首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Myotrophin/V-1 is a cytosolic protein found at elevated levels in failing human hearts and in postnatal cerebellum. We have previously shown that it disrupts nuclear factor of kappaB (NFkappaB)-DNA complexes in vitro. In this study, we demonstrated that in HeLa cells native myotrophin/V-1 is predominantly present in the cytoplasm and translocates to the nucleus during sustained NFkappaB activation. Three-dimensional alignment studies indicate that myotrophin/V-1 resembles a truncated IkappaBalpha without the signal response domain (SRD) and PEST domains. Co-immunoprecipitation studies reveal that myotrophin/V-1 interacts with NFkappaB proteins in vitro; however, it remains physically associated only with p65 and c-Rel proteins in vivo during NFkappaB activation. In vitro studies indicate that myotrophin/V-1 can promote the formation of p50-p50 homodimers from monomeric p50 proteins and can convert the preformed p50-p65 heterodimers into p50-p50 and p65-p65 homodimers. Furthermore, adenovirus-mediated overexpression of myotrophin/V-1 resulted in elevated levels of both p50-p50 and p65-p65 homodimers exceeding the levels of p50-p65 heterodimers compared with Adbetagal-infected cells, where the levels of p50-p65 heterodimers exceeded the levels of p50-p50 and p65-p65 homodimers. Thus, overexpression of myotrophin/V-1 during NFkappaB activation resulted in a qualitative shift by quantitatively reducing the level of transactivating heterodimers while elevating the levels of repressive p50-p50 homodimers. Correspondingly, overexpression of myotrophin/V-1 resulted in significantly reduced kappaB-luciferase reporter activity. Because myotrophin/V-1 is found at elevated levels during NFkappaB activation in postnatal cerebellum and in failing human hearts, this study cumulatively suggests that myotrophin/V-1 is a regulatory protein for modulating the levels of activated NFkappaB dimers during this period.  相似文献   

4.
5.
In contrast to the cytotoxic or cytostatic effect of TNFalpha on many breast cancer cell lines, TNFalpha stimulates growth and morphogenesis of normal rat mammary epithelial cells (MEC). The present studies were carried out to determine whether there are intrinsic differences between normal and malignant MEC which may explain the differing responsiveness to TNFalpha. Freshly isolated rat MEC organoids from normal mammary gland or 1-methyl-1-nitrosourea-induced mammary tumors were treated with TNFalpha for 21 days. Unexpectedly, TNFalpha stimulated growth and morphogenesis of both normal and transformed MEC in primary culture, although in transformed cells its effects were delayed and the majority of the colonies were histologically abnormal, with multiple cell layers and no lumen. Since NFkappaB is a key mediator of TNFalpha action and has been implicated in carcinogenesis, the expression of the p50, p52, p65, and c-rel NFkappaB proteins in normal and transformed MEC was determined. Expression of p52 was significantly reduced in tumor cells, and p50 was absent, although its putative precursor, p105 was abundant. There were no changes in the levels of p65 or c-rel. TNFalpha induced a pronounced and sustained increase of a p50 homodimeric NFkappaB/DNA complex in both normal and transformed MEC. However, in transformed MEC, NFkappaB binding was initially undetectable but then increased in response to TNFalpha. Thus, NFkappaB expression and DNA binding activity are altered during mammary carcinogenesis. In addition, the significant increase in NFkappaB/p50 DNA-binding was temporally coincident with TNFalpha-induced growth and morphogenesis, suggesting that it may play a significant role in both normal development and carcinogenesis.  相似文献   

