 in P.tricornutum. The ratio appeared to be higher at a sub-saturatingintensity (24 µEin m–2 s–1 in all except P.tricornutum, mainly because of higher qoN with little changein qoP. In T. pseudonana QoP also increased, resulting in aninsignificant change in the ratio. The ratio varied little withinthe range of saturation intensity. Light quality affected qoNand qoP as well as the ratio, and the pattern of change variedfrom species to species. The optimum ratio of individual specieswas linearly correlated to their qoN except in P. tricornutum.qoN for all species showed a linear correlation with cell proteinconcentrations irrespective of light conditions. The changeof optimum N:P ratios in the three species thus appears to berelated to changes in cell protein contents. The ratio of carbohydratesto protein remained constant regardless of light intensity orquality and was higher in P-limited cultures. We conclude thatchanges in light regime can strongly influence algal nutrientrequirements and species interrelationships by altering theoptimum cellular N:P ratio.  相似文献   

3.
We determined the limiting nutrient of phytoplankton in 21 lakes and ponds in Wapusk National Park, Canada, using nutrient enrichment bioassays to assess the response of natural phytoplankton communities to nitrogen and phosphorus additions. The goal was to determine whether these Subarctic lakes and ponds were nutrient (N or P) limited, and to improve the ability to predict future impacts of increased nutrient loading associated with climate change. We found that 38% of lakes were not limited by nitrogen or phosphorus, 26% were co-limited by N and P, 26% were P-limited and 13% were N-limited. TN/TP, DIN/TP and NO3 /TP ratios from each lake were compared to the Redfield ratio to predict the limiting nutrient; however, these predictors only agreed with 29% of the bioassay results, suggesting that nutrient ratios do not provide a true measure of nutrient limitation within this region. The N-limited lakes had significantly different phytoplankton community composition with more chrysophytes and Anabaena sp. compared to all other lakes. N and P limitation of phytoplankton communities within Wapusk National Park lakes and ponds suggests that increased phytoplankton biomass may result in response to increased nutrient loading associated with environmental change.  相似文献   

4.
Bergström  A.-K.  Deininger  A.  Jonsson  A.  Karlsson  J.  Vrede  T. 《Hydrobiologia》2021,848(21):4991-5010

We used data from whole-lake studies to assess how changes in food quantity (phytoplankton biomass) and quality (phytoplankton community composition, seston C:P and N:P) with N fertilization affect zooplankton biomass, community composition and C:N:P stoichiometry, and their N:P recycling ratio along a gradient in lake DOC concentrations. We found that despite major differences in phytoplankton biomass with DOC (unimodal distributions, especially with N fertilization), no major differences in zooplankton biomass were detectable. Instead, phytoplankton to zooplankton biomass ratios were high, especially at intermediate DOC and after N fertilization, implying low trophic transfer efficiencies. An explanation for the observed low phytoplankton resource use, and biomass responses in zooplankton, was dominance of colony forming chlorophytes of reduced edibility at intermediate lake DOC, combined with reduced phytoplankton mineral quality (enhanced seston N:P) with N fertilization. N fertilization, however, increased zooplankton N:P recycling ratios, with largest impact at low DOC where phytoplankton benefitted from light sufficiently to cause enhanced seston N:P. Our results suggest that although N enrichment and increased phytoplankton biomass do not necessarily increase zooplankton biomass, bottom-up effects may still impact zooplankton and their N:P recycling ratio through promotion of phytoplankton species of low edibility and altered mineral quality.

