首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unbranched heterocytous cyanobacteria produce a number of serine peptidases. We have characterized several peptidases in the cell-free extracts of a true-branched N2-fixing cyanobacterium, Westiellopsis ramosa sp. nov. Upon substrate-gel zymography of intact filaments and heterocytes, five peptidase bands were resolved, whereas in vegetative cells, a single band was discernible. No band was detected in \({\text{NO}}_{3}^{ - } /{\text{NH}}_{4}^{ + }\)-grown cultures suggesting that the peptidases were present under diazotrophic conditions with much of them confined to heterocytes. Using salt precipitation and chromatography, a caseinolytic peptidase, called Wrp49, was purified which also demonstrated fibrinolytic activity. In SDS-PAGE, the purified peptidase was resolved into 17 and 27 kDa fragments. The enzyme in its native state exhibited Mr ≈ 49 kDa, and digested gelatin in a substrate gel at a corresponding position. The enzyme showed amidolytic activity on a plasmin specific substrate, D-Val-Leu-Lys p-nitroanilide. Moreover, a trypsin specific substrate, N-benzoyl-DL-Arg p-nitroanilide was hydrolyzed at an apparent Km = 0.195 mM and Vmax = 5 × 10?7 M s?1. The enzyme was stable in a wide pH and temperature range. While Ca2+ stimulated the activity; phenylmethane sulfonyl fluoride, leupeptin, EDTA and chelants were inhibitory. The activity of the EDTA-inactivated enzyme was completely restored upon adding Ca2+, suggesting that both compounds competed with each other in modulating the enzyme activity. The enzyme showed similarities with a Ca2+ stimulated subtilisin-like serine peptidase of Anabaena variabilis ATCC 29413, but also presented several unique features of metallopeptidases, such as the chelant’s response. Moreover, the N-terminal sequence (MTVENLARTGVGPGWR) did not match with any of the known peptidases.  相似文献   

2.
A new serine protease with fibrinolytic activity from a marine invertebrate, Urechis unicinctus, was purified to electrophoretic homogeneity using column chromatography. SDS-PAGE of the purified enzyme showed a single polypeptide chain with MW ~20.8 kDa. Its N-terminal sequence was IIGGSQAAITSY. The purified enzyme, UFEIII, was stable at pH 6–10 below 60 °C with an optimum pH of 8.5 at approx. 55 °C. The enzyme activity was significantly inhibited by PMSF and SBTI suggesting that it was a serine protease. In fibrin plate assays, UFEIII was contained 1.46 × 10U (urokinase units) mg?1 total fibrinolytic activity, which consisted of 692 U mg?1 direct fibrinolytic activity and 769 U mg?1 plasminogen-activator activity. Km and Vmax values for azocasein were 1 mg ml?1 and 43 μg min?1 ml?1, respectively.  相似文献   

3.
Acetyl xylan esterase (AXE) from basidiomycete Coprinopsis cinerea Okayama 7 (#130) was functionally expressed in Pichia pastoris with a C-terminal tag under the alcohol oxidase 1 (AOX1) promoter and secreted into the medium at 1.5 mg l?1. Its molecular mass was estimated to be 65.5 kDa based on the SDS-PAGE analysis, which is higher than the calculated molecular mass of 40 kDa based on amino acid composition. In-silico analysis of the amino acid sequence predicted two potential N-glycosylation sites. Results from PNGase F deglycosylation and mass spectrum confirmed the presence of N-glycosylation on the recombinant AXE with predominant N-glycans HexNAc2Hex9–16. The recombinant AXE showed best activity at 40 °C and pH 8. It showed not only acetyl esterase activity with a Km of 4.3 mM and a Vmax of 2.15 U mg?1 for hydrolysis of 4-nitrophenyl acetate but also a butyl esterase activity for hydrolysis of 4-nitrophenyl butyrate with a Km of 0.11 mM and Vmax of 0.78 U mg?1. The presence of two additional amino acid residues at its native N-terminus was found to help stabilize the enzyme against the protease cleavages without affecting its activity.  相似文献   

