首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In neurodegenerative disorders, activated glial cells overproduce nitric oxide (NO), which causes neurotoxicity. Inducible NO synthase (iNOS) is a potential therapeutic target in neurodegenerative diseases. Here, we examined the action of fucoidan, a high-molecular-weight sulfated polysaccharide, on tumor necrosis factor-α (TNF-α)- and interferon-γ (IFN-γ)-induced NO production in C6 glioma cells. Fucoidan suppressed TNF-α- and IFN-γ-induced NO production and iNOS expression. In addition, fucoidan inhibited TNF-α- and IFN-γ-induced AP-1, IRF-1, JAK/STAT and p38 mitogen-activated protein kinase (MAPK) activation and induced scavenger receptor B1 (SR-B1) expression. Blocking of SR-B1 did not reverse the inhibitory effect of fucoidan on TNF-α- and IFN-γ- stimulated NO production. However, inhibition of SR-B1 expression by siRNA increased iNOS expression and p38 phosphorylation in TNF-α- and IFN-γ-stimulated C6 cells.Overall, p38 MAPK, AP-1, JAK/STAT and IRF-1 play an important role in the inhibitory effect of fucoidan on TNF-α- and IFN-γ-stimulated NO production, and intracellular SR-B1 expression may be related to the inhibition of iNOS expression by fucoidan via regulation of p38 phosphorylation. The present results also suggest that fucoidan could be a potential therapeutic agent for treating inflammatory-related neuronal injury in neurological disorders.  相似文献   

2.
Previously, we have shown that an increased expression level of iNOS but a reduction in the expression of eNOS is associated with increased oxidative stress markers in CCl?-induced experimental liver fibrosis. The present study aimed to investigate the effect of L-arginine and 5-methylisothiourea hemisulfate (SMT) in the expression of profibrogenic factors in chronic liver injury. ICR mice were treated with CCl? with or without treatment of L-arginine, an NO donor, or SMT, an iNOS inhibitor. The expression of matrix metalloptroteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), α-smooth muscle actin (α-SMA), tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2) were investigated by RT-PCR. The activity of the MMP-2 and MMP-9 were measured by zymography. Our results showed that CCl?-treated mice showed significant up-regulation of expression of pro-fibrogenic factors, TNF-α and COX-2. Treatment with L-arginine or SMT showed a significant reduction in CCl?-induced expression of these pro-fibrogenic factors, TNF-α and COX-2. In conclusion, both SMT and L-arginine effectively attenuated the progression of CCl?-induced liver fibrosis. SMT suppresses iNOS mediated NO production. However, L-arginine augments NO production. The similar effect of the two drugs on liver fibrosis indicates that there may be two distinct pathways of NOS mediated fibrogenesis in chronic liver injury by iNOS and eNOS. Our results suggest that eNOS-mediated liver fibrogenesis may play a more important role than that of iNOS in chronic liver injury. Taken together, these results support the contention that NO plays an active role in the progression of liver fibrosis and hepatocellular damage.  相似文献   

3.
O-N-acetylglucosaminylation is a reversible post-translational modification which presents a dynamic and highly regulated interplay with phosphorylation. New insights suggest that O-GlcNAcylation might be involved in striated muscle physiology, in particular in contractile properties such as the calcium activation parameters. By the inhibition of O-GlcNAcase, we investigated the effect of the increase of soleus O-GlcNAcylation level on the contractile properties by establishing T/pCa relationships. We increased the O-GlcNAcylation level on soleus biopsies performing an organ culture of soleus treated or not with PUGNAc or Thiamet-G, two O-GlcNAcase inhibitors. The enhancement of O-GlcNAcylation pattern was associated with an increase of calcium affinity on slow soleus skinned fibers. Analysis of the glycoproteins pattern showed that this effect is solely due to O-GlcNAcylation of proteins extracted from skinned biopsies. We also characterized the O-GlcNAcylated contractile proteins using a proteomic approach, and identified among others troponin T and I as being O-GlcNAc modified. We quantified the variation of O-GlcNAc level on all these identified proteins, and showed that several regulatory contractile proteins, predominantly fast isoforms, presented a drastic increase in their O-GlcNAc level. Since the only slow isoform of contractile protein presenting an increase of O-GlcNAc level was MLC2, the effect of enhanced O-GlcNAcylation pattern on calcium activation parameters could involve the O-GlcNAcylation of sMLC2, without excluding that an unidentified O-GlcNAc proteins, such as TnC, could be potentially involved in this mechanism. All these data strongly linked O-GlcNAcylation to the modulation of contractile activity of skeletal muscle.  相似文献   

