首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Culturing of microalgae as an alternative feedstock for biofuel production has received a lot of attention in recent years due to their fast growth rate and ability to accumulate high quantity of lipid and carbohydrate inside their cells for biodiesel and bioethanol production, respectively. In addition, this superior feedstock offers several environmental benefits, such as effective land utilization, CO(2) sequestration, self-purification if coupled with wastewater treatment and does not trigger food versus fuel feud. Despite having all these 'theoretical' advantages, review on problems and issues related to energy balance in microalgae biofuel are not clearly addressed until now. Base on the maturity of current technology, the true potential of microalgae biofuel towards energy security and its feasibility for commercialization are still questionable. Thus, this review is aimed to depict the practical problems that are facing the microalgae biofuel industry, covering upstream to downstream activities by accessing the latest research reports and critical data analysis. Apart from that, several interlink solutions to the problems will be suggested with the purpose to bring current microalgae biofuel research into a new dimension and consequently, to revolutionize the entire microalgae biofuel industry towards long-term sustainability.  相似文献   

2.
Despite the great interest in microalgae as a potential source of biofuel to substitute for fossil fuels, little information is available on the effects of bacterial symbionts in mass algal cultivation systems. The bacterial communities associated with microalgae are a crucial factor in the process of microalgal biomass and lipid production and may stimulate or inhibit growth of biofuel-producing microalgae. In addition, we discuss here the potential use of bacteria to harvest biofuel-producing microalgae. We propose that aggregation of microalgae by bacteria to achieve >90% reductions in volume followed by centrifugation could be an economic approach for harvesting of biofuel-producing microalgae. Our aims in this review are to promote understanding of the effects of bacterial communities on microalgae and draw attention to the importance of this topic in the microalgal biofuel field.  相似文献   

3.
Microalgae are being considered as a promising raw material for biofuel production. However, rapid, efficient, and economic technologies for harvesting microalgae are essential for successful applications. In this study, the high–pH-induced flocculation method was applied to harvest marine Chlorella sp. strains. These algae could be concentrated up to approximately 20-fold by increasing pH using NaOH, with a flocculation efficiency of 90 %. When NaOH dosage was low (1 or 3 mM), the flocculation efficiency decreased considerably with the increase of biomass concentration. At higher NaOH dosage tested (5 or 7 mM), flocculation occurred quickly and efficiently, which tended to be independent of biomass concentration. In larger volumes, all strains were flocculated with similar efficiencies (approximately 90 %) after adding 5 mM NaOH. After flocculation, the flocculated algae cells could be re-cultured as inoculum, and the growth yields in flocculated medium were slightly higher than those from fresh medium. Additionally, for each strain, there were no significant differences in lipid extraction yield and fatty acid composition according to different harvesting methods. These results showed that the high–pH-induced flocculation method could be used to harvest marine Chlorella sp. for biofuel production successfully.  相似文献   

4.
微藻可生产不饱和脂肪酸及色素等多种高附加值产品,同时也可用来生产可再生清洁能源如生物柴油等,具有良好的应用前景。但是,目前微藻细胞的采收成本高居不下,已成为限制微藻生物技术大规模应用的重要因素之一。与其他方法相比,絮凝采收成本低、操作简便,是很有应用前景的采收方法。本文综述了国内外利用化学絮凝、物理絮凝及生物絮凝等方法对不同微藻细胞进行采收的研究,重点对生物絮凝方法进行了总结。利用微生物絮凝剂及微藻细胞的自絮凝进行微藻生物量的回收,是微藻采收技术中环境友好、低成本和行之有效的新方法之一。  相似文献   