4.
A novel endo-β-1,4-glucanase (EG)-producing strain was isolated and identified as Armillaria gemina KJS114 based on its morphology and internal transcribed spacer rDNA gene sequence. A. gemina EG (AgEG) was purified using a single-step purification by gel filtration. The relative molecular mass of AgEG by sodium dodecyl sulfate polyacrylamide gel electrophoresis was 65 kDa and by size exclusion chromatography was 66 kDa, indicating that the enzyme is a monomer in solution. The pH and temperature optima for hydrolysis were 5.0 and 60 °C, respectively. Purified AgEG had the highest catalytic efficiency with carboxymethylcellulose (k cat/K m?=?3,590 mg mL?1 s?1) unlike that reported for any fungal EG, highlighting the significance of the current study. The amino acid sequence of AgEG showed homology with hydrolases from the glycoside hydrolase family 61. The addition of AgEG to a Populus nigra hydrolysate reaction containing a commercial cellulase mixture (Celluclast 1.5L and Novozyme 188) showed a stimulatory effect on reducing sugar production. AgEG is a good candidate for applications that convert lignocellulosic biomass to biofuels and chemicals.  相似文献   

5.
Phycobiliproteins, light-harvesting pigments found in cyanobacteria and in some eukaryotic algae, have numerous commercial applications in food, cosmetic, and pharmaceutical industries. Colorant production from cyanobacteria offers advantages over their production from higher plants, as cyanobacteria have fast growth rate and high photosynthetic efficiency and require less space. In this study, three cyanobacteria strains were studied for phycobiliprotein production and the influence of sodium nitrate, potassium nitrate and ammonium chloride on the growth and phycobiliprotein composition of the strains were evaluated. In the batch culture period of 12 days, Phormidium sp. and Pseudoscillatoria sp. were able to utilize all tested nitrogen sources; however, ammonium chloride was the best nitrogen source for both strains to achieve maximum growth rate μ?=?0.284?±?0.03 and μ?=?0.274?±?0.13 day?1, chlorophyll a 16.2?±? 0.5 and 12.2?±? 0.2 mg L?1, and phycobiliprotein contents 19.38?±?0.09 and 19.99?±?0.14% of dry weight, whereas, for Arthrospira platensis, the highest growth rate of μ?=?0.304?±?0.0 day?1, chlorophyll a 19.1?±?0.5 mg L?1, and phycobiliprotein content of 22.27?±?0.21% of dry weight were achieved with sodium nitrate. The phycocyanin from the lyophilized cyanobacterial biomass was extracted using calcium chloride and food grade purity (A620/A280 ratio >?0.7) was achieved. Furthermore, phycocyanin was purified using two-step chromatographic method and the analytical grade purity (A620/A280 ratio >?4) was attained. SDS-PAGE demonstrated the purity and presence of two bands corresponding to α- and β-subunits of the C-phycocyanin. The results showed that Phormidium sp. and Pseudoscillatoria sp. could be good candidates for phycocyanin production.  相似文献   

6.
We modelled the production of hydroxy fatty acids from oleic acid by Pseudomonas aeruginosa 42A2 in a bioreactor with a non-dispersive aeration system. First, we designed an adapted wetted-wall gas-absorption column, offering a k La value of 39.9 h?1, to enhance oxygen absorption in the culture media and prevent foam formation. Then, we analysed different kinetic models to simulate the yield coefficients and the kinetic constants in this bacterial transformation. Monod model fitting (μ max1?=?0.51 h?1, K S1?=?1.60 C-mol l?1, μ max2?=?0.12 h?1, K S2?=?0.035 C-mol l?1, and k 2?=?0.033 h?1) showed a good accuracy with the experimental data sets and was chosen for its simplicity. Lastly, mass balances were carried out to establish the stoichiometry of this biotransformation with the following yield coefficients, Υ X/OA, Υ X/(10S)-HPOME and Υ (10S)-HPOME/(7S10S)-HPOME of 0.172, 0.347 and 2.388 C-mol C-mol?1, respectively.  相似文献   

7.
Ginsenoside Rb2 was transformed by recombinant glycosidase (Bgp2) into ginsenosides Rd and 20(S)-Rg3. The bgp2 gene consists of 2,430 bp that encode 809 amino acids, and this gene has homology to the glycosyl hydrolase family 2 protein domain. SDS-PAGE was used to determine that the molecular mass of purified Bgp2 was 87 kDa. Using 0.1 mg ml?1 of enzyme in 20 mM sodium phosphate buffer at 40 °C and pH 7.0, 1.0 mg ml?1 ginsenoside Rb2 was transformed into 0.47 mg ml?1 ginsenoside 20(S)-Rg3 within 120 min, with a corresponding molar conversion yield of 65 %. Bgp2 hydrolyzed the ginsenoside Rb2 along the following pathway: Rb2 → Rd → 20(S)-Rg3. This is the first report of the biotransformation of ginsenoside Rb2 to ginsenoside 20(S)-Rg3 using the recombinant glycosidase.  相似文献   