4.
In this study, we investigated the mechanisms underlying the anti-inflammatory effects of honokiol in tumor necrosis factor (TNF)-α-stimulated rheumatoid arthritis synovial fibroblasts (RASFs). RASFs pre-treated with honokiol (0-20 μM) were stimulated with TNF-α (20 ng/ml). The levels of prostaglandin E2 (PGE2), nitric oxide (NO), soluble intercellular adhesion molecule-1 (sICAM-1), transforming growth factor-β1 (TGF-β1), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1α (MIP-1α) in supernatants were determined by enzyme-linked immunosorbent assay (ELISA) and Griess assay. In addition, protein expression levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and phosphorylated Akt, nuclear factor kappa B (NFκB), and extracellular signal-regulated kinase (ERK)1/2 were determined by western blot. The expression of NFκB-p65 was assessed by immunocytochemical analysis. TNF-α treatment significantly up-regulated the levels of PGE2, NO, sICAM-1, TGF-β1, MCP-1, and MIP-1α in the supernatants of RASFs, increased the protein expression of COX-2, iNOS, and induced phosphorylation of Akt, IκB-α, NFκB, and ERK1/2 in RASFs. TNF-α-induced expression of these molecules was inhibited in a dose-dependent manner by pre-treatment with honokiol. The inhibitory effect of honokiol on NFκB-p65 activity was also confirmed by immunocytochemical analysis. In conclusion, honokiol is a potential inhibitor of TNF-α-induced expression of inflammatory factors in RASFs, which holds promise as a potential anti-inflammatory drug.  相似文献   

5.
The 26S proteasome plays a fundamental role in almost all eukaryotic cells, including vascular endothelial cells. However, it remains largely unknown how proteasome functionality is regulated in the vasculature. Endothelial nitric oxide (NO) synthase (eNOS)-derived NO is known to be essential to maintain endothelial homeostasis. The aim of the present study was to establish the connection between endothelial NO and 26S proteasome functionality in vascular endothelial cells. The 26S proteasome reporter protein levels, 26S proteasome activity, and the O-GlcNAcylation of Rpt2, a key subunit of the proteasome regulatory complex, were assayed in 26S proteasome reporter cells, human umbilical vein endothelial cells (HUVEC), and mouse aortic tissues isolated from 26S proteasome reporter and eNOS knockout mice. Like the other selective NO donors, NO derived from activated eNOS (by pharmacological and genetic approach) increased O-GlcNAc modification of Rpt2, reduced proteasome chymotrypsin-like activity, and caused 26S proteasome reporter protein accumulation. Conversely, inactivation of eNOS reversed all the effects. SiRNA knockdown of O-GlcNAc transferase (OGT), the key enzyme that catalyzes protein O-GlcNAcylation, abolished NO-induced effects. Consistently, adenoviral overexpression of O-GlcNAcase (OGA), the enzyme catalyzing the removal of the O-GlcNAc group, mimicked the effects of OGT knockdown. Finally, compared to eNOS wild type aortic tissues, 26S proteasome reporter mice lacking eNOS exhibited elevated 26S proteasome functionality in parallel with decreased Rpt2 O-GlcNAcylation, without changing the levels of Rpt2 protein. In conclusion, the eNOS-derived NO functions as a physiological suppressor of the 26S proteasome in vascular endothelial cells.  相似文献   

