首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study two synthetic peptides from the Bordetella pertussis toxin subunit S1 were conjugated to human anti-idiotypic antibodies and used as an immunogen in cancer patients to induce immunity. The aims of the present report are to explain why no carrier or adjuvant effect of the conjugated pertussis peptides could be established regarding induction of responses against the anti-idiotype and to explore the type and quality of induced anti-pertussis immune responses. The lack of carrier and adjuvant effect of the peptides might be related to the fact that the anti-idiotypic antibodies by themselves include helper epitopes and that none of the patients had a detectable T cell response against any of the selected peptides before immunization, which might be a requirement for an adjuvant effect. However, three of four immunized patients mounted a humoral as well as cellular response against the pertussis peptides used. The induced T cell immunity was restricted to one of the two peptides in responding patients. Established T cell lines and MHC blocking studies indicated that the T cell epitopes of the two peptides had a different MHC restriction. The type of T cell response induced seemed to govern the humoral response. The only durable antibody response was accompanied by the presence of a CD4(+) T cell response against the same peptide. Immunization with an anti-idiotype conjugated to synthetic peptides might thus induce both a B and a T cell response against the peptides and the type of induced T cells (CD4 or CD8) governs the quality of the humoral response. Moreover, the possibility of boosting or inducing a response against the antigen from which the peptide sequences were deduced also seemed feasible.  相似文献   

2.
Although post-translational modifications of protein antigens may be important componenets of some B cell epitopes, the determinants of T cell immunity are generally nonmodified peptides. Here we show that methylation of the Mycobacterium tuberculosis heparin-binding hemagglutinin (HBHA) by the bacterium is essential for effective T cell immunity to this antigen in infected healthy humans and in mice. Methylated HBHA provides high levels of protection against M. tuberculosis challenge in mice, whereas nonmethylated HBHA does not. Protective immunity induced by methylated HBHA is comparable to that afforded by vaccination with bacille Calmette et Guérin, the only available anti-tuberculosis vaccine. Thus, post-translational modifications of proteins may be crucial for their ability to induce protective T cell-mediated immunity against infectious diseases such as tuberculosis.  相似文献   

3.
Innate immunity involving antimicrobial peptides represents an integrated and highly effective system of molecular and cellular mechanisms that protects host against infections. One of the most frequent hospital-acquired pathogens, Staphylococcus aureus, capable of producing proteolytic enzymes, which can degrade the host defence agents and tissue components. Numerous antimicrobial peptides derived from chromogranins, are secreted by nervous, endocrine and immune cells during stress conditions. These kill microorganisms by their lytic effect at micromolar range, using a pore-forming mechanism against Gram-positive bacteria, filamentous fungi and yeasts. In this study, we tested antimicrobial activity of chromogranin A-derived peptides (catestatin and cateslytin) against S. aureus and analysed S. aureus-mediated proteolysis of these peptides using HPLC, sequencing and MALDI-TOF mass spectrometry. Interestingly, this study is the first to demonstrate that cateslytin, the active domain of catestatin, is active against S. aureus and is interestingly resistant to degradation by S. aureus proteases.  相似文献   

4.

Background  

Members of the genus Nocardia are ubiquitous environmental saprophytes capable to cause human pulmonary, disseminated and cutaneous nocardiosis or bovine mastitis. Innate immunity appears to play an important role in early defense against Nocardia species. To elucidate the contribution of antimicrobial peptides (AMPs) in innate defense against Nocardia, the activity of human α-defensins human neutrophil peptides (HNPs) 1-3, human β-defensin (hBD)-3 and cathelicidin LL-37 as well as bovine β-defensins lingual and tracheal antimicrobial peptides (LAP, TAP) and bovine neutrophil-derived indolicidin against four important Nocardia species was investigated.  相似文献   

5.