8.
β-xylosidase from thermophilic fungi Paecilomyces thermophila was functionally expressed in Pichia pastoris with a his tag in the C-terminal under the alcohol oxidase 1 (AOX1) promoter and secreted into the medium at 0.22 mg l?1. Its molecular mass was estimated to be 52.3 kDa based on the SDS-PAGE analysis, which is 1.3 times higher than the predicted 39.31 kDa from its amino acid compositions, although no potential N- or O- glycosylation sites were predicted from its amino acid sequence. This is presumed to be caused by some unpredictable posttranslational modifications based on mass spectrum analysis of the recombinant protein. The enzyme was most active at 60 °C and pH 7. It showed not only a β-xylosidase activity with a Km of 8 mM and a Vmax of 54 μmol min?1 mg?1 for hydrolysis of p-nitrophenyl β-d-xylopyranoside but also an arabinofuranosidase activity (6.2 U mg?1) on p-nitrophenyl arabinofuranoside.  相似文献   

9.
Thirty-six proteolytic bacteria were isolated from the Jakhau coast, Kutch, India, amongst which isolate P15 identified as Bacillus tequilensis (JQ904626) was found to produce an extracellular solvent-- and detergent-tolerant protease (116.69?±?0.48 U/ml) and was selected for further investigation. Deoiled Jatropha seedcake (JSC) was found to be a suitable substrate for protease production under submerged condition. Upon optimization of process parameters following one-factor-at-a-time approach, an overall 6.4-fold (860.27?±?18.48 U/ml) increase in protease production was achieved. The maximum protease yield was obtained using a medium containing 2 % (w/v) deoiled JSC as substrate (pH of 8.0) upon 36 h of fermentation at 30 °C. The optimum temperature and pH for activity of B. tequilensis P15 protease was found to be 50 °C and 8.0, respectively. The enzyme exhibited a half-life of 190 min at 50 °C, which was enhanced to 270 min in presence of 5 mM Ca2+. The enzyme exhibited significant stability in almost all the solvents tested in the range of log P ow varying from 8.8 to ?0.76. The enzyme activity was strongly inhibited by PMSF at 5 mM concentration, whereas the presence of EDTA (5 mM) and pCMB (5 mM) enhanced enzyme activity by 20.9 and 13.7 %, respectively. The enzyme was also found to be stable in the presence of surfactants, commercial detergents and bleach-oxidant (H2O2). This protease was demonstrated to be effective in removal of blood stains from fabrics, dehairing of hide, and stripping off the gelatin from used photographic films.  相似文献   

10.
To reduce CO2 emissions from alcoholic fermentation, Arthrospira platensis was cultivated in tubular photobioreactor using either urea or nitrate as nitrogen sources at different light intensities (60 μmol m?2 s?1?≤?I?≤?240 μmol m?2 s?1). The type of carbon source (pure CO2 or CO2 from fermentation) did not show any appreciable influence on the main cultivation parameters, whereas substitution of nitrate for urea increased the nitrogen-to-cell conversion factor (Y X/N ), and the maximum cell concentration (X m ) and productivity (P X ) increased with I. As a result, the best performance using gaseous emissions from alcoholic fermentation (X m ?=?2,960?±?35 g m?3, P X ?=?425?±?5.9 g m?3 day?1 and Y X/N ?=?15?±?0.2 g g?1) was obtained at I?=?120 μmol m?2 s?1 using urea as nitrogen source. The results obtained in this work demonstrate that the combined use of effluents rich in urea and carbon dioxide could be exploited in large-scale cyanobacteria cultivations to reduce not only the production costs of these photosynthetic microorganisms but also the environmental impact associated to the release of greenhouse emissions.  相似文献   