5.
《Biomass》1988,15(3):187-199
Flocculation is an essential step in the concentration and harvesting of microalgae from aquatic media. Salinity of brackish water and sea water requires high flocculant dosages and renders flocculation less effective than in freshwater algal media. Experiments with the marine microalgae Isochrysis galbana and Chlorella stigmatophora showed that effective alum or ferric chloride flocculation was obtained only with dosages which are 5 to 10 times higher than the dosages required for the flocculation of freshwater microalgae. The flocculant dosages required for removing over 90% of the algae from suspensions were found to increase linearly with salinity as expressed in ionic strength. High salinity was found to inhibit flocculation with polyelectrolytes which are quite effective in freshwater algae flocculation. This inhibition was diminished at reduced salinity levels and effective flocculation was attained at salinity levels of 5 g/liter and below, which is typical of desert brackish water. Two methods were found to induce flocculation in sea water: (a) combining polyelectrolytes with inorganic flocculants such as ferric chloride or alum, and (b) ozone oxidation pretreatment followed by flocculation with inorganic flocculants.  相似文献   

6.
The potential of microalgae as a source of renewable energy has received considerable interest, but if microalgal biofuel production is to be economically viable and sustainable, further optimization of mass culture conditions are needed. Wastewaters derived from municipal, agricultural and industrial activities potentially provide cost-effective and sustainable means of algal growth for biofuels. In addition, there is also potential for combining wastewater treatment by algae, such as nutrient removal, with biofuel production. Here we will review the current research on this topic and discuss the potential benefits and limitations of using wastewaters as resources for cost-effective microalgal biofuel production.  相似文献   

7.
Photosynthetic microalgae can capture solar energy and convert it to bioenergy and biochemical products. In nature or industrial processes, microalgae live together with bacterial communities and may maintain symbiotic relationships. In general interactions, microalgae exude dissolved organic carbon that becomes available to bacteria. In return, the bacteria remineralize sulphur, nitrogen and phosphorous to support the further growth of microalgae. In specific interactions, heterotrophic bacteria supply B vitamins as organic cofactors or produce siderophores to bind iron, which could be utilized by microalgae, while the algae supply fixed carbon to the bacteria in return. In this review, we focus on mutualistic relationship between microalgae and bacteria, summarizing recent studies on the mechanisms involved in microalgae–bacteria symbiosis. Symbiotic bacteria on promoting microalgal growth are described and the relevance of microalgae–bacteria interactions for biofuel production processes is discussed. Symbiotic microalgae–bacteria consortia could be utilized to improve microalgal biomass production and to enrich the biomass with valuable chemical and energy compounds. The suitable control of such biological interactions between microalgae and bacteria will help to improve the microalgae-based biomass and biofuel production in the future.  相似文献   

8.
Microalgae harvesting via pH induced flocculation along with utilization of recovered medium after flocculation is one of the most economical methods for separating the microalgal biomass in order to reduce the dewatering cost. In this study, optimization of marine and freshwater microalgae flocculation by pH adjustment was investigated via central composite design methodology. One molar of KOH and NaOH solutions were used to increase the pH level of the microalgal culture. Increasing pH value of the medium provided the highest flocculation efficiency up to 92.63 and 86.18% with pH adjusted to 10.5 with KOH and NaOH solutions for marine microalgae Nannochloropsis oculata and freshwater microalgae Chlorella minutissima, respectively. Also, it was revealed that microalgae cells were still alive after flocculation process and their biochemical composition was not changed, and flocculated medium can be used again for the next microalgal production. According to the results, it can be said that this method is cheap and effective, simple to operate and provides the utilization of flocculated medium again.  相似文献   

9.
Microalgae have higher productivity of biomass than the conventional crops of fuel and are therefore, considered a potential biofuel source. Lipid, an important precursor of biodiesel, can be overproduced in microalgae by nitrogen deprivation. During nitrogen deficiency, radicals are overproduced, and the antioxidant levels are insufficient to counteract the radicals. Thus, the increase in cellular oxidative stress level, consequently acts as a stimulus for lipid accumulation. Lipid accumulation requires an excess of acetyl CoA and NADPH that is made possible by the following mechanism. Glycolysis upregulation overproduces pyruvate, which could be further transformed into acetyl CoA by the pyruvate dehydrogenase complex; while the upregulation of the oxidative pentose phosphate cycle generates a high amount of NADPH. In addition to lipid overproduction, the lack of nitrogen often causes the accumulation of carbohydrates in selected species of microalgae, which could be used to generate biogas and bioethanol from the defatted biomass. By providing details on the differential regulation of the biochemical pathways leading to lipid and carbohydrate accumulation in nitrogen starved microalgae, the review opens up new possibilities in the microalgal biofuel production.  相似文献   