  相似文献   

5.
 土壤氮磷养分对植物生长的限制性可通过植被的N∶P化学计量特征来反映。该研究以常绿阔叶林演替系列为对象,将N∶P作为诊断指标,揭示 常绿阔叶林次生演替过程中植物群落的N∶P化学计量特征和养分限制作用。结果显示:1)物种水平的N∶P大小不一,但演替系列总体的变化特 征表现出了较高的一致性。2)在群落水平上,次生演替初期的灌草丛N∶P极小(7.38),远远低于14,当演替进入灌丛阶段,N∶P 显著增高到 19.96,在进入演替中期的针叶林(14.29)和针阔混交林(14.21)时,N∶P显著下降到 14~16之间,演替中后期的木荷(Schima superba)群落 (18.77)和栲树(Castanopsis fargesii)群落(20.13)的N∶P发生了显著的升高过程 。根据以往对N∶P临界值的确定,可以认为,常绿阔叶林次 生演替初期的植物群落生产力主要受到氮素的限制作用;演替中期的针叶林和针阔混交林主要受氮磷的共同限制,但以氮素的限制作用更为强 烈;演替中后期植物群落主要受到土壤磷素的限制作用。  相似文献   

6.
The carbon (C), nitrogen (N) and phosphorus (P) contents (%of dry weight) of some crustacean zooplankton were studied inthe Baltic Sea. The copepod Acartia sp. had a stable C and Ncontent (48.3 ± 0.8% C, 12.4 ± 0.2% N, C:N ratio4.5 ± 0.1). The P content was variable (1–2%),probably depending on developmental stage and season. Copepodsaccumulating fat, like Pseudocalanus minutus elongatus, hadhigher and more variable C content (50–60%), and lowerN and P content (7–12% N, 0.6–1.5% P). The highestC and lowest N and P contents were found in adult Limnocalanusmacrurus. However, the N:P ratio was apparently independentof fat content and between 14 and 27 for all copepods. The cladoceransBosmina longispina maritima and Evadne nordmanni had lower Ncontent (9.3–10.8%) and higher C:N ratio (5.1–5.7)than Acartia sp. The P content (1.2–1.4%) was similarto Acartia sp. and the N:P ratios (16–19) were in thelower range of that found for the copepods. The N:P ratio wasgenerally somewhat higher in the copepods than in seston, whichmost of the year had nearly Redfield C:N:P ratios. Potentially,nutrient recycling from crustacean zooplankton could enhanceN limitation of phytoplankton, but small stoichiometric differencessuggest that this effect is probably weak. The extent is dependenton the structure of the zooplankton community and the grossgrowth efficiencies. Acartia copepodites, which had nearly RedfieldN:P ratios, would have the opposite effect and enhance P limitationin late summer when seston N:P ratios increased.  相似文献   

7.
Nitrogen (N) fixing trees including many species of Acacia are an important though variable component of savanna ecosystems. It is known that these trees enrich the soil with carbon (C) and N, but their effect on the combined C:N:P stoichiometry in soil is less well understood. Theory suggests that they might reduce available phosphorus (P), creating a shift from more N-limited conditions in grass-dominated to more P-limited conditions in tree-dominated sites, which in turn could feed back negatively on the trees’ capacity to fix N. We studied the effects of Acacia zanzibarica tree density upon soil and foliar N:P stoichiometry, and the N2-fixation rates of trees and leguminous herbs in a humid Tanzanian savanna. Foliar N:P ratios and N2-fixation rates of trees remained constant across the density gradient, whereas soil C, N and organic P pools increased. In contrast, the N:P ratio of grasses increased and N2-fixation rates of leguminous herbs decreased with increasing tree density, indicating a shift towards more P-limited conditions for the understory vegetation. These contrasting responses suggest that trees and grasses have access to different sources of N and P, with trees being able to access P from deeper soil layers and perhaps also utilizing organic forms more efficiently.  相似文献   

