首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arscott LD  Veine DM  Williams CH 《Biochemistry》2000,39(16):4711-4721
Glutathione reductase catalyzes the reduction of glutathione disulfide by NADPH. The FAD of the reductase is reduced by NADPH, and reducing equivalents are passed to a redox-active disulfide to complete the first half-reaction. The nascent dithiol of two-electron reduced enzyme (EH(2)) interchanges with glutathione disulfide forming two molecules of glutathione in the second half-reaction. It has long been assumed that a mixed disulfide (MDS) between one of the nascent thiols and glutathione is an intermediate in this reaction. In addition to the nascent dithiol composed of Cys(45) and Cys(50), the enzyme contains an acid catalyst, His(456), having a pK(a) of 9.2 that protonates the first glutathione (residue numbers refer to the yeast enzyme sequence). Reduction of yeast glutathione reductase by glutathione and reoxidation of EH(2) by glutathione disulfide indicate that the mixed disulfide accumulates, in particular, at low pH. The reaction of glutathione disulfide with EH(2) is stoichiometric in the absence of an excess of glutathione. The equilibrium position among E(ox), MDS, and EH(2) is determined by the glutathione concentration and is not markedly influenced by pH between 6.2 and 8.5. The mixed disulfide is the principal product in the reaction of glutathione with oxidized enzyme (E(ox)) at pH 6. 2. Its spectrum can be distinguished from that of EH(2) by a slightly lower thiolate (Cys(50))-FAD charge-transfer absorbance at 540 nm. The high GSH/GSSG ratio in the cytoplasm dictates that the mixed disulfide will be the major enzyme species.  相似文献   

2.
The role of cellular glutathione in the prevention of toxicity due to the anti-cancer drug cisplatin (cis-diamminedichloroplatinum) was explored in mice treated with buthionine sulfoximine (BSO), a selective inhibitor of gamma-glutamylcysteine synthetase (and therefore of glutathione synthesis), and with glutathione and glutathione monoisopropyl ester. Pretreatment of mice with BSO enhanced the lethal toxicity of cisplatin by about twofold. Administration of glutathione ester (dose, 2.5-7.5 mmol/kg) protected against lethal cisplatin toxicity; glutathione was also effective, but much less so. Glutathione ester, in contrast to glutathione, is effectively transported into cells and split to glutathione intracellularly. The previous findings that administered glutathione does not protect against lethal toxicity due to cadmium ions and mercuric ions, whereas glutathione ester does, suggest that intracellular glutathione is required for protection against these heavy metal ions. That administration of glutathione has a protective effect on cisplatin toxicity suggests that the toxic effects of cisplatin may be exerted both intracellularly and extracellularly, and that extracellular glutathione (or its degradation products) may form a complex with cisplatin extracellularly. The finding that glutathione ester is more effective than glutathione in protecting against the toxicity of cisplatin suggests that use of glutathione ester may be therapeutically advantageous.  相似文献   

3.
The tripeptide glutathione is a major antioxidant and redox buffer with multiple roles in plant metabolism. Glutathione biosynthesis is restricted to the cytosol and the plastids and the product is distributed to the various organelles by unknown mechanisms. In the present study immunogold cytochemistry based on anti-glutathione antisera and transmission electron microscopy was used to determine the relative concentration of glutathione in different organelles of Arabidopsis thaliana leaf and root cells. Glutathione-specific labelling was detected in all cellular compartments except the apoplast and the vacuole. The highest glutathione content was surprisingly not found in plastids, which have been described before as a major site of glutathione accumulation, but in mitochondria which lack the capacity for glutathione biosynthesis. Mitochondria of both leaf and root cells contained 7-fold and 4-fold, respectively, higher glutathione levels than plastids while the density of glutathione labelling in the cytosol, nuclei, and peroxisomes was intermediate. The accuracy of the glutathione labelling is supported by two observations. First, pre-adsorption of the anti-glutathione antisera with glutathione reduced the density of the gold particles in all organelles to background levels. Second, the overall glutathione-labelling density was reduced by about 90% in leaves of the glutathione-deficient Arabidopsis mutant pad2-1 and increased in transgenic plants with enhanced glutathione accumulation. Hence, there was a strong correlation between immunocytochemical and biochemical data of glutathione accumulation. Interestingly, the glutathione labelling of mitochondria in pad2-1 remained very similar to wild-type plants thus suggesting that the high mitochondrial glutathione content is maintained in a situation of permanent glutathione-deficiency at the expense of other glutathione pools. High and constant levels of glutathione in mitochondria appear to be particularly important in cell survival strategies and it is predicted that mitochondria must have highly competitive mitochondrial glutathione uptake systems. The present results underline the suggestion that subcellular glutathione concentrations are not controlled by a global mechanism but are controlled on an individual basis and it is therefore not possible to conclude from global biochemical glutathione analysis on the status of the various organellar pools.  相似文献   