10.
Microalgae as source of biofuel,food, fodder,and medicines   总被引:1,自引:0,他引:1  
Current status and future prospects of such problem as the production of microalgae and their application for biofuel generation (biodiesel, biohydrogen, bioethanol), as well as other products, is discussed in the review. The use of microalgae in human food, fodder, cosmetics, dyes, polysaccharides, antioxidants, medicines, and other products is quite promising. Presently, microalgae are noncompetitive with plant materials, due to economic reasons, in serving as a source of biofuel. Thereby, it is urgently necessary in modern biotechnology to improve the methods for the production of microalgae and search for new ways of their processing.  相似文献   

11.
李祎  许艳婷 《微生物学通报》2019,46(5):1196-1203
微藻广泛分布于自然界,其易培养,生长快且应用价值高,普遍用于生物燃料、医学原料、优质食品源及畜牧养殖业等。近年来,通过对光生物反应器改造设计、高产藻株筛选、代谢通路基因改造等方法实现微藻产量的提高,而在微藻处理的下游过程的研究与创新不足,特别是微藻采收已经成为其产业发展的瓶颈。本文综述了絮凝法在微藻采收中的作用,重点讨论了絮凝微生物在微藻采收中的作用,并对絮凝微生物对微藻的絮凝机制进行广泛探讨,为絮凝微生物采收微藻提供理论依据。  相似文献   

12.
ABSTRACT

Microalgae have enormous potential as feedstock for biofuel production compared with other sources, due to their high areal productivity, relatively low environmental impact, and low impact on food security. However, high production costs are the major limitation for commercialization of algal biofuels. Strategies to maximize biomass and lipid production are crucial for improving the economics of using microalgae for biofuels. Selection of suitable algal strains, preferably from indigenous habitats, and further improvement of those ‘platform strains’ using mutagenesis and genetic engineering approaches are desirable. Conventional approaches to improve biomass and lipid productivity of microalgae mainly involve manipulation of nutritional (e.g. nitrogen and phosphorus) and environmental (e.g. temperature, light and salinity) factors. Approaches such as the addition of phytohormones, genetic and metabolic engineering, and co-cultivation of microalgae with yeasts and bacteria are more recent strategies to enhance biomass and lipid productivity of microalgae. Improvement in culture systems and the use of a hybrid system (i.e. a combination of open ponds and photobioreactors) is another strategy to optimize algal biomass and lipid production. In addition, the use of low-cost substrates such as agri-industrial wastewater for the cultivation of microalgae will be a smart strategy to reduce production costs. Such systems not only generate high algal biomass and lipid productivity, but are also useful for bioremediation of wastewater and bioremoval of waste CO2. The aim of this review is to highlight the advances in the use of various strategies to enhance production of algal biomass and lipids for biofuel feedstock.  相似文献   

13.
Microalgal biofuel alternatives have been hindered by their cost and energy intensive production. In the microalgal harvesting process, the intermediate step of flocculation shows potential in drastically reducing the need for costly centrifugation processes. Moringa oleifera seeds, which have been used for water treatment due to their high flocculation potential, low cost and low toxicity, are presented in this paper as strong candidate for flocculating Chlorella vulgaris, a microalgae with high biodiesel production potential. Early results of our group showed a very high flocculation (around 85% of biomass recovery). The aim of this work was to investigate the influence of Moringa oleifera seed flour concentration, sedimentation time and pH on the flocculation efficiency. Cell suspensions treated with Moringa seed flour (1 g L-1) had their flocculation significantly increased with the rise of pH, reaching 89% of flocculation in 120 min at pH 9.2. Sedimentation time of 120 min and a concentration of 0.6 g L-1 proved to be ample for substantial flocculation efficiency. In spite of the need for more research to ensure the economic viability and sustainability of this process, these results corroborate Moringa oleifera seeds as a strong candidate as a bioflocculant for Chlorella vulgaris cells and indicate optimal pH range of its action.  相似文献   

