首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
2.
3.
The lipoprotein I gene (oprI) of Pseudomonas aeruginosa PAO1 was cloned and sequenced. A high degree of homology was found between our cloned PAO1 gene sequence and two published oprI sequences. Specific oligonucleotides were designed to amplify the oprI gene by the polymerase chain reaction (PCR). The potential of either the complete gene sequence or the specific oligonucleotide primers as a tool for rapid strain identification was directly assessed against bacterial colonies by PCR or against purified genomic DNA by Southern blot analysis, using a number of representative strains within the Pseudomonadaceae. The oprI gene was found to be well conserved within RNA group I.  相似文献   

4.
5.
6.
A protein that copurifies with the bovine prostaglandin F receptor (FP) has been isolated and the corresponding rat cDNA has been cloned. Transfection experiments suggest that this protein inhibits binding of [3H]prostaglandin F ([3H]PGF) to FP. Histologically, this protein (FP regulatory protein or FPRP) shows a distribution coinciding well with those cells and tissues that respond to PGF. A portion of the 3′ untranslated region of the human homolog to fprp was subcloned, sequenced, and oligonucleotide primers chosen that allow polymerase chain reaction (PCR) amplification specifically of the human fprp sequence. These primers were then used in a PCR-based mapping protocol. The human fprp gene was first localized through human/rodent somatic cell hybrids to human chromosome 1 (100% concordance), and further through yeast artificial chromosome (YAC) pools to region 1p13.1-q21.3 (level 1 mapping). In view of the specific histologic localization of this negative regulator, possible pathological conditions are mentioned that may cosegregate with this chromosomal region. Received: 25 May 1995 / Revised: 2 October 1995  相似文献   

7.
Yang L  Chen J  Huang C  Liu Y  Jia S  Pan L  Zhang D 《Plant cell reports》2005,24(4):237-245
Genetically modified (GM) cotton lines have been approved for commercialization and widely cultivated in many countries, especially in China. As a step towards the development of reliable qualitative and quantitative PCR methods for detecting GM cottons, we report here the validation of the cotton (Gossypium hirsutum) endogenous reference control gene, Sad1, using conventional and real-time (RT)-PCR methods. Both methods were tested on 15 different G. hirsutum cultivars, and identical amplicons were obtained with all of them. No amplicons were observed when DNA samples from three species of genus Gossypium, Arabidopsis thaliana, maize, and soybean and others were used as amplified templates, demonstrating that these two systems are specific for the identification and quantification of G. hirsutum. The results of Southern blot analysis also showed that the Sad1 gene was two copies in these 15 different G. hirsutum cultivars. Furthermore, one multiplex RT-quantitative PCR employing this gene as an endogenous reference gene was designed to quantify the Cry1A(c) gene modified from Bacillus thuringiensis (Bt) in the insect-resistant cottons, such as Mon531 and GK19. The quantification detection limit of the Cry1A(c) and Sad1 genes was as low as 10 pg of genomic DNA. These results indicat that the Sad1 gene can be used as an endogenous reference gene for both qualitative and quantitative PCR detection of GM cottons.  相似文献   

8.
Chan MW  Chu ES  To KF  Leung WK 《Biotechnology letters》2004,26(16):1289-1293
Although methylation-specific PCR (MSP) is a sensitive technique in the detection of DNA hypermethylation, it is not quantitative. Here we described a modified PCR protocol to quantify methylated SOCS-1 gene by real time MSP using SYBR green, which involves an additional PCR step after the 72 degrees C extension step. This modified protocol is also useful in the quantitative detection of methylated SOCS-1 gene in serum samples of gastric cancer patients.  相似文献   

9.
10.
A homogeneous array of 80 tandem repeats of the Bari1 transposon is located in the pericentromeric h39 region of chromosome 2 of Drosophila melanogaster. Here, we report that the Bari1 cluster is interrupted by an 8556-bp insertion. DNA sequencing and database searches identified this insertion as a previously unannotated retrotransposon that we have named MAX. MAX possesses two ORFs; ORF1 putatively encodes a polyprotein comprising GAG and RT domains, while ORF2 could encode a 288-amino acid protein of unknown function. Alignment with the RT domains of known LTR retrotransposons shows that MAX belongs to the BEL-Pao family, which remarkable for its widespread presence in different taxa, including lower chordates. We have analyzed the distribution of MAX elements within representative species of the Sophophora subgroup and found that they are restricted to the species of the melanogaster complex, where they are heavily represented in the heterochromatin of all autosomes and on the Y chromosome.Communicated by G. P. Georgiev  相似文献   