6.
7.
NFkappaB is a participant in the process whereby cells adapt to stress. We have evaluated the activation of NFkappaB pathway by hyperosmotic stress in cultured cardiomyocytes and its role in the activation of caspase and cell death. Exposure of cultured rat cardiomyocytes to hyperosmotic conditions induced phosphorylation of IKKalpha/beta as well as degradation of IkappaBalpha. All five members of the NFkappaB family were identified in cardiomyocytes. Analysis of the subcellular distribution of NFkappaB isoforms in response to hyperosmotic stress showed parallel migration of p65 and RelB from the cytosol to the nucleus. Measurement of the binding of NFkappaB to the consensus DNA kappaB-site binding by EMSA revealed an oscillatory profile with maximum binding 1, 2 and 6h after initiation of the hyperosmotic stress. Supershift analysis revealed that p65 and RelB (but not p50, p52 or cRel) were involved in the binding of NFkappaB to DNA. Hyperosmotic stress also resulted in activation of the NFkappaB-lux reporter gene, transient activation of caspases 9 and 3 and phosphatidylserine externalization. The effect on cell viability was not prevented by ZVAD (a general caspase inhibitor). Blockade of NFkappaB with AdIkappaBalpha, an IkappaBalpha dominant negative overexpressing adenovirus, prevented activation of caspase 9 (more than that caspase 3) but did not affect cell death in hyperosmotically stressed cardiomyocytes. We conclude that hyperosmotic stress activates p65 and RelB NFkappaB isoforms and NFkappaB mediates caspase 9 activation in cardiomyocytes. However cell death triggered by hyperosmotic stress was caspase- and NFkappaB-independent.  相似文献   

8.
9.
Interferons (IFNs) are antiviral cytokines that selectively regulate gene expression through several signaling pathways including nuclear factor kappaB(NFkappaB). To investigate the specific role of NFkappaB in IFN signaling, we performed gene expression profiling after IFN treatment of embryonic fibroblasts derived from normal mice or mice with targeted deletion of NFkappaB p50 and p65 genes. Interestingly, several antiviral and immunomodulatory genes were induced higher by IFN in NFkappaB knock-out cells. Chromatin immunoprecipitation experiments demonstrated that NFkappaB was basally bound to the promoters of these genes, while IFN treatment resulted in the recruitment of STAT1 and STAT2 to these promoters. However, in NFkappaB knock-out cells IFN induced STAT binding as well as the binding of the IFN regulatory factor-1 (IRF1) to the IFN-stimulated gene (ISG) promoters. IRF1 binding closely correlated with enhanced gene induction. Moreover, NFkappaB suppressed both antiviral and immunomodulatory actions of IFN against influenza virus. Our results identify a novel negative regulatory role of NFkappaB in IFN-induced gene expression and biological activities and suggest that modulating NFkappaB activity may provide a new avenue for enhancing the therapeutic effectiveness of IFN.  相似文献   

10.
11.
12.
In murine embryonic fibroblasts, N-acetyl-L-cysteine (NAC), a GSH generating agent, enhances hypoxic apoptosis by blocking the NFkappaB survival pathway (Qanungo, S., Wang, M., and Nieminen, A. L. (2004) J. Biol. Chem. 279, 50455-50464). Here, we examined sulfhydryl modifications of the p65 subunit of NFkappaB that are responsible for NFkappaB inactivation. In MIA PaCa-2 pancreatic cancer cells, hypoxia increased p65-NFkappaB DNA binding and NFkappaB transactivation by 2.6- and 2.8-fold, respectively. NAC blocked these events without having an effect on p65-NFkappaB protein levels and p65-NFkappaB nuclear translocation during hypoxia. Pharmacological inhibition of the NFkappaB pathway also induced hypoxic apoptosis, indicating that the NFkappaB signaling pathway is a major protective mechanism against hypoxic apoptosis. In cell lysates after hypoxia and treatment with N-ethylmaleimide (thiol alkylating agent), dithiothreitol (disulfide reducing agent) was not able to increase binding of p65-NFkappaB to DNA, suggesting that most sulfhydryls in p65-NFkappaB protein were in reduced and activated forms after hypoxia, thereby being blocked by N-ethylmaleimide. In contrast, with hypoxic cells that were also treated with NAC, dithiothreitol increased p65-NFkappaB DNA binding. Glutaredoxin (GRx), which specifically catalyzes reduction of protein-SSG mixed disulfides, reversed inhibition of p65-NFkappaB DNA binding in extracts from cells treated with hypoxia plus NAC and restored NFkappaB activity. This finding indicated that p65-NFkappaB-SSG was formed in situ under hypoxia plus NAC conditions. In cells, knock-down of endogenous GRx1, which also promotes protein glutathionylation under hypoxic radical generating conditions, prevented NAC-induced NFkappaB inactivation and hypoxic apoptosis. The results indicate that GRx-dependent S-glutathionylation of p65-NFkappaB is most likely responsible for NAC-mediated NFkappaB inactivation and enhanced hypoxic apoptosis.  相似文献   