4.
By isolation of a mixed disulfide product of glutathione and cysteine, glutathione peroxidase was shown to be highly specific for only one donor substrate. Using the coupled assay of NADPH and yeast glutatione reductase, which is highly specific for flutathione disulfide, it was shown that the apparent inhibition of glutathione peroxidase by mercaptoethanol can be described kinetically and that it is competitive with glutathione. Also, when limiting amounts of hydroperoxide were present in the reaction mixture with mercaptoethanol or cysteine, the total amount of glutathione disulfide produced decreased as compared with that in a reaction mixture without mercaptoethanol or cysteine. This finding is consistent with enzymatic formation of mixed disulfides. Data presented suggest that the selenium in glutathione peroxidase was oxidized to a seleninic acid in the absence of glutathione. These results can be explained by a mechanism for glutathione peroxidase wherein the selenium atom is the only atom in the enzyme that undergoes oxidation reduction.  相似文献   

5.
A simple electrophoresis system for multiple agarose slab gels   总被引:2,自引:0,他引:2  
  相似文献   

6.
Effect of selenium deficiency on the disposition of plasma glutathione   总被引:1,自引:0,他引:1  
Selenium deficiency causes increased hepatic synthesis and release of GSH into the blood. The purpose of this study was to examine the effect of selenium deficiency on the disposition of plasma glutathione. Plasma glutathione concentration was 40 +/- 3.4 nmol GSH equivalents/ml in selenium-deficient rats and 17 +/- 5.4 nmol GSH equivalents/ml in control rats. The half-life and systemic clearance of plasma glutathione were found to be the same in selenium-deficient and control rats (t1/2 = 3.4 +/- 0.7 min). Because selenium-deficient plasma glutathione concentration was twice that of control, the determination that selenium deficiency did not affect glutathione plasma systemic clearance indicated that the flux of glutathione through the plasma was doubled by selenium deficiency. It has been proposed that the kidney is responsible for the removal of a major fraction of plasma glutathione. In these studies, renal clearance accounted for 24% of plasma systemic glutathione clearance in controls and 44% in selenium-deficient rats. This indicates that a significant amount of glutathione is metabolized at extrarenal sites, especially in control animals. More than half of the increased plasma glutathione produced in selenium deficiency was removed by the kidney. Thus, selenium deficiency results in a doubling of cysteine transport in the form of glutathione from the liver to the periphery as well as a doubling of plasma glutathione concentration.  相似文献   

7.
H Chung  J Fried  J Jarabak 《Prostaglandins》1987,33(3):391-402
Oxidation of glutathione disulfide by a mixture of performic and hydrochloric acids leads to the formation of several compounds that are stronger inhibitors than glutathione disulfide of the placental enzyme that possess both NADP-linked 15-hydroxyprostaglandin dehydrogenase and 9-ketoprostaglandin reductase activities. The only one of these inhibitors that has been identified is glutathione thiosulfonate. The others are unstable and may include glutathione sulfinyl sulfone and glutathione disulfone. Since the enzyme appears to have a glutathione binding site in close proximity to its active site and glutathione thiosulfonate reacts with free sulfhydryl groups, the effects of this thiosulfonate on the enzyme were examined in more detail. Glutathione thiosulfonate and methyl methanethiosulfonate cause a time-dependent irreversible inhibition of both the hydroxyprostaglandin dehydrogenase and the ketoprostaglandin reductase activities, presumably by reacting with a free sulfhydryl at the prostaglandin binding site. Experiments with PGA1-glutathione show that this sulfhydryl is not necessary for the catalytic activity of the enzyme as long as the substrate can bind at the glutathione site.  相似文献   