14.
Harvesting of microalgae by bio-flocculation   总被引:2,自引:0,他引:2  
The high-energy input for harvesting biomass makes current commercial microalgal biodiesel production economically unfeasible. A novel harvesting method is presented as a cost and energy efficient alternative: the bio-flocculation by using one flocculating microalga to concentrate the non-flocculating microalga of interest. Three flocculating microalgae, tested for harvesting of microalgae from different habitats, improved the sedimentation rate of the accompanying microalga and increased the recovery of biomass. The advantages of this method are that no addition of chemical flocculants is required and that similar cultivation conditions can be used for the flocculating microalgae as for the microalgae of interest that accumulate lipids. This method is as easy and effective as chemical flocculation which is applied at industrial scale, however in contrast it is sustainable and cost-effective as no costs are involved for pre-treatment of the biomass for oil extraction and for pre-treatment of the medium before it can be re-used.  相似文献   

15.
Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells, and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae species, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network. Neural network architectures of multilayer perceptron (MLP) and radial basis function architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.  相似文献   

16.
Marine microalgae represent a potentially valuable feedstock for biofuel production; however, large-scale production is not yet economically viable. Optimisation of productivity and lipid yields is required and the cost of biomass harvesting and dewatering must be significantly reduced. Microalgae produce a wide variety of biologically active metabolites, many of which are involved in inter- and intra-specific interactions (the so-called infochemicals). The majority of infochemicals remain unidentified or uncharacterised. Here, we apply known and candidate (undefined extracts) infochemicals as a potential means to manipulate the growth and lipid content of Nannochloropsis oculata—a prospective species for biofuel production. Five known infochemicals (β-cyclocitral, trans,trans-2,4-decadienal, hydrogen peroxide, norharman and tryptamine) and crude extracts prepared from Skeletonema marinoi and Dunaliella salina cultures at different growth stages were assayed for impacts on N. oculata over 24?h. The neutral lipid content of N. oculata increased significantly with exposure to three infochemicals (β-cyclocitral, decadienal and norharman); however the effective concentrations affected a significant decrease in growth. Exposure to particular crude extracts significantly increased both growth and neutral lipid levels. In addition, water-soluble extracts of senescent S. marinoi cultures induced a degree of flocculation in the N. oculata. These preliminary results indicate that artificial manipulation of N. oculata cultures by application of algae infochemicals could provide a valuable tool towards achieving economically viable large-scale algae biofuel production.  相似文献   

17.
Although the potential for biofuel production from microalgae via photosynthesis has been intensively investigated, information on the selection of a suitable operation strategy for microalgae-based biofuel production is lacking. Many published reports describe competitive strains and optimal culture conditions for use in biofuel production; however, the major impediment to further improvements is the absence of effective engineering strategies for microalgae cultivation and biofuel production. This comprehensive review discusses recent advances in understanding the effects of major environmental stresses and the characteristics of various engineering operation strategies on the production of biofuels (mainly biodiesel and bioethanol) using microalgae. The performances of microalgae-based biofuel-producing systems under various environmental stresses (i.e., irradiance, temperature, pH, nitrogen depletion, and salinity) and cultivation strategies (i.e., fed-batch, semi-continuous, continuous, two-stage, and salinity-gradient) are compared. The reasons for variations in performance and the underlying theories of the various production strategies are also critically discussed. The aim of this review is to provide useful information to facilitate development of innovative and feasible operation technologies for effectively increasing the commercial viability of microalgae-based biofuel production.  相似文献   