11.
 Alkalophilic Bacillus sp. KSM-K16 produced three alkaline proteases, as detected by polyacrylamide gel electrophoresis (PAGE). The major protease, designated M protease, was recently purified to homogeneity and its properties were characterized. In the present study, two minor proteases, designated H protease and N protease, were purified to homogeneity from cultures of this organism. H protease had a molecular mass of 28 kDa, as estimated by sodium dodecyl sulfate/PAGE (SDS-PAGE) and its maximum activity against casein was observed at pH 11.0 and at 55°C. N protease consisted of two polypeptide chains with molecular masses of 12.5 kDa and 14.5 kDa, as estimated by SDS-PAGE, although it migrated as a single protein band during non-denaturing PAGE. Its maximum activity was observed at pH 11.0 and at 60°C. The amino-terminal sequences of H protease and of the 14.5-kDa polypeptide of N protease were identical to that of M protease. The electrophoretic relationship between the three enzymes was examined after they had been stored at different pH values and at 5°C. M protease was converted to H protease more rapidly at pH 11 than at pH 8 or below, and H protease was converted to M protease at pH 8 or below but not at pH 11. N protease appeared to be the autolytic product of the M and H proteases. Received: 12 December 1994/Received last revision: 9 June 1995/Accepted: 31 July 1995  相似文献   

12.
A recombinant β-galactosidase from Caldicellulosiruptor saccharolyticus was purified with a specific activity of 211 U mg?1 by using heat treatment and His-trap affinity chromatography. The native enzyme was an 80-kDa trimer with a molecular mass of 240 kDa. Maximum activity was observed at pH 6.0 and 80ºC, and the half-life at 70ºC was 48 h. The enzyme exhibited hydrolytic activity for p-nitrophenyl-β-d-galactopyranoside (pNPGal), oNPGal, or lactose, whereas no activity for p-nitrophenyl-β-d-glucopyranoside (pNPGlu), oNPGlu, or cellobiose. The catalytic residues E150 and E311 of β-galactosidase from C. saccharolyticus were completely conserved in all aligned glycoside hydrolase family 42 β-galactosidases. The results indicated that the enzyme was a β-galactosidase. Galactose uncompetitively inhibited the enzyme. Glucose inhibition of the enzyme was the lowest among β-galactosidases. When 50 g l?1 galactose was added, the enzyme activity for pNPGal was reduced to 26%. When 400 g l?1 glucose instead of galactose was added, the activity was reduced to 82%. When adding galactose (200 g l?1), only 14% of the lactose was hydrolyzed after 180 min. In contrast, the addition of glucose (400 g l?1) did not affect lactose hydrolysis, and more than 99% of the lactose was hydrolyzed after 120 min.  相似文献   

13.
The aim of this study was to describe the dehydrin content of mature Araucaria angustifolia embryos, a species of endangered and economically important conifers, native to southern Brazil, northeastern Argentina, and eastern Paraguay. The A. angustifolia seeds have been categorized as recalcitrant. Dehydrins were studied by western blot analysis and in situ immunolocalization microscopy using antibodies raised against the K segment, a highly conserved lysine-rich 15-amino acid sequence extensively used to recognize proteins immunologically related to the dehydrin family. Western blot analysis of the heat-stable protein fraction, as estimated by 15 % SDS-PAGE, revealed three main bands of approximately 20-, 26-, and 29-kDa; when 17.5 % SDS-PAGE was used, each band resolved into two other bands. Two thermosensitive dehydrin bands of around 16 and 35 kDa were common to the axis and cotyledons, and another thermosensitive band, with molecular mass of approximately 10 kDa, was present in the cotyledons only. Following alkaline phosphatase (AP) treatment, a gel mobility shift was detected for each one of the four main bands that can be due to phosphorylation. Dehydrins were detected in all axis and cotyledon tissues using in situ immunolocalization microscopy. At the subcellular level, dehydrins were immunolocalized in the nuclei, protein bodies, and microbodies. In the nucleus, dehydrins were found to be associated with chromatin. We concluded that the gel mobility shift for the four main bands (probably due to phosphorylation), the presence of thermosensitive bands, and the specific localizations in nuclei and protein bodies provide key starting points to understand the function of dehydrins in the embryo cells of this species.  相似文献   