6.
Nitric oxide (NO) has been pointed out as being the main mediator involved in the hypotension and tissue injury taking place during sepsis. This study aimed to investigate the cellular mechanisms implicated in the acetylcholine (ACh)-induced relaxation detected in aortic rings isolated from rats submitted to cecal ligation and perforation (CLP group), 6h post-CLP. The mean arterial pressure was recorded, and the concentration-effect curves for ACh were constructed for endothelium-intact aortic rings in the absence (control) or after incubation with one of the following NO synthase inhibitors: L-NAME (non-selective), L-NNA (more selective for eNOS), 7-nitroindazole (more selective for nNOS), or 1400W (selective for iNOS). The NO concentration was determined by using confocal microscopy. The protein expression of the NOS isoforms was quantified by Western blot analysis. The prostacyclin concentration was indirectly analyzed on the basis of 6-keto-prostaglandin F(1α) (6-keto-PGF(1α)) levels measured by enzyme immunoassay. There were no differences between Sham- and CLP-operated rats in terms of the relaxation induced by acetylcholine. However, the NOS inhibitors reduced this relaxation in both groups, but this effect remained more pronounced in the CLP group as compared to the Sham group. The acetylcholine-induced NO production was higher in the rat aortic endothelial cells of the CLP group than in those of the Sham group. eNOS protein expression was larger in the CLP group, but the iNOS protein was not verified in any of the groups. The basal 6-keto-PGF(1α) levels were higher in the CLP group, but the acetylcholine-stimulated levels did not increase in CLP as much as they did in the Sham group. Taken together, our results show that the augmented NO production in sepsis syndrome elicited by cecal ligation and perforation is due to eNOS up-regulation and not to iNOS.  相似文献   

7.
HS Chung  H Kim  H Bae 《Neurochemical research》2012,37(10):2117-2124
Phenelzine is a potent monoamine oxidase inhibitor that is used in patients with depression. It is also well known that nitric oxide (NO) synthase inhibitors show preclinical antidepressant-like properties, which suggests that NO is involved in the pathogenesis of depression. The purpose of this study was to determine if phenelzine affects the production of NO and tumor necrosis factor-alpha (TNF-α) in activated microglia cells. BV-2 microglia cells and primary microglia cells were cultured in DMEM and DMEM/F12 and then cells were treated with LPS or LPS plus phenelzine for 24?h. The culture medium was collected for determination of NO, TNF-α, and IL-6 and cells were harvested by lysis buffer for Western blot analysis. Phenelzine increased the lipopolysaccharide (LPS)-induced expression of inducible nitric oxide synthase (iNOS), as well as the release of TNF-α and IL-6 in BV-2 microglia cells. It is also confirmed that phenelzine increased the levels of NO, TNF-α and IL-6 in LPS-activated primary microglia cells. Phenelzine increased nuclear translocation of NF-κB by phosphorylation of IκB-α in LPS-activated microglia cells. These findings suggest that high doses of phenelzine could aggravate inflammatory responses in microglia cells that are mediated by NO and TNF-α.  相似文献   

8.
9.
Lentinan (LNT), a β-glucan from the fruiting bodies of Lentinus edodes, is well known to have immunomodulatory activity. NO and TNF-α are associated with many inflammatory diseases. In this study, we investigated the effects of LNT extracted by sonication (LNT-S) on the NO and TNF-α production in LPS-stimulated murine RAW 264.7 macrophages. The results suggested that treatment with LNT-S not only resulted in the striking inhibition of TNF-α and NO production in LPS-activated macrophage RAW 264.7 cells, but also the protein expression of inducible NOS (iNOS) and the gene expression of iNOS mRNA and TNF-α mRNA. It is surprising that LNT-S enhanced LPS-induced NF-κB p65 nuclear translocation and NF-κB luciferase activity, but severely inhibited the phosphorylation of JNK1/2 and ERK1/2. The neutralizing antibodies of anti-Dectin-1 and anti-TLR2 hardly affected the inhibition of NO production. All of these results suggested that the suppression of LPS-induced NO and TNF-α production was at least partially attributable to the inhibition of JNK1/2 and ERK1/2 activation. This work discovered a promising molecule to control the diseases associated with overproduction of NO and TNF-α.  相似文献   