8.
We aim to define the best nutrient limitation indicator predicting phytoplankton biomass increase as a result of nutrient enrichment (N, P, or both). We compare the abilities of different indicators, based on chemical measurements of nitrogen (N) and phosphorus (P) fractions in the initial plankton community, to predict the limiting factor for phytoplankton growth as inferred independently from short-term laboratory experiments on the same natural communities in a data set from NE Baltic Sea (Tamminen and Andersen, Mar Ecol Prog Ser 340:121–138, 2007). The best indicators had a true positive rate of about 80% for predicting both N and P limitation, but with a higher false positive rate for N than for P limitation (25 vs. 5%). Estimated threshold ratios for total nutrients (TN:TP) were substantially higher than the Redfield ratio, reflecting the relatively high amounts of biologically less available dissolved organic N in the study area. The best overall performing indicator, DIN:TP, had chlorophyll-response based threshold ratios far below Redfield, with N limitation below 2:1 and P limitation above 5:1 (by atoms). On the contrary, particulate N:P ratio was the overall worst predictor for N or P limitation, with values clustering around the Redfield N:P ratio (16:1, by atoms) independent of the limiting factor. Estimated threshold ratios based on inorganic nutrients (DIN:DIP) and so-called biologically available nutrients (BAN:BAP = (PON + DIN):(POP + DIP)) were also generally clearly above 16:1, indicating that the Redfield ratio rather reflects the transition from N limitation to combined N + P limitation, than to single limitation by P. Coastal systems are complex systems with regard to nutrient dynamics, historically considered to represent the transition from P-limited freshwater to N-limited marine systems. Our analysis shows that rather simple ratios reflect phytoplankton requirement for nutrients. Based on the high prediction performance, analytical considerations, and general data availability, the DIN:TP ratio appears to be the best indicator for inferring in situ N vs. P limitation of phytoplankton from chemical monitoring data.  相似文献   

9.
Mangrove ecosystems can be either nitrogen (N) or phosphorus (P) limited and are therefore vulnerable to nutrient pollution. Nutrient enrichment with either N or P may have differing effects on ecosystems because of underlying differences in plant physiological responses to these nutrients in either N- or P-limited settings. Using a common mangrove species, Avicennia germinans, in sites where growth was either N or P limited, we investigated differing physiological responses to N and P limitation and fertilization. We tested the hypothesis that water uptake and transport, and hydraulic architecture, were the main processes limiting productivity at the P-limited site, but that this was not the case at the N-limited site. We found that plants at the P-deficient site had lower leaf water potential, stomatal conductance and photosynthetic carbon-assimilation rates, and less conductive xylem, than those at the N-limited site. These differences were greatly reduced with P fertilization at the P-limited site. By contrast, fertilization with N at the N-limited site had little effect on either photosynthetic or hydraulic traits. We conclude that growth in N- and P-limited sites differentially affect the hydraulic pathways of mangroves. Plants experiencing P limitation appear to be water deficient and undergo more pronounced changes in structure and function with relief of nutrient deficiency than those in N-limited ecosystems.  相似文献   

10.
The impact of nutrient enrichment on the phytoplankton community structure, and particularly cyanobacteria, was studied in a 3-week mesocosm experiment conducted in August 2001 in the Archipelago Sea, a part of the northern Baltic Sea. The factorial design experiment included daily additions of nitrogen (N) and phosphorus (P) at two mass ratios, 1N:1P and 7N:1P, respectively, additions of iron (Fe) and a synthetic chelator, ethylenediaminetetraacetic acid (EDTA). The floating enclosures (400 l) were sampled for analyses of phytoplankton biomass and community structure, phytoplankton primary production, chlorophyll a, nutrients, and hepatotoxins. Chlorophyll a concentration, phytoplankton biomass and primary production increased most in the 7N:1P treatment. The increase was mainly due to an abundant growth of chlorophytes (Dictyosphaerium subsolitarium, Kirchneriella spp., Monoraphidium contortum, and Oocystis spp.), pennate diatoms (especially Nitzschia spp.), dinophytes and the chroococcalean cyanobacterium Synechococcus sp. The nutrient enrichments had no effect on the total biomass of N2-fixing cyanobacteria. Nevertheless, the biomass of Anabaena spp. was highest in the enrichments with a low N/P ratio. Chlorophyll a concentration and total phytoplankton biomass were not affected by Fe or EDTA, but Fe alone had a positive effect on the chlorophyte Kirchneriella sp. The N2-fixing cyanobacteria Aphanizomenon sp. responded positively to Fe alone and to both Fe and EDTA added together. The hepatotoxin concentration increased during the experiment, but no clear responses to nutrient enrichments were found. Our study showed species-specific responses to nutrient enrichments among the N2-fixing cyanobacteria. Although the total phytoplankton production was not Fe-limited; the availability of Fe clearly affected the phytoplankton community structure.  相似文献   