18.
The challenges which the large scale microalgal industry is facing are associated with the high cost of key operations such as harvesting, nutrient supply and oil extraction. The high-energy input for harvesting makes current commercial microalgal biodiesel production economically unfeasible and can account for up to 50% of the total cost of biofuel production. Co-cultivation of fungal and microalgal cells is getting increasing attention because of high efficiency of bio-flocculation of microalgal cells with no requirement for added chemicals and low energy inputs. Moreover, some fungal and microalgal strains are well known for their exceptional ability to purify wastewater, generating biomass that represents a renewable and sustainable feedstock for biofuel production. We have screened the flocculation efficiency of the filamentous fungus A. fumigatus against 11 microalgae representing freshwater, marine, small (5 µm), large (over 300 µm), heterotrophic, photoautotrophic, motile and non-motile strains. Some of the strains are commercially used for biofuel production. Lipid production and composition were analysed in fungal-algal pellets grown on media containing alternative carbon, nitrogen and phosphorus sources contained in wheat straw and swine wastewater, respectively. Co-cultivation of algae and A. fumigatus cells showed additive and synergistic effects on biomass production, lipid yield and wastewater bioremediation efficiency. Analysis of fungal-algal pellet''s fatty acids composition suggested that it can be tailored and optimised through co-cultivating different algae and fungi without the need for genetic modification.  相似文献   

19.
Biomass production is currently explored in microalgae, macroalgae and land plants. Microalgal biofuel development has been performed mostly in green algae. In the Japanese tradition, macrophytic red algae such as Pyropia yezoensis and Gelidium crinale have been utilized as food and industrial materials. Researches on the utilization of unicellular red microalgae such as Cyanidioschyzon merolae and Porphyridium purpureum started only quite recently. Red algae have relatively large plastid genomes harboring more than 200 protein-coding genes that support the biosynthetic capacity of the plastid. Engineering the plastid genome is a unique potential of red microalgae. In addition, large-scale growth facilities of P. purpureum have been developed for industrial production of biofuels. C. merolae has been studied as a model alga for cell and molecular biological analyses with its completely determined genomes and transformation techniques. Its acidic and warm habitat makes it easy to grow this alga axenically in large scales. Its potential as a biofuel producer is recently documented under nitrogen-limited conditions. Metabolic pathways of the accumulation of starch and triacylglycerol and the enzymes involved therein are being elucidated. Engineering these regulatory mechanisms will open a possibility of exploiting the full capability of production of biofuel and high added-value oil. In the present review, we will describe the characteristics and potential of these algae as biotechnological seeds.  相似文献   

20.
《Process Biochemistry》2014,49(4):681-687
Phaeodactylum tricornutum is an economically important species of microalgae that is widely used in aquaculture, and it is rich in bioactive substances including eicosapentaenoic acid and fucoxanthin. The major bottleneck for industrialization of this species is harvesting. Flocculation is used to harvest microalgae, thus the selection of flocculants is of great importance. In this study, we compared the flocculation effect of four different chemicals (ferric chloride, aluminum sulphate, polyaluminum chloride, and aluminum potassium sulphate) on P. tricornutum. Microexamination showed that ferric and aluminum salts had similar flocculation effects on the algae. Growth and chlorophyll fluorescence measurements showed that P. tricornutum can be re-cultured after flocculation. Pigment analysis showed that flocculation did not result in degradation of fucoxanthin, which suggests that the four flocculants tested may be useful for industrial applications. The results also showed that ferric chloride was the best flocculant for harvesting P. tricornutum when the target product was fucoxanthin, as it had the least influence on the physiological activity of P. tricornutum and it did not lead to degradation of cell components. In contrast, aluminum is poisonous to the nervous system of animals and humans. In addition, the culture medium can be recycled after flocculation by ferric chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号