11.
We investigated the genomic organization of pancreatic zymogen granule membrane-associated protein GP2, a GPI-anchored protein exhibiting self-aggregation at acidic pH, in order to construct a gene-knockout mouse. Cloning and analysis of lambda clones encoding GP2 from 129 Svj mouse genomic DNA libraries showed that the GP2 gene spans about 16.8 kb and includes 11 exons. Identifiable functional domains including a signal sequence, an EGF-like motif, a putative condensing ZP domain, a GPI-anchor attachment site, and a transmembrane sequence for GPI anchoring are encoded in separate exons. Using FISH, the GP2 gene was mapped to mouse chromosome 7F1 near the gene for THP, a GP2 homolog expressed in the cells of thick ascending loop of Henle (TALH) in the kidney. Further analysis of the mouse genome revealed that the THP and GP2 genes are adjacent to one another and are separated by only 3.5 kb in the 7F1 locus. Additionally, the overall structure of the THP gene, 16.2kb with 11 exons, was strikingly similar to that of GP2. This finding suggests that the GP2 and THP genes were generated by gene duplication and evolved separately to acquire regulatory elements leading to tissue-specific expression. Comparative analysis revealed that the 5' flanking region of the THP gene is similar to the first intron of NKCC2, a TALH cell-specific ion-transporter gene. The promoter region of the GP2 gene shares cis-elements found in other pancreas-specific genes. Using this genetic information, a GP2 null mutation was successfully introduced into an ES cell line, and an animal model was established without disruption of THP expression.  相似文献   

12.
We have defined five sev genes by genetic analysis of Schizosaccharomyces pombe mutants, which are defective in both proliferation and sporulation. sev1(+)/cdt2(+) was transcribed during the G1-S phase of the mitotic cell cycle, as well as during the premeiotic S phase. The mitotic expression of cdt2(+) was regulated by the MCB-DSC1 system. A mutant of a component of DSC1 affected cdt2(+) expression in vivo, and a cdt2(+) promoter fragment containing MCB motifs bound DSC1 in vitro. Cdt2 protein also accumulated in S phase and localized to the nucleus. cdt2 null mutants grew slowly at 30 degrees and were unable to grow at 19 degrees. These cdt2 mutants were also medially sensitive to hydroxyurea, camptothecin, and 4-nitroquinoline-1-oxide and were synthetically lethal in combination with DNA replication checkpoint mutations. Flow cytometry analysis and pulsed-field gel electrophoresis revealed that S-phase progression was severely retarded in cdt2 mutants, especially at low temperatures. Under sporulation conditions, premeiotic DNA replication was impaired with meiosis I blocked. Furthermore, overexpression of suc22(+), a ribonucleotide reductase gene, fully complemented the sporulation defect of cdt2 mutants and alleviated their growth defect at 19 degrees. These observations suggest that cdt2(+) plays an important role in DNA replication in both the mitotic and the meiotic life cycles of fission yeast.  相似文献   

13.
14.
Dosage-sensitive sex reversal adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (DAX1) (NR0B1), and small heterodimer partner (SHP) (NR0B2) are atypical nuclear receptor superfamily members that function primarily as corepressors through heterodimeric interactions with other nuclear receptors. Mutations in DAX1 cause adrenal hypoplasia congenita, and mutations in SHP lead to mild obesity and insulin resistance, but the mechanisms are unclear. We investigated the existence and subcellular localization of DAX1 and SHP homodimers and the dynamics of homodimerization. We demonstrated DAX1 homodimerization in the nucleus and cytoplasm, and dissociation of DAX1 homodimers upon heterodimerization with steroidogenic factor 1 (SF1) or ligand-activated estrogen receptor-alpha (ERalpha). DAX1 homodimerization involved an interaction between its amino and carboxy termini involving its LXXLL motifs and activation function (AF)-2 domain. We observed SHP homodimerization in the nucleus of mammalian cells and showed dissociation of SHP homodimers upon heterodimerization with ligand-activated ERalpha. We observed DAX1-SHP heterodimerization in the nucleus of mammalian cells and demonstrated the involvement of the LXXLL motifs and AF-2 domain of DAX1 in this interaction. We further demonstrate heterodimerization of DAX1 with its alternatively spliced isoform, DAX1A. This is the first evidence of homodimerization of individual members of the unusual NR0B nuclear receptor family and heterodimerization between its members. Our results suggest that DAX1 forms antiparallel homodimers through the LXXLL motifs and AF-2 domain. These homodimers may function as holding reservoirs in the absence of heterodimeric partners. The formation of DAX1 and SHP homodimers and DAX1-SHP and DAX1-DAX1A heterodimers suggests the possibility of novel functions independent of their coregulator roles, suggesting additional complexity in the molecular mechanisms of DAX1 and SHP action.  相似文献   