Background  

Antimicrobial peptides are found in all kingdoms of life. During the evolution of multicellular organisms, antimicrobial peptides were established as key elements of innate immunity. Most antimicrobial peptides are thought to work by disrupting the integrity of cell membranes, causing pathogen death. As antimicrobial peptides target the membrane structure, pathogens can only acquire resistance by a fundamental change in membrane composition. Hence, the evolution of pathogen resistance has been a slow process. Therefore antimicrobial peptides are valuable alternatives to classical antibiotics against which multiple drug-resistant bacteria have emerged. For potential therapeutic applications as antibiotics a thorough knowledge of their mechanism of action is essential. Despite the increasingly comprehensive understanding of the biochemical properties of these peptides, the actual mechanism by which antimicrobial peptides lyse microbes is controversial.  相似文献   

6.
Antimicrobial peptides: properties and applicability   总被引:8,自引:0,他引:8  
All organisms need protection against microorganisms, e. g. bacteria, viruses and fungi. For many years, attention has been focused on adaptive immunity as the main antimicrobial defense system. However, the adaptive immune system, with its network of humoral and cellular responses is only found in higher animals, while innate immunity is encountered in all living creatures. The turning point in the appreciation of the innate immunity was the discovery of antimicrobial peptides in the early eighties. In general these peptides act by disrupting the structural integrity of the microbial membranes. It has become clear that membrane-active peptides and proteins play a crucial role in both the innate and the adaptive immune system as antimicrobial agents. This review is focused on the functional and structural features of the naturally occurring antimicrobial peptides, and discusses their potential as therapeutics.  相似文献   

7.
Cationic peptides with the propensity to adopt an amphipathic ??-helical conformation in a membrane-mimetic environment are synthesized in the skins of many species of anurans (frogs and toads). These peptides frequently display cytolytic activities against a range of pathogenic bacteria and fungi consistent with the idea that they play a role in the host's system of innate immunity. However, the importance of the peptides in the survival strategy of the animal is not clearly understood. It is a common misconception that antimicrobial peptides are synthesized in the skins of all anurans. In fact, the species distribution is sporadic suggesting that their production may confer some evolutionary advantage to the organism but is not necessary for survival. Although growth inhibitory activity against the chytrid fungus Batrachochytrium dendrobatidis, responsible for anuran population declines worldwide, has been demonstrated in vitro, the ability of frog skin antimicrobial peptides to protect the animal in the wild appears to be limited and there is no clear correlation between their production by a species and its resistance to fatal chytridiomycosis. The low potency of many frog skin antimicrobial peptides is consistent with the hypothesis that cutaneous symbiotic bacteria may provide the major system of defense against pathogenic microorganisms in the environment with antimicrobial peptides assuming a supplementary role in some species.  相似文献   

8.
Streptococcus mutans, a dental pathogen, secretes different kinds of lantibiotic and nonlantibiotic bacteriocins. For self-protection, a bacteriocin producer strain must possess one or more cognate immunity mechanisms. We report here the identification of one such immunity complex in S. mutans strain GS-5 that confers protection against Smb, a two-component lantibiotic. The immunity complex that we identified is an ABC transporter composed of two proteins: SmbF (the ATPase component) and SmbT (the permease component). Both of the protein-encoding genes are located within the smb locus. We show that GS-5 becomes sensitized to Smb upon deletion of smbT, which makes the ABC transporter nonfunctional. To establish the role SmbFT in providing immunity, we heterologously expressed this ABC transporter complex in four different sensitive streptococcal species and demonstrated that it can confer resistance against Smb. To explore the specificity of SmbFT in conferring resistance, we tested mutacin IV (a nonlantibiotic), nisin (a single peptide lantibiotics), and three peptide antibiotics (bacitracin, polymyxin B, and vancomycin). We found that SmbFT does not recognize these structurally different peptides. We then tested whether SmbFT can confer protection against haloduracin, another two-component lantibiotic that is structurally similar to Smb; SmbFT indeed conferred protection against haloduracin. SmbFT can also confer protection against an uncharacterized but structurally similar lantibiotic produced by Streptococcus gallolyticus. Our data suggest that SmbFT truly displays immunity function and confer protection against Smb and structurally similar lantibiotics.  相似文献   

