首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Tetrahymena thermophila cells have two types of polarized morphogenesis: divisional morphogenesis and oral reorganization (OR). The aim of this research is the analysis of cortical patterns of immunostaining during cell division and in OR using previously characterized antibodies against fenestrin and epiplasm B proteins. During cell division, the anarchic field of basal body proliferation of the new developing oral apparatus (AF) showed concomitant strong binding of the fenestrin antigen and withdrawal of a signal of the epiplasm B antigen. At a specific stage, the fenestrin antigen also appeared as a character of the anterior cortex pole, with a co-localized decrease in the detected epiplasm B antigen. The fenestrin antigen also showed a polarity of duplicating basal bodies in ciliary rows. Indirect immunofluorescence and immunogold labeling experiments were performed in the absence and presence of an inhibitor of activity of serine/threonine kinases, 6-dimethylaminopurine (6-DMAP) as an inducer of the oral replacement process. In the presence of 6-DMAP, one class of cells started OR, and some others were trapped and affected in cell division. Both types of cells showed an instability of oral structures and formed enlarged primordial oral fields. These anarchic fields (AFs) bind the fenestrin antigen, with disappearance of epiplasmic antigen staining. Only one protein (about 64 kDa) is detected in western blots by the anti-fenestrin antibody and it accumulated in 6-DMAP-treated cells that are involved in uncompleted morphogenetic activity. At a defined stage of oral development, both during cell division and in OR, the fenestrin antigen served as a marker of polarity of the cell of the anterior pole character.  相似文献   

2.
The tight coupling between cell cycle progression and morphogenetic development in the unicellular ciliates presents a unique model system for examination of the roles of Cdks in developmental processes. We here describe the isolation and characterization of the first cyclin-dependent kinase (Cdk) homologue, TtCdk1, from Tetrahymena thermophila. TtCdk1 corresponds to the larger of the two polypeptides recognized by anti-PSTAIRE antibody in a whole cell lysate, which differ from each other in their affinity for yeast p13(suc1) protein. In contrast to the constant protein expression levels of typical eukaryotic Cdks, the TtCdk1 protein level fluctuates periodically over the vegetative cell cycle, reaching a maximum at the end of the cell cycle, correlating with its histone H1 kinase activity. Its association with the membrane-skeletal domains that surround mature, but not nascent, basal bodies in the cell cortex suggests that TtCdk1 plays a role in the regulation of cortical morphogenesis in T. thermophila. A partial TtCDK1 knockout cell line constructed through somatic biolistic transformation resulted in a reduction of the regularity of the rows of basal bodies plus an additional effect on chromatin condensation in both macro- and micronuclei. Unlike the situations in higher eukaryotic cells, no apparent effect on basal body duplication was found upon disruption of the TtCDK1 gene.  相似文献   

3.
Ultrastructural observations of the cortically-located mitochondria of Tetrahymena thermophila revealed associations not only between the mitochondria and certain of the cortical microtubule bands, but also between the mitochondria and the epiplasm of the cortex. Most of the distal mitochondrial surface is close and parallel to the epiplasm; favorable views show bridge-like structures spanning the 20–10 nm gap between the mitochondrion and the epiplasm. Previous studies have shown that the placement of mitochondria in the cortex appears to be determined by certain of the cortical microtubule bands. This study, however, shows that mitochondrion-microtubule interactions account for only a small proportion of the total mitochondrial area associated with the cortex; the rest is accounted for by the epiplasm. A possible analogue of the spectrin layer of erythrocyte membranes, the epiplasm may be important in helping to arrange the intricately organized components of the ciliate cortex. Its involvement in apparently helping to “moor” mitochondria to their cortical sites is the first suggestion of any role in cell patterning played by the epiplasm.  相似文献   

4.
Ran是细胞内的一种具有GTP酶活性的功能蛋白,可以调节染色体稳定性、细胞核组建以及核质运输等多种细胞进程.Ran结合蛋白1(Ran-binding protein 1, Rbp1p )是Ran的必要调控因子,促进Ran-GTP水解为Ran-GDP.本研究从嗜热四膜虫大核基因组中鉴定出1个保守的Ran结合蛋白基因RBP1(TTHERM_00158040, http://www.ciliate.org).实时荧光定量PCR表明,RBP1在四膜虫营养生长和有性生殖过程中都有表达,且在有性生殖过程中表达水平提高.免疫荧光定位表明,在营养 生长期Rbp1p定位于细胞质中.过表达RBP1或敲减RBP1后,细胞生长速率下降,大核的无丝分裂异常,细胞分裂末期产生了无大核的异常细胞,同时过表达RBP1导致了多小核的产生.结果表明,Rbp1p影响四膜虫细胞核的分裂进程,它的正常表达对细胞增殖过程起到重要的调节作用.  相似文献   