14.
Glucosamine-6-phosphate (GlcN-6-P) synthase from Saccharomyces cerevisiae was expressed in Pichia pastoris SMD1168 GIVING maximum activity of 96 U ml?1 for the enzyme in the culture medium. By SDS-PAGE, the enzyme, a glycosylated protein, had an apparent molecular mass of 90 kDa. The enzyme was purified by gel exclusion chromatography to near homogeneity, with a 90 % yield and its properties were characterized. Optimal activities were at pH 5.5 and 55 °C, respectively, at which the highest specific activity was 6.8 U mg protein ?1. The enzyme was stable from pH 4.5 to 5.5 and from 45 to 60 °C. The Km and Vmax of the GlcN-6-P synthase towards d-fructose 6-phosphate were 2.8 mM and 6.9 μmol min?1 mg?1, respectively.  相似文献   

15.
In this study, a novel nitrilase gene from Rhodobacter sphaeroides was cloned and overexpressed in Escherichia coli. The open reading frame of the nitrilase gene includes 969 base pairs, which encodes a putative polypeptide of 322 amino acid residues. The molecular weight of the purified native nitrilase was about 560 kDa determined by size exclusion chromatography. This nitrilase showed one single band on SDS-PAGE with a molecular weight of 40 kDa. This suggested that the native nitrilase consisted of 14 subunits with identical size. The optimal pH and temperature of the purified enzyme were 7.0 and 40 °C, respectively. The kinetic parameters V max and K m toward 3-cyanopyridine were 77.5 μmol min?1 mg?1 and 73.1 mmol/l, respectively. The enzyme can easily convert aliphatic nitrile and aromatic nitriles to their corresponding acids. Furthermore, this enzyme demonstrated regioselectivity in hydrolysis of aliphatic dinitriles. This specific characteristic makes this nitrilase have a great potential for commercial production of various cyanocarboxylic acids by hydrolyzing readily available dinitriles.  相似文献   

16.
This study reports the purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis, strain X5B. The enzyme was purified to homogeneity by acetone precipitation, ultrafiltration and carboxymethyl (CM) cation exchange chromatography, respectively. The purified protease was a monomeric enzyme with a relative molecular mass of 48–50 kDa and it was inhibited by PMSF indicating that it is a serine-protease. The optimum pH, temperature and NaCl concentration were 9.5, 35 °C and 0.98 M, respectively. The enzyme showed a significant tolerance to salt and alkaline pH. It retained approximately 50 % of activity at 2.5 M NaCl and about 70 % of activity at highly alkaline pH of 11.0; therefore, it was a moderately halophilic and also can be activated by metals, especially by Ca2+. The specific activity of the purified protease was measured to be 425.23 μmol of tyrosine/min per mg of protein using casein as a substrate. The apparent K m and V max values were 0.126 mM and 0.523 mM/min, respectively and the accurate value of k cat was obtained as 3.284 × 10?2 s?1. These special and important characteristics make this serine protease as valuable tool for industrial applications.  相似文献   

17.
An efficient ß-1,4-glucosidase (BGL) producing strain, Fomitopsis pinicola KMJ812, was isolated and identified based on morphological features and sequence analysis of internal transcribed spacer rDNA. An extracellular BGL was purified to homogeneity by sequential chromatography of F. pinicola culture supernatants on a DEAE-sepharose column, a gel filtration column, and then on a Mono Q column with fast protein liquid chromatography. The relative molecular weight of F. pinicola BGL was determined to be 105 kDa by sodium dodecylsulfate-polyacrylamide gel electrophoresis, or 110 kDa by size exclusion chromatography, indicating that the enzyme is a monomer. The hydrolytic activity of the BGL had a pH optimum of 4.5 and a temperature optimum of 50°C. The enzyme showed high substrate specificity and high catalytic efficiency (k cat?=?2,990 s?1, K m?=?1.76 mM, k cat/K m?=?1,700 mM?1 s?1) for p-nitrophenyl-β-d-glucopyranoside. Its internal amino acid sequences showed a significant homology with hydrolases from glycoside hydrolase family 3, indicating that the F. pinicola BGL is a member of glycoside hydrolase family 3. Although BGLs have been purified and characterized from several other sources, F. pinicola BGL is distinguished from other BGLs by its high catalytic efficiency and strict substrate specificity.  相似文献   