10.
11.
Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is responsible for sepsis-induced hypotension and plays a major contributory role in the ensuing multiorgan failure. The present study aimed to elucidate the role of endothelial NO in lipopolysaccharide (LPS)-induced iNOS expression, in isolated rat aortic rings. Exposure to LPS (1 mug/ml, 5 h) resulted in a reversal of phenylephrine precontracted tone in aortic rings (70.7 +/- 3.2%). This relaxation was associated with iNOS expression and NF-kappaB activation. Positive immunoreactivity for iNOS protein was localized in medial and adventitial layers of LPS-treated aortic rings. Removal of the endothelium rendered aortic rings resistant to LPS-induced relaxation (8.9 +/- 4.5%). Western blotting of these rings demonstrated an absence of iNOS expression. However, treatment of endothelium-denuded rings with the NO donor, diethylamine-NONOate (0.1 mum), restored LPS-induced relaxation (61.6 +/- 6.6%) and iNOS expression to levels comparable with arteries with intact endothelium. Blockade of endothelial NOS (eNOS) activation using geldanamycin and radicicol, inhibitors of heat shock protein 90, in endothelium-intact arteries suppressed both LPS-induced relaxation and LPS-induced iNOS expression (9.0 +/- 8.0% and 2.0 +/- 6.2%, respectively). Moreover, LPS treatment (12.5 mg/kg, intravenous, 15 h) of wild-type mice resulted in profound elevation of plasma [NO(x)] measurements that were reduced by approximately 50% in eNOS knock-out animals. Furthermore, LPS-induced changes in vascular reactivity and iNOS expression evident in wild-type tissues were profoundly suppressed in tissues taken from eNOS knockout animals. Together, these data suggest that eNOS-derived NO, in part via activation of NF-kappaB, regulates iNOS-induction by LPS. This study provides the first demonstration of a proinflammatory role of vascular eNOS in sepsis.  相似文献   

12.
13.
14.
Reactive oxygen species (ROS) and pro-inflammatory cytokines are crucial in ventricular remodelling, such as inflammation-associated myocarditis. We previously reported that tumour necrosis factor-α (TNF-α)-induced ROS in human aortic smooth muscle cells is mediated by NADPH oxidase subunit Nox4. In this study, we investigated whether TNF-α-induced ventricular remodelling was mediated by Nox2 and/or Nox4. An intravenous injection of murine TNF-α was administered to a group of mice and saline injection was administered to controls. Echocardiography was performed on days 1, 7 and 28 post-injection. Ventricular tissue was used to determine gene and protein expression of Nox2, Nox4, ANP, interleukin (IL)-1β, IL-2, IL-6, TNF-α and to measure ROS. Nox2 and Nox4 siRNA were used to determine whether or not Nox2 and Nox4 mediated TNF-α-induced ROS and upregulation of IL-1β and IL-6 in adult human cardiomyocytes. Echocardiography showed a significant increase in left ventricular end-diastolic and left ventricular end-systolic diameters, and a significant decrease in the ejection fraction and fractional shortening in mice 7 and 28 days after TNF-α injection. These two groups of mice showed a significant increase in ventricular ROS, ANP, IL-1β, IL-2, IL-6 and TNF-α proteins. Nox2 and Nox4 mRNA and protein levels were also sequentially increased. ROS was significantly decreased by inhibitors of NADPH oxidase, but not by inhibitors of other ROS production systems. Nox2 and Nox4 siRNA significantly attenuated TNF-α-induced ROS and upregulation of IL-1β and IL-6 in cardiomyocytes. Our study highlights a novel TNF-α-induced chronic ventricular remodelling mechanism mediated by sequential regulation of Nox2 and Nox4 subunits.  相似文献   