5.
Germinal-vesicle-breakdown (GVBD) was induced if a 132,000-g supernatant of Tetrahymena thermophila homogenates was injected into Xenopus oocytes. Using this induction of GVBD as a bioassay system, a GVBD-inducing substance was purified from the Tetrahymena by ultra-filtration, liquid chromatography, and electroelution from a band on native-PAGE gel. Proteins eluted from the single band on the native-PAGE gel induced GVBD in the absence of oocyte protein synthesis. This band resolved into two bands on SDS-PAGE: 60 and 112 kDa. The 60 kDa protein was the active fraction inducing GVBD. Immunoprecipitation of the 60 kDa protein prevented the GVBD-inducing activity, supporting the conclusion that the 60 kDa protein is the GVBD-inducing substance. An immunoblot with anti-60 kDa monoclonal antibody and PSTAIR antibody showed that p13suc1-beads could remove cdc2 homologues from T. thermophila supernatant but could not remove the GVBD-inducing activity. The 60-kDa protein appeared at the same time as micronuclear division and disappeared at the beginning of the macronuclear division during synchronous cell division. The cyclic appearance of the 60-kDa protein in the T. thermophila cell cycle suggests that this protein has a cell cycle function.  相似文献   

6.
ABSTRACT. Twelve monoclonal antibodies were raised that are specific for the membrane skeleton of Tetrahymena . Five were directed against T. pyrifomis and seven were directed against T. thermophila . Some cross-reactivity between species was found. Each monoclonal antibody recognized one of the three major components of epiplasm, i.e. the bands A, B, and C identified in electrophoretic separations of epiplasmic proteins. It was found, using these antibodies, that the epiplasmic proteins A, B, and C have overlapping but independent distributions within the cell.  相似文献   

7.
ABSTRACT. We have used the anti-phosphoprotein antibody MPM-2 to examine changes in phosphorytation of cortical proteins during cilia regeneration in Tetrahymena thermophila . Although numerous cortical proteins are phosphorylated in both nondeciliated and deciliated cells, deciliation induces a dramatic increase in the phosphorylation of a 90-kDa cortical protein. The 90-kDa protein remained phosphorylated during cilia regeneration and then gradually became dephosphorylated. The 90-kDa protein was phosphorylated and dephosphorylated normally in Tetrahymena mutants that assemble short cilia, suggesting that achievement of full length is not the signal that triggers dephosphorylation of the 90-kDa protein. When initiation of cilia assembly is blocked, the 90-kDa protein becomes phosphorylated and remains phosphorylated for an extended period of time, suggesting that initiation of cilia elongation triggers eventual dephosphorylation of the 90-kDa protein, regardless of how long the cilia actually become.  相似文献   

8.
In many organisms, there are multiple isoforms of cytoplasmic dynein heavy chains, and division of labor among the isoforms would provide a mechanism to regulate dynein function. The targeted disruption of somatic genes in Tetrahymena thermophila presents the opportunity to determine the contributions of individual dynein isoforms in a single cell that expresses multiple dynein heavy chain genes. Substantial portions of two Tetrahymena cytoplasmic dynein heavy chain genes were cloned, and their motor domains were sequenced. Tetrahymena DYH1 encodes the ubiquitous cytoplasmic dynein Dyh1, and DYH2 encodes a second cytoplasmic dynein isoform, Dyh2. The disruption of DYH1, but not DYH2, resulted in cells with two detectable defects: 1) phagocytic activity was inhibited, and 2) the cells failed to distribute their chromosomes correctly during micronuclear mitosis. In contrast, the disruption of DYH2 resulted in a loss of regulation of cell size and cell shape and in the apparent inability of the cells to repair their cortical cytoskeletons. We conclude that the two dyneins perform separate tasks in Tetrahymena.  相似文献   

9.
为获得能够用于构建嗜热四膜虫蛋白定位的载体,该研究将GFP基因与镉(Cd2+)诱导的四膜虫金属硫蛋白基因(MTTl)启动子序列和终止子序列融合,获得表达载体pXS75-GFP。通过同源重组和抗性筛选,pXS75-GFP载体携带的目的基因整合入四膜虫MTTl位点,在cd2+诱导下实现GFP融合蛋白的可控表达。将α-tubulin基因ATUl克隆JN-pXS75-GFP中,重组质粒pXS75-GFP-ATUl通过基因枪转化入四膜虫细胞,在巴龙霉素筛选下获得稳定的α-tubulin-GFP过表达细胞株。激光共聚焦显微镜观察α-tubulin.GFP的定位,结果显示,α-tubulin—GFP融合蛋白在四膜虫细胞中表达并分布于皮层上,表明pXS75.GFP载体可用于嗜热四膜虫功能蛋白的定位分析。  相似文献   