13.
14.
Methylchlorogenic acid (MC) is one of the main components in the leaves of Eriobotrya japonica. We previously reported that MC is the most potent antioxidant among several components of Eriobotrya japonica, and its antioxidant activity is stronger than that of chlorogenic acid. Antioxidants are expected to inhibit redox-sensitive NFkappaB activation since NFkappaB is readily influenced by cellular oxidative state. Based on these findings, in vivo experiments with MC were conducted to determine its ability to downregulate the NFkappaB activation in mouse liver. Results clearly showed that MC is a potent suppressor of BHP-induced NFkappaB activation. We observed a significant reduction by MC on BHP-induced translocation of p65 subunit of NFkappaB. This may be due to formation of p50/p65 heterodimer, which is mainly inducible NFkappaB. MC slightly blocked the BHP-induced IkappaB alpha degradation. There is a possibility of IkappaB alpha resynthesis via activated NFkappaB during a 5 h waiting period following BHP injection. The present results suggest that MC may inhibit NFkappaB activation, exhibiting its ability to downregulate the NFkappaB-dependent gene expression. Thus, it can be expected that MC may have potential for therapeutic intervention on various NFkappaB-dependent pathological conditions such as inflammatory or possibly mutagenic processes.  相似文献   

15.
16.
17.
The p50 and p65 subunits of NF-kappa B represent two members of a gene family that shares considerable homology to the rel oncogene. Proteins encoded by these genes form homo- and heterodimers which recognize a common DNA sequence motif. Recent data have suggested that homodimers of individual subunits of NF-kappa B can selectively activate gene expression in vitro. To explore this possibility in a more physiological manner, murine embryonic stem (ES) cells were treated with phosphorothio antisense oligonucleotides to either p50 or p65. Within 5 h after exposure to phosphorothio antisense p65 oligonucleotides, cells exhibited dramatic alterations in adhesion properties. Similar findings were obtained in a stable cell line that expressed a dexamethasone-inducible antisense mRNA to p65. Although antisense oligonucleotides raised against both p50 and p65 elicited a significant reduction in their respective mRNAs, only the cells treated with antisense p50 maintained a normal morphology. However, 6 days following removal of leukemia-inhibiting factor, a growth factor which suppresses embryonic stem cell differentiation, adhesion properties of cells treated with the antisense p50 oligonucleotides were markedly affected. The ability of the individual antisense oligonucleotides to elicit differential effects on cell adhesion, a property dependent upon the stage of differentiation, suggests that the p50 and p65 subunits of NF-kappa B regulate gene expression either as homodimers or as heterodimers with other rel family members. Furthermore, the finding that reduction in p65 expression alone had profound effects on cell adhesion properties indicates that p65 plays an important role in nonstimulated cells and cannot exist solely complexed with the cytosolic inhibitory protein I kappa B.  相似文献   

18.
19.
The DNA binding of three different NF-kappaB dimers, the p50 and p65 homodimers and the p50/p65 heterodimer, has been examined using a combination of gel mobility shift and fluorescence anisotropy assays. The NF-kappaB p50/p65 heterodimer is shown here to bind the kappaB DNA target site of the immunoglobulin kappa enhancer (Ig-kappaB) with an affinity of approximately 10 nm. The p50 and p65 homodimers bind to the same site with roughly 5- and 15-fold lower affinity, respectively. The nature of the binding isotherms indicates a cooperative mode of binding for all three dimers to the DNA targets. We have further characterized the role of pH, salt, and temperature on the formation of the p50/p65 heterodimer-Ig-kappaB complex. The heterodimer binds to the Ig-kappaB DNA target in a pH-dependent manner, with the highest affinity between pH 7.0 and 7.5. A strong salt-dependent interaction between Ig-kappaB and the p50/p65 heterodimer is observed, with optimum binding occurring at monovalent salt concentrations below 75 mm, with binding becoming virtually nonspecific at a salt concentration of 200 mm. Binding of the heterodimer to DNA was unchanged across a temperature range between 4 degrees C and 42 degrees C. The sensitivity to ionic environment and insensitivity to temperature indicate that NF-kappaB p50/p65 heterodimers form complexes with specific DNA in an entropically driven manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号