8.
Reduced and oxidized glutathione levels in red blood cells and plasma from humans were determined after oral vitamin E treatment. The experiments confirmed that vitamin E enhances reduced glutathione levels in red blood cells. Moreover, vitamin E supplement resulted in a significant reduction of the plasma oxidized glutathione content. Thus, it seems that the effect of vitamin E on the reduced glutathione content is not exerted via direct modulation of the glutathione-synthesizing enzymes, but rather by a more general mechanism of preserving reduced glutathione consumption by reducing the burden of the glutathione system.  相似文献   

9.
In the 5-lipoxygenase pathway for arachidonic acid metabolism, reduction of 5-hydroperoxyeicosatetraenoic acid (5-HPETE) to 5-hydroxyeicosatetraenoic acid (5-HETE) is catalyzed by an activity different from glutathione peroxidase. Glutathione peroxidase here refers to the nonspecific peroxidase that catalyzes the reduction by glutathione of cumene hydroperoxide and a variety of other peroxides including 5-HPETE. This enzyme is inhibited by mercaptosuccinic acid. Preparations of the 15,000xg supernatant from lysed rat peritoneal polymorphonuclear leukocytes were the source of these activities. Thus, when glutathione peroxidase is inhibited to less than 0.5% of its normal activity by mercaptosuccinic acid, 5-HPETE is reduced as efficiently as in the absence of mercaptosuccinate. In lysate preparations from which endogenous glutathione has been removed, reduction of 5-HPETE is still observed but only in the presence of added reducing agents, e.g., 0.2 mM glutathione. When endogenous glutathione peroxidase is not inhibited, reduction of 5-HPETE occurs at a rate greater than 15-fold faster than can be accounted for by this activity. We conclude, therefore, that the glutathione peroxidase in rat PMNs is not kinetically competent to account for reduction of 5-HPETE. There is a distinct peroxidase that catalyzes this reaction. The 5-HPETE peroxidase can utilize glutathione as reducing agent but is not inhibited by mercaptosuccinate, and additional results indicate that it is inactivated during turnover.  相似文献   

10.
Ren X  Liu J  Luo G  Zhang Y  Luo Y  Yan G  Shen J 《Bioconjugate chemistry》2000,11(5):682-687
A novel artificial glutathione peroxidase mimic consisting of a selenocystine-di-beta-cyclodextrin conjugate (selenium-bridged-6, 6'-amino-selenocystine-6,6'-deoxy-di-beta-cyclodextrin), in which selenocystine is bound to the primary side of beta-cyclodextrin through the two amino nitrogen groups of selenocystine, was synthesized. The glutathione peroxidase activities of the mimic-catalyzed reduction of H(2)O(2), tert-butylhydroperoxide, and cumene hydroperoxide by glutathione are 4.1, 2.11, and 5.82 units/micromol, respectively. The first activity was 82 and 4.2 times as much as that of selenocysteine and ebselen, respectively. Studies on the effect of substrate binding on the glutathione peroxidase activity suggest that it is important to consider substrate binding in designing glutathione peroxidase mimics. The detailed steady-state kinetic studies showed that the mimic-catalyzed reduction of H(2)O(2) by glutathione followed a ping-pong mechanism, which was similar to that of the native glutathione peroxidase.  相似文献   