9.
Lantibiotics are antimicrobial peptides that possess great potential as clinical therapeutic agents. These peptides exhibit many beneficial traits and in many cases the emergence of resistance is extremely rare. In contrast, producers of lantibiotics synthesize dedicated immunity proteins to provide self-protection. These proteins have very specific activities and cross-immunity is rare. However, producers of two peptide lantibiotics, such as lacticin 3147, face the unusual challenge of exposure to two active peptides (α and β). Here, in addition to establishing the contribution of LtnI and LtnFE to lacticin 3147 immunity, investigations were carried out to determine if production of a closely related lantibiotic (i.e. staphylococcin C55) or possession of LtnI/LtnFE homologues could provide protection. Here we establish that not only are staphylococcin C55 producers cross-immune to lacticin 3147, and therefore represent a natural repository of Staphylococcus aureus strains that are protected against lacticin 3147, but that functional immunity homologues are also produced by strains of Bacillus licheniformis and Enterococcus faecium . This result raises the spectre of resistance through immune mimicry, i.e. the emergence of lantibiotic-resistant strains from the environment resulting from the possession/acquisition of immunity gene homologues. These phenomena will have to be considered carefully when developing lantibiotics for clinical application.  相似文献   

10.
Cyclosporin A suppressed humoral immune response of Galleria mellonella larvae. Insects were immunized with LPS Pseudomonas aeruginosa and then injected with cyclosporin A. Immunosuppressive effects were expressed both, in larvae treated with cyclosporin A at the initial phase of immune response and at the effector phase of antibacterial immunity. Cyclosporin A moderately decreased lysozyme activity and significantly decreased antibacterial activity peptides against Escherichia coli. Immunosuppressive effects of cyclosporin A were observed after immunoblotting with antibodies anti-G. mellonella lysozyme. Tricine SDS/PAGE shown that synthesis of antibacterial peptides of larvae treated with cyclosporin A was considerably inhibited. Insects of impaired immune response by cyclosporin A action lost protective immunity to insect bacterial pathogen P. aeruginosa.  相似文献   

11.
Fungi are not classified as plants or animals. They resemble plants in many ways but do not produce chlorophyll or make their own food photosynthetically like plants. Fungi are useful for the production of beer, bread, medicine, etc. More complex than viruses or bacteria; fungi can be destructive human pathogens responsible for various diseases in humans. Most people have a strong natural immunity against fungal infection. However, fungi can cause diseases when this immunity breaks down. In the last few years, fungal infection has increased strikingly and has been accompanied by a rise in the number of deaths of cancer patients, transplant recipients, and acquired immunodeficiency syndrome (AIDS) patients owing to fungal infections. The growth rate of fungi is very slow and quite difficult to identify. A series of molecules with antifungal activity against different strains of fungi have been found in insects, which can be of great importance to tackle human diseases. Insects secrete such compounds, which can be peptides, as a part of their immune defense reactions. Active antifungal peptides developed by insects to rapidly eliminate infectious pathogens are considered a component of the defense munitions. This review focuses on naturally occurring antifungal peptides from insects and their challenges to be used as armaments against human diseases.  相似文献   

12.
We recently identified several Ags recognized by tumor-infiltrating B lymphocyte-derived Ab using SCID mice and a xenografted non-small cell lung cancer system. One of these identified Ags was mutated p53 with a point mutation resulting in the alteration of codon 158 from Arg to Leu. The aim of this study was to ascertain whether cellular immunity against mutated p53 exists in the same patient together with humoral immunity. Two different nona peptides (mutated p53(150) and p53(155) peptides), including a mutated amino acid derived from p53, were synthesized according to the binding motif of HLA class I of the established cancer cell line A904L from the patient. Mediastinal lymph node lymphocytes of the patient were stimulated weekly with the peptides. The mutated p53(155) peptide-stimulated lymphocytes showed specific cytotoxicity against both autologous EBV-transformed B cells pulsed with mutated p53(155) peptide and A904L. The mutated p53(155) peptide-specific CTL clone in an HLA-Cw*0702 restriction was established and analyzed for its TCR usage. Clonotypic PCR using CDR3-specific primers was applied to the tumor tissue containing the tumor-infiltrating lymphocytes. The specific amplification of PCR was found in the tumor tissue. These results demonstrated that not only B lymphocytes producing specific Ab against the p53 protein, but also CTL against mutated p53, expressed in autologous lung cancer cells exist in the tumor tissue. This approach may allow us to better understand the mechanisms of T and B cell immunity against the same tumor Ag in cancer patients.  相似文献   