11.
Nutrient over-enrichment is a major threat to marine environments, but system-specific attributes of coastal ecosystems may result in differences in their sensitivity and susceptibility to eutrophication. We used fertilization experiments in nitrogen (N)- and phosphorus (P)-limited mangrove forests to test the hypothesis that alleviating different kinds of nutrient limitation may have different effects on ecosystem structure and function in natural systems. We compared a broad range of ecological processes to determine if these systems have different thresholds where shifts might occur in nutrient limitation. Growth responses indicated N limitation in Avicennia germinans (black mangrove) forests in the Indian River Lagoon (IRL), Florida, and P limitation at Twin Cays, Belize. When nutrient deficiency was relieved, A. germinans grew out of its stunted form by increasing wood relative to leaf biomass and shoot length relative to lateral growth. At the P-limited site, P enrichment (+P) increased specific leaf area, N resorption, and P uptake, but had no effect on P resorption. At the N-limited site, +N increased both N and P resorption, but did not alter biomass allocation. Herbivory was greater at the P-limited site and was unaffected by +P, whereas +N led to increased herbivory at the N-limited site. The responses to nutrient enrichment depended on the ecological process and limiting nutrient and suggested that N- versus P-limited mangroves do have different thresholds. +P had a greater effect on more ecological processes at Twin Cays than did +N at the IRL, which indicated that the P-limited site was more sensitive to nutrient loading. Because of this sensitivity, eutrophication is more likely to cause a shift in nutrient limitation at P-limited Twin Cays than N-limited IRL.  相似文献   

12.
Ingestion and growth rates of the nanoflagellate predator Ochromonas danica feeding on the bacterium Pseudomonas fluorescens were quantified in laboratory cultures. Bacterial prey were grown under four nutritional conditions with respect to macronutrient elements: C-limited, N-limited, P-limited, and balanced. Ingestion and growth rates were saturating functions of prey abundance when preying upon nutritionally balanced, C-limited, and P-limited bacteria but were unimodal functions of abundance when preying on N-limited bacteria. At saturating prey concentrations, the ingestion rate of C-limited prey was about twice that of prey in other nutritional states, while at subsaturating prey concentrations, the ingestion rates of both C- and N-limited prey were higher than those of prey in other nutritional states. Over all prey concentrations, growth was most rapid on balanced and C-limited prey and generally lowest for P-limited prey. Due to the unimodal response of growth rate to abundance of N-limited prey, growth rate on N-limited prey approached that obtained on balanced and C-limited prey when prey were available at intermediate abundances. The accumulation of recycled N increased with the growth rate of O. danica. Recycling of N was highest when O. danica was feeding upon P-limited prey. The accumulation of recycled P increased with growth rate for balanced and N-limited prey, but not for P-limited prey, which consistently had low accumulation of recycled P. The low growth rate and negligible recycling of P for O. danica preying on P-limited prey is consistent with the theory of ecological stoichiometry and resembles results found for crustacean zooplankton, especially in the genus Daphnia. Potentially, the major predators of bacterioplankton and a major predator of phytoplankton play analogous roles in the trophic dynamics and biogeochemistry of aquatic ecosystems.  相似文献   

13.
How plants respond to long-term nutrient enrichment can provide insights into physiological and evolutionary constraints in various ecosystems. The present study examined foliar concentrations after fertilization—to determine if nutrient accumulation responses of the most abundant species in a plant community reflect differences in N and P uptake and storage. Using a chronosequence in the Hawaiian Islands that differs in N and P availability, it was shown that after fertilization, plants increase foliar P to a much greater degree than foliar N, as indicated by response ratios. In addition, foliar P responses after fertilization were more variable and largely driving the observed changes in N:P values. Across species, both inorganic and organic P increased but neither form of N increased significantly. This pattern of P accumulation was consistent across 13 species of varying life forms and occurred at both the N-limited and P-limited site, although its magnitude was larger at the P-limited site. Foliar P accumulation after nutrient enrichment may indicate nutrient storage and may have evolved to be a general strategy to deal with uncertainties in P availability. Storage of P complicates interpretations of N:P values and the determination of nutrient limitation.  相似文献   