11.
Glutathione protects isolated rat liver nuclei against lipid peroxidation by inducing a lag period prior to the onset of peroxidation. This GSH-dependent protection was abolished by exposing isolated nuclei to the glutathione S-transferase inhibitor S-octylglutathione. In incubations containing 0.2 mM S-octylglutathione, the GSH-induced lag period was reduced from 30 to 5 min. S-Octylglutathione (0.2 mM) also completely inhibited nuclear glutathione S-transferase activity and reduced glutathione peroxidase activity by 85%. About 70% of the glutathione S-transferase activity associated with isolated nuclei was solubilized with 0.3% Triton X-100. This solubilized glutathione S-transferase activity was partially purified by utilizing a S-hexylglutathione affinity column. The partially purified nuclear glutathione S-transferase exhibited glutathione peroxidase activity towards lipid hydroperoxides in solution. The data from the present study indicate that a glutathione S-transferase associated with the nucleus may contribute to glutathione-dependent protection of isolated nuclei against lipid peroxidation. Evidence was obtained which indicates that this enzyme is distinct from the microsomal glutathione S-transferase.  相似文献   

12.
The oxidation of glutathione to a thiyl radical by prostaglandin H synthase was investigated. Ram seminal vesicle microsomes, in the presence of arachidonic acid, oxidized glutathione to its thiyl-free radical metabolite, which was detected by ESR using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide. Oxidation of glutathione was dependent on arachidonic acid and inhibited by indomethacin. Peroxides also supported oxidation, indicating that the oxidation was by prostaglandin hydroperoxidase. Glutathione served as a reducingcofactor for the reduction of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid to 15-hydroxy-5,8,11,13-eicosatetraenoic acid at 1.5-2 times the nonenzymatic rate. Although purified prostaglandin H synthase in the presence of either H2O2 or 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid oxidized glutathione to a thiyl radical, arachidonic acid did not support glutathione oxidation. Glutathione also inhibited cyclooxygenase activity as determined by measuring oxygen incorporation into arachidonic acid. Reverse-phase high pressure liquid chromatography analysis of the arachidonic acid metabolites indicated that the presence of glutathione in an incubation altered the metabolite profile. In the absence of the cofactor, the metabolites were PGD2, PGE2, and 15-hydroperoxy-PGE2 (where PG indicates prostaglandin), while in the presence of glutathione, the only metabolite was PGE2. These results indicate that glutathione not only serves as a cofactor for prostaglandin E isomerase but is also a reducing cofactor for prostaglandin H hydroperoxidase. Assuming that glutathione thiyl-free radical observed in the trapping experiments is involved in the enzymatic reduction of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid to 15-hydroxy-5,8,11,13-eicosatetraenoic acid, then a 1-electron donation from glutathione to prostaglandin hydroperoxidase is indicated.  相似文献   

13.
Methylene blue stimulates the oxidation of glutathione in red blood cells in vitro and in vivo. This oxidation has been attributed to hydrogen peroxide that is generated from the autooxidation of leucomethylene blue arising from the reduction of methylene blue by NADPH. In this report we present evidence that methylene blue directly oxidizes glutathione and that oxidation of glutathione by hydrogen peroxide is a secondary reaction. Moreover, superoxide dismutase has no effect on the oxidation. Under aerobic conditions, methylene blue oxidizes glutathione 30 times faster than the spontaneous autooxidation of glutathione. Under anaerobic conditions the stoichiometry of the reaction of methylene blue with glutathione supports a direct chemical reaction. The reaction rates between glutathione and methylene blue suggest a second order reaction over the conditions tested. That neither oxygen radical formation nor significant amounts of hydrogen peroxide are produced by methylene blue, even in the presence of added glucose, is further confirmed by the failure to detect significant amounts of lipid peroxidation products, or hemolysis, in red blood cells incubated with the dye.  相似文献   

14.
Gamma-glutamyl-glutathione. Natural occurrence and enzymology   总被引:2,自引:0,他引:2  
The natural occurrence of gamma-glutamyl-glutathione (gamma-glutamyl-gamma-glutamylcysteinylglycine) in bile was established by analytical and chromatographic studies on the isolated and chemically synthesized materials. Evidence that it is formed in kidney was obtained. The origin of gamma-glutamyl-glutathione was explored through studies on the interaction of glutathione with gamma-glutamyl transpeptidase. When purified gamma-glutamyl transpeptidase was incubated with various concentrations (4 microM-50 mM) of glutathione, the initial rates of formation of gamma-glutamyl-glutathione were substantial at all concentrations of glutathione studied and were greater than the rates of formation of glutamate at physiological levels of glutathione (1-10 mM). The findings indicate that gamma-glutamyl transpeptidase catalyzes transpeptidation in vivo. That gamma-glutamyl-glutathione is formed in vivo and that it is a significant product of the reaction between glutathione and gamma-glutamyl transpeptidase under physiological conditions suggest that this polyanionic tetrapeptide may have a physiological role. gamma-Glutamyl-glutathione is not a substrate of glutathione reductase or of glutathione S-transferase, but it is a substrate of gamma-glutamyl-cyclotransferase. That gamma-glutamyl-glutathione has an additional negative charge as compared to glutathione suggests that it may be more effective than glutathione in forming complexes with certain metal ions and other cations.  相似文献   