15.
16.
17.
Notch plays a protumorigenic role in many cancers including prostate cancer (PCa). Global notch inhibition of multiple Notch family members using γ-secretase inhibitors has shown efficacy in suppressing PCa growth in murine models. However, global Notch inhibition is associated with marked toxicity due to the widespread function of many different Notch family members in normal cell physiology. Accordingly, in the current study, we explored if specific inhibition of Notch1 would effectively inhibit PCa growth in a murine model. The androgen-dependent VCaP and androgen-independent DU145 cell lines were injected subcutaneously into mice. The mice were treated with either control antibody 1B7.11, anti-Notch1 antibody (OMP-A2G1), docetaxel or the combination of OMP-A2G1 and docetaxel. Tumor growth was measured using calipers. At the end of the study, tumors were assessed for proliferative response, apoptotic response, Notch target gene expression, and DNA damage response (DDR) expression. OMP-A2G1 alone inhibited tumor growth of both PCa cell lines to a greater extent than docetaxel alone. There was no additive or synergistic effect of OMP-A2G1 and docetaxel. The primary toxicity was weight loss that was controlled with dietary supplementation. Proliferation and apoptosis were affected differentially in the two cell lines. OMP-A2G1 increased expression of the DDR gene GADD45α in VCaP cells but downregulated GADD45α in Du145 cells. Taken together, these data show that Notch1 inhibition decreases PCa xenograft growth but does so through different mechanisms in the androgen-dependent VCaP cell line vs the androgen-independent DU145 cell line. These results provide a rationale for further exploration of targeted Notch inhibition for therapy of PCa.  相似文献   

18.
19.
Fgfrl1 (also known as Fgfr5; OMIM 605830) homozygous null mice have thin, amuscular diaphragms and die at birth because of diaphragm hypoplasia. FGFRL1 is located at 4p16.3, and this chromosome region can be deleted in patients with congenital diaphragmatic hernia (CDH). We examined FGFRL1 as a candidate gene for the diaphragmatic defects associated with 4p16.3 deletions and re-sequenced this gene in 54 patients with CDH. We confirmed six known coding single nucleotide polymorphisms (SNPs): c.209G > A (p.Pro20Pro), c.977G > A (p.Pro276Pro), c.1040T > C (p.Asp297Asp), c.1234C > A (p.Pro362Gln), c.1420G > T (p.Arg424Leu), and c.1540C > T (p.Pro464Leu), but we did not identify any gene mutations. We genotyped additional CDH patients for four of these six SNPs, including the three non-synonymous SNPs, to make a total of 200 chromosomes, and found that the allele frequency for the four SNPs, did not differ significantly between patients and normal controls (p ≥ 0.05). We then used Affymetrix Genechip® Mouse Gene 1.0 ST arrays and found eight genes with significantly reduced expression levels in the diaphragms of Fgfrl1 homozygous null mice when compared with wildtype mice—Tpm3, Fgfrl1 (p = 0.004), Myl2, Lrtm1, Myh4, Myl3, Myh7 and Hephl1. Lrtm1 is closely related to Slit3, a protein associated with herniation of the central tendon of the diaphragm in mice. The Slit proteins are known to regulate axon branching and cell migration, and inhibition of Slit3 reduces cell motility and decreases the expression of Rac and Cdc42, two genes that are essential for myoblast fusion. Further studies to determine if Lrtm1 has a similar function to Slit3 and if reduced Fgfrl1 expression can cause diaphragm hypoplasia through a mechanism involving decreased myoblast motility and/or myoblast fusion, seem indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号