15.
16.
Histone deacetylases (HDACs) play vital roles in the pathophysiology of heart failure, which is associated with mitochondrial dysfunction. Tumor necrosis factor-α (TNF-α) contributes to the genesis of heart failure and impairs mitochondria. This study evaluated the role of HDACs in TNF-α-induced mitochondrial dysfunction and investigated their therapeutic potential and underlying mechanisms. We measured mitochondrial oxygen consumption rate (OCR) and ATP production using Seahorse XF24 extracellular flux analyzer and bioluminescent assay in control and TNF-α (10 ng/ml, 24 h)-treated HL-1 cells with or without HDAC inhibition. TNF-α increased Class I and II (but not Class IIa) HDAC activities (assessed by Luminescent) with enhanced expressions of Class I (HDAC1, HDAC2, HDAC3, and HDAC8) but not Class IIb HDAC (HDAC6 and HDAC10) proteins in HL-1 cells. TNF-α induced mitochondrial dysfunction with impaired basal, ATP-linked, and maximal respiration, decreased cellular ATP synthesis, and increased mitochondrial superoxide production (measured by MitoSOX red fluorescence), which were rescued by inhibiting HDACs with MPT0E014 (1 μM, a Class I and IIb inhibitor), or MS-275 (1 μM, a Class I inhibitor). MPT0E014 reduced TNF-α-decreased complex I and II enzyme (but not III or IV) activities (by enzyme activity microplate assays). Our results suggest that Class I HDAC actions contribute to TNF-α-induced mitochondrial dysfunction in cardiomyocytes with altered complex I and II enzyme regulation. HDAC inhibition improves dysfunctional mitochondrial bioenergetics with attenuation of TNF-α-induced oxidative stress, suggesting the therapeutic potential of HDAC inhibition in cardiac dysfunction.  相似文献   

17.
Combinatory responses of proinflamamtory cytokines have been examined on the nitric oxide-mediated function in cultured mouse calvarial osteoblasts. Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) induced iNOS gene expression and NO production, although these actions were inhibited by L-NG-monomethylarginine (L-NMMA) and decreased alkaline phosphatase (ALPase) activity. Furthermore, NO donors, sodium nitroprusside (SNP) and NONOate dose-dependently elevated ALPase activity. In contrast, transforming-growth factor-β (TGF-β) decreased NO production stimulated by IL-1β, TNF-α and interferon-γ (IFN-γ). iNOS was expressed by mouse calvarial osteoblast cells after stimulation with IL-1β, TNF-α, and IFN-γ. Incubation of mouse calvarial osteoblast cells with the cytokines inhibited growth and ALPase activity. However, TGF-β-treatment abolished these effects of IL-1β, TNF-α and IFN-γ on growth inhibition and stimulation of ALPase in mouse calvarial osteoblast cells. In contrast, IL-1β, TNF-α, and IFN-γ exerted growth-inhibiting effects on mouse calvarial osteoblast cells which were partly NO-dependent. The results suggest that NO may act predominantly as a modulator of cytokine-induced effects on mouse calvarial osteoblast cells and TGF-β is a negative regulator of the NO production stimulated by IL-1β, TNF-α and IFN-γ.  相似文献   