10.
Microtubular basal bodies and epiplasm (membrane skeleton) are the main components of the cortical skeleton of Tetrahymena. The aim of this report was to study functional interactions of basal bodies and epiplasm during the cell cycle. The cortex of Tetrahymena cells was stained with anti-epiplasm antibody. This staining produced a bright epiplasmic layer with a dark pattern of unstained microtubular structures. The fluorescence of the anti-epiplasm antibody disappeared at sites of newly formed microtubular structures, so the new basal body domains and epiplasmic layer could be followed throughout the cell cycle. Different patterns of deployment of new basal bodies were observed in early and advanced dividers. In advanced dividers the fluorescence of the epiplasmic layer diminished locally within the forming fission line where the polymerization of new basal bodies largely extincted. In wild type Tetrahymena, the completion of the micronuclear metaphase/anaphase transition was associated with a transition from the pattern of new basal body deployment and epiplasm staining of the early divider to the pattern of the advanced dividers. The signal for the fission line formation in Tetrahymena (absent in cdaA1 Tetrahymena mutationally arrested in cytokinesis) brings about 1) transition of patterns of deployment of basal bodies and epiplasmic layer on both sides of the fission line; and 2) coordination of cortical divisional morphogenesis with the micronuclear mitotic cycle.  相似文献   

11.
The ciliated protist, Tetrahymena thermophila, possesses one oral apparatus for phagocytosis, one of the most important cell functions, in the anterior cell cortex. The apparatus comprises four membrane structures which consist of ciliated and unciliated basal bodies, a cytostome where food is collected by oral ciliary motility, and a cytopharynx where food vacuoles are formed. The food vacuole is thought to be transported into the cytoplasm by a deep fiber which connects with the oral apparatus. Although a large number of studies have been done on the structure of the oral apparatus, the molecular mechanisms of phagocytosis in Tetrahymena thermophila are not well understood. In this study, using indirect immunofluorescence, we demonstrated that the deep fiber consisted of actin, CaM, and Ca2+/CaM-binding proteins, p85 and EF-1alpha, which are closely involved in cytokinesis. Moreover, we showed that CaM, p85, and EF-1alpha are colocalized in the cytostome and the cytopharynx of the oral apparatus. Next, we examined whether Ca2+/CaM signal regulates Tetrahymena thermophila phagocytosis, using Ca2+/CaM inhibitors chlorpromazine, trifluoperazine, N-(6-aminohexyl)-1-naphthalenesulfonamide, and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide HCI. In Tetrahymena, it is known that Ca2+/CaM signal is closely involved in ciliary motility and cytokinesis. The results showed that one of the inhibitors, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide HCl, inhibited the food vacuole formation rather than the ciliary motility, while the other three inhibitors effectively prevented the ciliary motility. Considering the colocalization of CaM, p85, and EF-1alpha to the cytopharynx, these results suggest that the Ca2+/CaM signal plays a pivotal role in Tetrahymena thermophila food vacuole formation.  相似文献   

12.
以上海四膜虫S1和嗜热四膜虫BF株和BT株为材料,结合显微观察,采用生化抽提、SDS-PAGE电泳、扫描及数据统计,分析与测定了三个不同株四膜虫对数生长期皮层骨架蛋白组分与含量,结果显示嗜热四膜虫的BF与BT株差异较小,两者与上海四膜虫S1株差异则较大,S1株细胞中有92KD、72KD、66KD、32KD、27KD,而BF和BT株细胞中没有,估计这些蛋白的不同与种间亲缘关系及株系、培养条件等有着密不可分的联系.    相似文献   

13.
四膜虫细胞的核骨架及类中间纤维   总被引:3,自引:0,他引:3  
蔡树涛  焦仁杰 《动物学报》1995,41(2):212-217
采用非树脂包埋去包埋剂超薄切片结合选择性生抽提方法显示,原生动物四膜虫细胞大核具有发达的核骨架纤维网络,核周是一层完整的核纤层结构,在四膜虫细胞小核中,亦存在核骨架和核纤层。四膜虫细胞皮层中存在水下溶性纤维网架,其中含有类中间纤维蛋白组分,49KD蛋白。  相似文献   