14.
The biomass production of wetland vegetation can be limited by nitrogen or phosphorus. Some species are most abundant in N-limited vegetation, and others in P-limited vegetation, possibly because growth-related traits of these species respond differently to N versus P supply. Two growth experiments were carried out to examine how various morphological and physiological traits respond to the relative supply of N and P, and whether species from sites with contrasting nutrient availability respond differently. In experiment 1, four Carex species were grown in nutrient solutions at five N:P supply ratios (1.7, 5, 15, 45, 135) combined with two levels of supply (geometric means of N and P supply). In experiment 2, two Carex and two grass species were grown in sand at the same .ve N:P supply ratios combined with three levels of supply and two light intensities (45% or 5% daylight). After 12-13 weeks of growth, plant biomass, allocation, leaf area, tissue nutrient concentrations and rates and nutrient uptake depended signi.cantly on the N:P supply ratio, but the type and strength of the responses differed among these traits. The P concentration and the N:P ratio of shoots and roots as well as the rates of N and P uptake were mainly determined by the N:P supply ratio; they showed little or no dependence on the supply level and relatively small interspeci.c variation. By contrast, the N concentration, root mass ratio, leaf dry matter content and speci.c leaf area were only weakly related to the N:P supply ratio; they mainly depended on plant species and light, and partly on overall nutrient supply. Plant biomass was determined by all factors together. Within a level of light and nutrient supply, biomass was generally maximal (i.e. co-limited by N and P) at a N:P supply ratio of 15 or 45. All species responded in a similar way to the N:P supply ratio. In particular, the grass species Phalaris arundinacea and Molinia caerulea showed no differences in response that could clearly explain why P. arundinacea tends to invade P-rich (N-limited) sites, and M. caerulea P-limited sites. This may be due to the short duration of the experiments, which investigated growth and nutrient acquisition but not nutrient con­servation.  相似文献   

15.
The chemical composition of nutrient-saturated cultures of Emilianiahuxleyi, Amphidinium carterae, and Staurastrum luetkemuelleriwas studied. The variation in chemical composition of naturalphytoplankton communities in the North Sea, the Trondheimsfjord,and a eutrophic lake was also studied. Nutrient status was evaluatedby measurement of the algal protein/carbohydrate, N/C, P/C,and N/P ratios. Tests for P-deficiency were carried out by measuringthe increase in ATP upon addition of phosphate. At saturationthe N/C ratio was {small tilde}0.14 in marine species and {smalltilde}0.05 in Staurastrum. Saturation P/C ratios (excludingpolyphosphates) were species-dependent, ranging from 0.017 (Skeletonema)to 0.006 (Amphidinium). Amphidinium and Staurastrum store polyphosphateswhen grown in P-rich media; true marine planktonic species donot. Natural communities tended to be close to nutrient saturationat low biomass densities and nutrient deficient at high densities.In the North Sea, nitrogen was clearly limiting. In waters offthe Møre coast and in the Trondheimsfjord, growth wasnearly balanced with respect to N and P at high salinities (>25)and clearly P-limited in brackish fjord waters. In dense communities,the N/P ratio was inversely related to salinity. Freshwatercommunities were clearly P-limited, but responses were dampenedwhen daphnia or whitefish were introduced, due to increasedexcretion of nutrients. 1Contribution No. 212, Trondheim Biological Station, N-7001Trondheim, Norway.  相似文献   