13.

Background  

Many Gram-positive lactic acid bacteria (LAB) produce anti-bacterial peptides and small proteins called bacteriocins, which enable them to compete against other bacteria in the environment. These peptides fall structurally into three different classes, I, II, III, with class IIa being pediocin-like single entities and class IIb being two-peptide bacteriocins. Self-protective cognate immunity proteins are usually co-transcribed with these toxins. Several examples of cognates for IIa have already been solved structurally. Streptococcus pyogenes, closely related to LAB, is one of the most common human pathogens, so knowledge of how it competes against other LAB species is likely to prove invaluable.  相似文献   

14.
绵羊生殖道抗菌肽   总被引:2,自引:0,他引:2  
以屠宰场收集的新鲜、健康、雌性绵羊生殖器官为原材料.采用乙酸浸提、透析、Sephadex G-50凝胶过滤层析和反相高效液相色谱(RP-HPLC)等方法分离纯化绵羊生殖道抗菌肽.以G+、G-和真菌为抗菌活性检测指示菌株,利用薄层琼脂糖孔穴扩散法、微量肉汤稀释法进行抗菌活性检测.对分离纯化所得纯品进行分子质量质谱测定、纯度鉴定、N端测序,并对其性质进行研究.结果表明:分离纯化所得两个绵羊生殖道抗菌肽分子质量分别为4820.47 u和4012.5 u,N端部分氨基 酸序列分别为AYVLDEPKP和YDSGA.对G+细菌(S. aureus ATCC2592、Streptococcu ATCC55121)、G-细菌(E. coli ATCC25922)、真菌(C. albicans ATCC2002)均具有良好的抑菌活性.对家兔红细胞无溶血活性,对人血液凝固无影响.目前未见有从绵羊生殖道分离纯化得到抗菌肽的报道,并且这一研究结果进一步证实抗菌肽在多种动物生殖道天然免疫防御方面起着重要作用.  相似文献   

15.
Herpes simplex virus (HSV) envelope glycoproteins are the prime targets of adaptive antiviral immunity. Previous investigation identified a protective, neutralizing, glycoprotein B1 (gB-1)-reactive monoclonal antibody (MAb B6) and localized the linear epitope recognized by the MAb to residue 84 of gB-1. Three overlapping peptides (two 20-mers and one 18-mer), together spanning amino acids 63 to 110 of the wild-type sequence of gB-1, were synthesized and analyzed for their ability to stimulate immunity which cross-reacts with HSV-1. All stimulated some level of response. Two peptides, the gB 18-mer and 20.1-mer, were recognized by MAb B6 and HSV-immune antibody but were unable to stimulate virus-neutralizing antibody or serum able to protect against zosteriform spread in vivo. The 20.2-mer peptide, however, which was not recognized by MAb B6 or HSV-generated immune antibody, stimulated the production of neutralizing antibody and serum able to protect against zosteriform spread. Immunization with all of the peptides was able to enhance viral clearance of a low dose of HSV-1 in an ear challenge model and induce antibody reactive in antibody-dependent complement-mediated lysis of HSV-1-infected cells in vitro. These results are the first report of HSV immunity induced by peptides corresponding to gB and indicate that the best immunogen, in terms of stimulating neutralizing antiserum able to protect in vivo against HSV-1, was a peptide not recognized by HSV-immune mechanisms or by the MAb used to localize it.  相似文献   