14.
Tetrahymena thermophila is a ciliated protozoan studied by investigators from a wide range of disciplines as a model system for a variety of specialized eukaryotic cell functions. The proteinaceous secretory products of T thermophila have been isolated and characterized and in this study we identify the major secretory product, a 34,000 Mr polypeptide, and use an antiserum prepared against this secretory protein to (1) demonstrate that this 34,000 Mr polypeptide is truly a secreted protein in Tetrahymena and (2) monitor the synthesis and transport of this protein by indirect immunofluorescence and light microscopy during mucocyst biogenesis.  相似文献   

15.
An important unsolved problem lies in the mechanisms that determine overall size, shape, and the localization of subcellular structures in eukaryotic cells. The membrane skeleton must play a central role in these processes in many cell types, and the ciliate membrane skeleton, or epiplasm, offers favorable opportunities for exploring the molecular determinants of cortical organization. Among the ciliates, Tetrahymena is well suited for the application of a wide range of molecular and cellular approaches. Progress has been made in the identification and sequencing of genes and proteins that encode epiplasmic and cortical proteins. The amino acid sequences of these proteins suggest that they define new classes of cytoskeletal proteins, distinct from the articulin and epiplasmin proteins. We will also discuss recent in vivo and in vitro studies of the regulation of assembly of these cortical proteins. This will include information regarding the down-regulation of epiplasmic proteins during cleavage, their topographic regulation in the cell cycle, and the results of in vitro assembly and binding studies of the epiplasmic C protein.  相似文献   

16.
A previously identified Tetrahymena thermophila actin gene (C. G. Cupples and R. E. Pearlman, Proc. Natl. Acad. Sci. USA 83:5160-5164, 1986), here called ACT1, was disrupted by insertion of a neo3 cassette. Cells in which all expressed copies of this gene were disrupted exhibited intermittent and extremely slow motility and severely curtailed phagocytic uptake. Transformation of these cells with inducible genetic constructs that contained a normal ACT1 gene restored motility. Use of an epitope-tagged construct permitted visualization of Act1p in the isolated axonemes of these rescued cells. In ACT1Delta mutant cells, ultrastructural abnormalities of outer doublet microtubules were present in some of the axonemes. Nonetheless, these cells were still able to assemble cilia after deciliation. The nearly paralyzed ACT1Delta cells completed cleavage furrowing normally, but the presumptive daughter cells often failed to separate from one another and later became reintegrated. Clonal analysis revealed that the cell cycle length of the ACT1Delta cells was approximately double that of wild-type controls. Clones could nonetheless be maintained for up to 15 successive fissions, suggesting that the ACT1 gene is not essential for cell viability or growth. Examination of the cell cortex with monoclonal antibodies revealed that whereas elongation of ciliary rows and formation of oral structures were normal, the ciliary rows of reintegrated daughter cells became laterally displaced and sometimes rejoined indiscriminately across the former division furrow. We conclude that Act1p is required in Tetrahymena thermophila primarily for normal ciliary motility and for phagocytosis and secondarily for the final separation of daughter cells.  相似文献   

17.
18.
19.
The ciliate Tetrahymena thermophila possesses a multitude of cytoskeletal structures whose differentiation is related to the basal bodies - the main mediators of the cortical pattern. This investigation deals with immunolocalization using light and electron microscopy of filaments labeled by the monoclonal antibody 12G9, which in other ciliates identifies filaments involved in transmission of cellular polarities and marks cell meridians with the highest morphogenetic potential. In Tetrahymena interphase cells, mAb 12G9 localizes to the sites of basal bodies and to the striated ciliary rootlets, to the apical band of filaments and to the fine fibrillar oral crescent. We followed the sequence of development of these structures during divisional morphogenesis. The labeling of the maternal oral crescent disappears in pre-metaphase cells and reappears during anaphase, concomitantly with differentiation of the new structure in the posterior daughter cell. In the posterior daughter cell, the new apical band originates as small clusters of filaments located at the base of the anterior basal bodies of the apical basal body couplets during early anaphase. The differentiation of the band is completed in the final stages of cytokinesis and in the young post-dividing cell. The maternal band is reorganized earlier, simultaneously with the oral structure. The mAb 12G9 identifies two transient structures present only in dividing cells. One is a medial structure demarcating the two daughter cells during metaphase and anaphase, and defining the new anterior border of the posterior daughter cell. The other is a post-oral meridional filament marking the stomatogenic meridian in postmetaphase cells. Comparative analysis of immunolocalization of transient filaments labeled with mAb12G9 in Tetrahymena and other ciliates indicates that this antibody identifies a protein bound to filamentous structures, which might play a role in relying polarities of cortical domains and could be a part of a mechanism which governs the positioning of cortical organelles in ciliates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号