18.
A white-rot basidiomycete, isolated from decayed acacia wood (from Northwest of Tunisia) and identified as Trametes sp, was selected in a broad plate screening because of its ability to decolorize and dephenolize olive oil mill wastewater (OMW) efficiently. The major laccase was purified and characterized as a monomeric protein with apparent molecular mass of 61 kDa (SDS-PAGE). It exhibits high enzyme activity over broad pH and temperature ranges with optimum activity at pH 4.0 and a temperature of 60 °C. The purified laccase is stable at alkaline pH values. The enzyme retained 50 % of its activity after 90 min of incubation at 55 °C. Using ABTS, this laccase presented K m and V max values of 0.05 mM and 212.73 μmoL min?1 mg?1, respectively. It has shown a degrading activity towards a variety of phenolic compounds. The purified laccase was partially inhibited by Fe2+, Zn2+, Cd2+ and Mn2+, while Cu2+ acted as inducer. EDTA (10 mM) and NaN3 (10 mM) were found to completely inhibit its activity. 73 % OMW was dephenolized after 315 min incubation at 30 °C with 2 U mL?1 of laccase and 2 mM HBT.  相似文献   

19.
The stimulation by Mg2+, Na+, K+, NH4 +, and ATP of (Na+, K+)-ATPase activity in a gill microsomal fraction from the freshwater prawn Macrobrachium rosenbergii was examined. Immunofluorescence labeling revealed that the (Na+, K+)-ATPase α-subunit is distributed predominantly within the intralamellar septum, while Western blotting revealed a single α-subunit isoform of about 108 kDa M r. Under saturating Mg2+, Na+, and K+ concentrations, the enzyme hydrolyzed ATP, obeying cooperative kinetics with V M = 115.0 ± 2.3 U mg?1, K 0.5 = 0.10 ± 0.01 mmol L?1. Stimulation by Na+ (V M = 110.0 ± 3.3 U mg?1, K 0.5 = 1.30 ± 0.03 mmol L?1), Mg2+ (V M = 115.0 ± 4.6 U mg?1, K 0.5 = 0.96 ± 0.03 mmol L?1), NH4 + (V M = 141.0 ± 5.6 U mg?1, K 0.5 = 1.90 ± 0.04 mmol L?1), and K+ (V M = 120.0 ± 2.4 U mg?1, K M = 2.74 ± 0.08 mmol L?1) followed single saturation curves and, except for K+, exhibited site–site interaction kinetics. Ouabain inhibited ATPase activity by around 73 % with K I = 12.4 ± 1.3 mol L?1. Complementary inhibition studies suggest the presence of F0F1–, Na+-, or K+-ATPases, but not V(H+)- or Ca2+-ATPases, in the gill microsomal preparation. K+ and NH4 + synergistically stimulated enzyme activity (≈25 %), suggesting that these ions bind to different sites on the molecule. We propose a mechanism for the stimulation by both NH4 +, and K+ of the gill enzyme.  相似文献   

20.
A serine alkaline protease (EC.3.4.21) was isolated, purified and characterized from culture filtrate of the thermophilic fungus Thermomyces lanuginosus Tsiklinsky. Fructose (1.5 %) and gelatin (0.5 %) proved to be the best carbon and nitrogen sources, giving a maximum enzyme yield of 9.2 U/mL. Dates waste was utilized as a sole organic source to improve enzyme productivity, and the yield was calculated to be 11.56 U/mL. This yield was expressed also as 231.2 U/g of assimilated waste. The alkaline protease produced was precipitated by iso-propanol and further purified by gel filtration through Sephadex G-100 and ion exchange column chromatography on diethyl amino ethyl (DEAE)-cellulose with a yield of 30.12 % and 13.87-fold purification. The enzyme acted optimally at pH 9 and 60 °C and had good stability at alkaline pH and high temperatures. The enzyme possessed a high degree of thermostability and retained full activity even at the end of 1 h of incubation at 60 °C. Michaelis–Menten constant (K m), maximal reaction velocity (V max) and turnover number (K cat) of the purified enzyme on gelatin as a substrate were calculated to be 4.0 mg/mL, 18.5 U/mL and 1.8 s?1, respectively. The best enzyme activators were K+, Ca2+ and Mn2, respectively, while phenylmethylsulfonyl fluoride (PMSF) was the strongest inhibitory agent, thus suggesting that the enzyme is a serine type protease. The enzyme is a glycoprotein with molecular mass of 33 kDa as determined by SDS-PAGE. It retained full activity after 15 min incubation at 60 °C in the presence of the detergent Ariel, thus indicating its suitability for application in the detergent industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号