16.
17.
Lack of a universal vaccine against all serotypes of influenza A viruses and recent progress on T cell-related vaccines against influenza A virus illuminate the important role of human leukocyte antigen (HLA)-restricted cytotoxic T lymphocytes (CTLs) in anti-influenza virus immunity. However, the diverse HLA alleles among humans complicate virus-specific cellular immunity research, and elucidation of cross-HLA allele T cell responses to influenza virus specificity requires further detailed work. An ideal CTL epitope-based vaccine would cover a broad spectrum of epitope antigens presented by most, if not all, of the HLAs. Here, we evaluated the 2009 pandemic influenza A (H1N1) virus-specific T cell responses among the HLA-A24+ population using a rationally designed peptide pool during the 2009 pandemic. Unexpectedly, cross-HLA allele T cell responses against the influenza A virus peptides were detected among both HLA-A11+ and HLA-A24+ donors. Furthermore, we found cross-responses in the entire HLA-A3 supertype population (including HLA-A11, -A31, -A33, and -A30). The cross-allele antigenic peptides within the peptide pool were identified and characterized, and the crystal structures of the major histocompatibility complex (MHC)-peptide complexes were determined. The subsequent HLA-A24-defined cross-allele peptides recognized by the HLA-A11+ population were shown to mildly bind to the HLA-A*1101 molecule. Together with the structural models, these results partially explain the cross-allele responses. Our findings elucidate the promiscuity of the cross-allele T cell responses against influenza A viruses and are beneficial for the development of a T cell epitope-based vaccine applied in a broader population.  相似文献   

18.
19.
Trichinellosis is one of the most important food-borne parasitic zoonoses throughout the world. Because infected pigs are the major source of human infections, and China is becoming the largest international producer of pork, the development of a transmission-blocking vaccine to prevent swine from being infected is urgently needed for trichinellosis control in China. Our previous studies have demonstrated that specific Trichinella spiralis paramyosin (Ts-Pmy) and Ts-87 antigen could provide protective immunity against T. spiralis infection in immunized mice. Certain protective epitopes of Ts-Pmy and Ts-87 antigen have been identified. To identify more Ts-Pmy protective epitopes, a new monoclonal antibody, termed 8F12, was produced against the N-terminus of Ts-Pmy. This antibody elicited significant protective immunity in mice against T. spiralis infection by passive transfer and was subsequently used to screen a random phage display peptide library to identify recognized epitopes. Seven distinct positive phage clones were identified and their displayed peptides were sequenced. Synthesized epitope peptides conjugated to keyhole limpet hemocyanin were used to immunize mice, four of which exhibited larval reduction (from 18.7% to 26.3%, respectively) in vaccinated mice in comparison to the KLH control. To increase more effective protection, the epitope 8F7 that was found to induce the highest protection in this study was combined with two other previously identified epitopes (YX1 from Ts-Pmy and M7 from Ts-87) to formulate a multi-epitope vaccine. Mice immunized with this multi-epitope vaccine experienced a 35.0% reduction in muscle larvae burden after being challenged with T. spiralis larvae. This protection is significantly higher than that induced by individual-epitope peptides and is associated with high levels of subclasses IgG and IgG1. These results showed that a multi-epitope vaccine induced better protective immunity than an individual epitope and provided a feasible approach for developing a safer and more effective vaccine against trichinellosis.  相似文献   

20.
鲎血细胞来源的抗菌肽,在鲎天然免疫中起至关重要的作用,它对外源病原菌具有抗性作用,降低了外源病原菌对鲎活体的致病性,增强了鲎的天然免疫能力。鲎源抗菌肽有一些不同于其他来源的抗菌肽的优势,对鲎源抗菌肽的研究有很重要的实用意义。概述了鲎源抗菌肽的性质、分子结构、基因序列及其制备,并对它们的潜在应用价值进行了论述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号