16.
The stoichiometry of N and P in the pelagic zone of Castle Lake, California   总被引:2,自引:0,他引:2  
We measured the concentrations, as well as lake-wide amounts,of nitrogen (N) and phosphorus (P) in dissolved, seston andzooplankton pools throughout the water column of Castle Lake,California, during summer, 1991. This allowed us to determinethe stoichiometric ratios of important elements in each pool(C:N, C:P, N:P) as well as for the entire lake. Dissolved andseston pools were the predominant storage compartments for bothN and P; zooplankton never contained >5% of N or 10% of Plake wide. However, by late summer, the concentrations of Pin seston and in zooplankton were similar in the upper portionsof the water column, suggesting that changes in food web structurethat alter zooplankton biomass and community composition (andhence elemental storage in the zooplankton) may produce significantshifts in nutrient storage among pelagic pools. Lake-wide levelsof dissolved N were largely constant over the study period;however, lake-wide dissolved P increased. These dynamics suggestedthat the majority of nutrients stored in dissolved pools wereunavailable for phytoplankton growth. N:P and C:P ratios indicatedthat Castle Lake phytoplankton became severely deficient inP during the course of our observations. These ratios also greatlyexceeded recently reported threshold values for elemental constraintson growth and reproduction for several species of zooplankton.The ratio of N to P in the zooplankton pool was relatively constantand consistently lower than that in the sestion. As a result,the predicted N:P ratio of zooplankton-regenerated nutrientsexceeded the N:P ratio of the seston, implying that zooplanktonnutrient regeneration further skewed N and P supply ratios,and potentially enhanced P limitation of phytoplankton in CastleLake. 1Present address: Department of Biology, Box 19498, Universityof Texas at Arlington, Arlington, TX 76019, USA  相似文献   

17.
珠江口及毗邻海域营养盐对浮游植物生长的影响   总被引:11,自引:0,他引:11  
张伟  孙健  聂红涛  姜国强  陶建华 《生态学报》2015,35(12):4034-4044
基于2006年7月(夏季),10月(秋季)和2007年3月(春季)的现场调查数据,对珠江口及毗邻海域中的营养盐和叶绿素a等环境生态因子的时空分布特性进行了对比分析,研究了氮磷比与叶绿素a含量和种群多样性之间的联系,探讨了该海域营养盐对于浮游植物生长的影响。结果表明:(1)研究海域营养盐表现出较强的季节和空间差异性,总氮(TN)和总磷(TP)浓度均值春季(1.545 mg/L、0.056 mg/L)和夏季(1.570 mg/L、0.058 mg/L)均大于秋季(1.442 mg/L、0.034 mg/L),且春夏季浓度空间差异更明显。(2)调查期间海域营养盐含量超标现象突出,夏季尤为明显。无机氮(DIN)总体均值0.99 mg/L,超四类海水标准限值1倍,活性磷酸盐(PO4-P)总体均值0.021 mg/L,DIN∶PO4-P平均值为130;叶绿素a浓度与营养盐、p H、温度有较显著的相关性。(3)叶绿素a浓度较高的站位,具有较高的DIN∶PO4-P值,但浮游植物多样性指数偏低,优势种明显,主要为中肋骨条藻。氮磷比的改变会影响不同生长特性的浮游植物间的竞争和种群结构的改变;今后海洋污染治理中,在控制氮、磷污染时要注意氮磷比的改变可能造成的浮游生态影响。  相似文献   

18.
Nitrogen and the Baltic Sea: managing nitrogen in relation to phosphorus   总被引:2,自引:0,他引:2  
The Baltic is a large, brackish sea (4 x 10(5) km2) extending from 54N to approximately 66N, with a fourfold larger drainage area (population 8 x 10(7). Surface salinity (2 to 8 PSU) and hence biodiversity is low. In the last century, annual nutrient loads increased to 10(6) metric tons N and 5 x 10(4) ton P. Eutrophication is evident in the N-limited south, where cyanobacteria fix 2 to 4 x 10(5) ton N each summer, Secchi depths have been halved, and O2-deficient bottom areas have spread. Production remains low in the P-limited north. In nutrient-enriched coastal areas, phytoplankton blooms, toxic at times, and filamentous macroalgae reduce amenity values. Loads need to be reduced of both N, to reduce production, and P, to limit N-fixing cyanobacterial blooms. When large N-load reductions have been achieved locally, algal biomass has declined. So far, P loads have been reduced more than N loads. If this continues, a P-limited Baltic proper may result, very different from previous N-limited conditions. Reaching the management goal of halved anthropogenic N and P loads at minimum cost will require better understanding of biogeochemical nutrient cycles, economic evaluation of proposed measures, and improved stakeholder participation.  相似文献   