18.
BackgroundRice bran enzymatic extract (RBEE) used in this study has shown beneficial activities against dyslipidemia, hyperinsulinemia and hypertension. Our aim was to investigate the effects of a diet supplemented with RBEE in vascular impairment developed in obese Zucker rats and to evaluate the main mechanisms mediating this action.Methods and resultsObese Zucker rats were fed a 1% and 5% RBEE-supplemented diet (O1% and O5%). Obese and their lean littermates fed a standard diet were used as controls (OC and LC, respectively). Vascular function was evaluated in aortic rings in organ baths. The role of nitric oxide (NO) was investigated by using NO synthase (NOS) inhibitors. Aortic expression of endothelial NOS (eNOS), inducible NOS (iNOS), tumor necrosis factor (TNF)-α and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits and superoxide production in arterial wall were determined. Endothelial dysfunction and vascular hyperreactivity to phenylephrine in obese rats were ameliorated by RBEE treatment, particularly with 1% RBEE. Up-regulation of eNOS protein expression in RBEE-treated aortas should contribute to this activity. RBEE attenuated vascular inflammation by reducing aortic iNOS and TNF-α expression. Aortas from RBEE-treated groups showed a significant decrease of superoxide production and down-regulation of NADPH oxidase subunits.ConclusionRBEE treatment restored endothelial function and vascular contractility in obese Zucker rats through a reduction of vascular inflammation and oxidative stress. These results show the nutraceutical potential of RBEE to prevent obesity-related vascular complications.  相似文献   

19.
Liu H  Li M  Wang P  Wang F 《Cytokine》2011,56(3):581-588
Proinflammatory cytokines play vital roles in intestinal barrier function disruption. YC-1 has been reported to have potent anti-inflammatory properties, and to be a potential agent for sepsis treatment. Here, we investigated the protective effect of YC-1 against intestinal barrier dysfunction caused by interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). To assess the protective effect of YC-1 on intestinal barrier function, Caco-2 monolayers treated with simultaneous IFN-γ and TNF-α were used to measure transepithelial electrical resistance (TER) and paracellular permeability. To determine the mechanisms involved in the protective action of YC-1, expression and distribution of tight junction proteins ZO-1 and occludin in Caco-2 monolayers challenged with simultaneous IFN-γ and TNF-α were analyzed by Western blot and immunofluorescence, respectively. Expressions of phosphorylated myosin light chain (MLC), MLC kinase (MLCK) and hypoxia-inducible factor-1α (HIF-1α) were analyzed by Western blot in IFN-γ and TNF-α-treated Caco-2 monolayers. It was found that YC-1 attenuated barrier dysfunction caused by IFN-γ and TNF-α, and also prevented IFN-γ and TNF-α-induced morphological redistribution of tight junction proteins ZO-1 and occludin in Caco-2 monolayers. In addition, YC-1 suppressed IFN-γ and TNF-α-induced upregulation of MLC phosphorylation and MLCK protein expression. Furthermore, enhanced expression of HIF-1α in Caco-2 monolayers treated with IFN-γ and TNF-α was also suppressed by YC-1. It is suggested that YC-1, by downregulating MLCK expression, attenuates intestinal barrier dysfunction induced by IFN-γ and TNF-α, in which HIF-1α inhibition, at least in part, might by involved. YC-1 may be a potential agent for treatment of intestinal barrier disruption in inflammation.  相似文献   

20.
Conjugated linoleic acids (CLA) produced by Lactobacillus acidophilus was reported to decrease the activation of nuclear factor-kappa B. CLA was suggested as one of the anti-inflammatory molecular mechanisms of probiotics. In the present study, the effects of CLA on H. pylori-induced multiple responses were evaluated. IL-8, TNF-α and iNOS were measured in mRNA and/or protein levels in AGS cells after pretreatment with CLA or CLA-containing conditioned medium (CM) produced by Lactobacillus acidophilus or Lactobacillus plantarum. The increased expressions of IL-8 mRNA/protein and TNF-α mRNA were significantly suppressed by pretreatment with CM or CLA. The levels of IL-8 protein and TNF-α mRNA were suppressed by CM pretreatment better than CLA. The expression of iNOS mRNA was also significantly inhibited by CM pretreatment. These results suggest that the suppression of multiple mediators by CLA-containing CM plays a key role in the anti-inflammatory and anti-carcinogenic effects of probiotics on H. pylori infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号