15.
Glutathione peroxidase activities from rat liver   总被引:1,自引:0,他引:1  
There are two enzymes in rat liver with glutathione peroxidase activity when cumene hydroperoxide is used as substrate. One is the selenium-requiring glutathione peroxidase (glutathione:hydrogen-peroxide oxidoreductase, EC 1.11.1.9) and the other appears to be independent of dietary selenium. Activities of the two enzymes vary greatly among tissues and among animals. The molecular weight of the enzyme with selenium-independent glutathione peroxidase activity was estimated by gel filtration to be 35 000, and the subunit molecular weight was estimated by dodecyl sulfate-polyacrylamide gel electrophoresis to be 17 000. Double reciprocal plots of enzyme activity as a function of substrate concentration produced intersecting lines which are suggestive of a sequential reaction mechanism. The Km for glutathione was 0.20 mM and the Km for cumene hydroperoxide was 0.57 mM. The enzyme was inhibited by N-ethylmaleimide, but not by iodoacetic acid. Inhibition by cyanide was competitive with respect to glutathione and the Ki for cyanide was 0.95 mM. This selenium-independent glutathione peroxidase also catalyzes the conjugation of glutathione to 1-chloro-2,4-dinitrobenzene. Along with other similarities to glutathione S-transferase, this suggests that the selenium-independent glutathione peroxidase and glutathione S-transferase activities in rat liver are of the same enzyme.  相似文献   

16.
Oxidation of glutathione disulfide by a mixture of performic and hydrochloric acids leads to the formation of several compounds that are stronger inhibitors than glutathione disulfide of the placental enzyme that posses both NADP-linked 15-hydroxypyrostaglandin dehydrogenase and 9-ketoprostaglandin reductase activities. The only one of these inhibitors that has been identified is glutathione thiosulfonate. The others are unstble and may include glutathione sulfinyl sulfone and glutathione disulfone. Since the enzyme appears to have a glutathione binding site in close proximity to its active site and glutathione thiosulfonate reacts with free sulfhydryl groups, the effects of this thiosulfonate on the enzyme were examined in more detail. Glutahione thiosulfonate and methyl methanethiosulfonate cause a time-dependent irreversible inhibition of both the hydroxyprostaglandin dehydrogenase and the ketoprostaglandin reductase activities, presumably by reacting with a free sulfhydryl at the prostaglandin binding site. Experiments with PGA-glutathione show that this sulfhydryl is not necessary for the catalytic activity of the enzyme as long as the substrate can bind at the glutahione site.  相似文献   

17.
Superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities in pigmented and unpigmented liver tissues of frog and albino rat, respectively, were studied. Our results show that pigmented tissue is lacking in manganese superoxide dismutase activity and that the main enzymatic activity utilized in the cytosol by pigmented cells to reduce the hydrogen peroxide to water is represented by catalase; on the contrary, for the same reaction, the cells of albino rat liver primarily utilize the glutathione peroxidase activity. Both a low glutathione peroxidase activity and a low glutathione reductase activity were found in pigmented tissue of frog liver when compared with unpigmented tissue of rat liver. In light of our results, we also report a hypothetical interrelationship between melanin and reduced glutathione: We believe that in pigmented cells the melanin could act as a reducing physiological agent replacing the glutathione in the reduction of hydrogen peroxide. This reducing action of melanin could cause a diminished need for GSH and therefore could provoke the low glutathione peroxidase and reductase activities in pigmented tissue.  相似文献   