19.
Resting spore formation and Si:N drawdown ratios were investigated under iron (Fe)- and nitrogen (N)-limited conditions using a unialgal culture of Thalassiosira nordenskioeldii and natural phytoplankton assemblages during the spring bloom in the Oyashio region. In the unialgal culture of T. nordenskioeldii, 20% and 100% of the cells formed resting spores under Fe- and N-limited conditions, respectively. The Si:N drawdown ratios were 2- and 14-fold higher in Fe- and N-limited conditions, respectively, compared to Fe- and N-sufficient conditions. At the start of the natural phytoplankton incubation, 18 among 47 identified diatom species were known resting spore-forming species. Approximately 15 common diatom species formed resting spores under Fe- and N-limited conditions. During the natural phytoplankton incubation, the percentage of the resting spores increased with time under both Fe- and N-limited conditions, reaching 25% and 40% of total diatom abundance, respectively. The Si:N drawdown ratios significantly increased with an increase in the contribution of resting spores in both the unialgal culture and natural phytoplankton incubations. These results suggest that if the bloom dominated by neritic, resting spore-forming diatom species decline by either Fe- or N-depletion, Si may be utilized preferentially to N in the upper mixed layer due to the formation of heavily silicified resting spores.  相似文献   

20.
We investigated the effect of increased N-supply on productivity and potential litter decay rates of Carex species, which are the dominant vascular plant species in peatlands in the Netherlands. We hypothesized that: (1) under conditions of N-limited plant growth, increased N-supply will lead to increased productivity but will not affect C:N ratios of plant litter and potential decay rates of that litter; and (2) under conditions of P-limited plant growth, increased N-supply will not affect productivity but it will lead to lower C:N ratios in plant litter and thereby to a higher potential decay rate of that litter. These hypotheses were tested by fertilization experiments (addition of 10 g N m-2 year-1) in peatlands in which plant growth was N-limited and P-limited, respectively. We investigated the effects of fertilization on net C-fixation by plant biomass, N uptake, leaf litter chemistry and potential leaf litter decay. In a P-limited peatland, dominated by Carex lasiocarpa, there was no significant increase of net C-fixation by plant biomass upon enhanced N-supply, although N-uptake had increased significantly compared with the unfertilized control. Due to the N-fertilization the C:N ratio in the plant biomass decreased significantly. Similarly, the C:N ratio of leaf litter produced at the end of the experiment showed a significant decrease upon enhanced N-supply. The potential decay rate of that litter, measured as CO2-evolution from the litter under aerobic conditions, was significantly increase upon enhanced N-supply. In a N-limited peatland, dominated by C. acutiformis, the net C-fixation by plant biomass increased with increasing N-supply, whereas the increase in N-uptake was not significant. The C:N ratio of both living plant material and of dead leaves did not change in response to N-fertilization. The potential decay rate of the leaf litter was not affected by N-supply. The results agree with our hypotheses. This implies that atmospheric N-deposition may affect the CO2-sink function of peatlands, but the effect is dependent on the nature of nutrient limitation. In peatlands where plant growth is N-limited, increased N-supply leads to an increase in the net accumulation of C. Under conditions of P-limited plant growth, however, the net C-accumulation will decrease, because productivity is not further increased, whereas the amount of C lost through decomposition of dead organic matter is increased. As plant growth in most terrestrial ecosystems is N-limited, increased N-supply will in most peatlands lead to an increase of net C-accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号