18.
Chicken liver fatty acid synthase is rapidly inactivated and cross-linked at pH 7.2 and 8.0 by incubation with low concentrations of common biological disulfides including glutathione disulfide, coenzyme A disulfide, and glutathione-coenzyme A-mixed disulfide. Glutathione disulfide inactivation of the enzyme is accompanied by the oxidation of a total of 4-5 enzyme thiols per monomer. Only one glutathione equivalent is incorporated per monomer as a protein-mixed disulfide, and its rate of incorporation is significantly slower than the rate of inactivation. The formation of protein-SS-protein disulfides results in significant cross-linking of enzyme subunits. The inactive enzyme is rapidly and completely reactivated, and the cross-linking is completely reversed by incubation of the enzyme with thiols (10-20 mM) including dithiothreitol, mercaptoethanol, and glutathione. In a glutathione redox buffer (GSH + GSSG), disulfide bond formation comes to equilibrium. The enzyme activity at equilibrium is dependent both on the ratio of glutathione to glutathione disulfide and on the total glutathione concentration. The equilibrium constant for the redox equilibration of fatty acid synthase in a glutathione redox buffer is 15 mM (Ered + GSSG in equilibrium Eox + 2GSH). The formation of at least one protein-protein disulfide per monomer dominates the redox properties of the enzyme while the formation of one protein-mixed disulfide with glutathione (Kmixed = 0.45) has little effect on activity. The oxidation equilibrium constant suggests that there would be no significant cycling between the reduced and the oxidized enzyme in response to likely physiological variations in the hepatic glutathione status. The possibility that changes in the concentration of cellular glutathione may act as a mechanism for metabolic control of other enzymes is discussed.  相似文献   

19.
A purification procedure, based on that previously used for rat kidney gamma-glutamyl transpeptidase, was used for the purification of glutathione oxidase (which converts glutathione to gluthathione disulfide). The two activities co-purified, the ratio of the activities remaining constant through all steps of the isolation procedure. The purified enzyme was separable into 12 isozymic species by isoelectric focusing. All 12 isozymes exhibited a constant ratio of transpeptidase to glutathione oxidase activities, strongly supporting the conclusion that conversion of glutathione to glutathione disulfide is a catalytic function of gamma-glutamyl transpeptidase. Modulation of oxidase activity by inhibitors and acceptor substrates of transpeptidase is discussed in relation to the possible glutathione binding sites involved in gamma-glutamyl transfer and oxidase activities of the enzyme.  相似文献   

20.
Ko YE  Lee IH  So HM  Kim HW  Kim YH 《Free radical research》2011,45(9):1074-1082
It has been reported that myocardial glutathione content is decreased during ischemia-reperfusion, but the mechanism of glutathione depletion has remained unclear. The present study tested whether osmotic stress is involved in the glutathione depletion during ischemia. Six hours of hypoxic acidosis with either high CO(2) tension or low HCO(3)(-) concentration, which simulates the ischemic condition, resulted in a significant decrease of glutathione content and the glutathione depletion was prevented by hyperosmolarity. High-CO(2) acidosis alone without hypoxia induced a similar degree of glutathione depletion. Intracellular pH was lowered by high-CO(2) acidosis to 6.41 ± 0.03 in 15 min. Meanwhile, the cell size gradually increased and reached ~110% in 10 min and the increased cell size was maintained for at least 30 min, which was also prevented by hyperosmolarity. Subsequent experiments observed the effects of simulated reperfusion on the glutathione content. Measured in 1 h after the hypoxic acidotic reperfusion, the glutathione content was further decreased compared to the level at the end of ischemia, which was not suppressed by increasing the osmolarity of reperfusion solution. The degree of glutathione depletion during hypoxic reperfusion with normal pH was similar to the hypoxic acidotic reperfusion group. On the other hand, normoxic reperfusion was not accompanied by further depletion of glutathione content. Based on these results, it was concluded that ischemia induces the glutathione depletion via osmotic stress, which results from intracellular acidification, and the glutathione content is further decreased during reperfusion through a mechanism other than oxygen toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号