首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian target of rapamycin (mTOR) is a kinase that plays a key role in a wide array of cellular processes and exists in two distinct functional complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Although mTORC2 is primarily activated by growth factors, mTORC1 is regulated by numerous extracellular and intracellular signals such as nutrients, growth factors, and cellular redox. Previous study has shown that cysteine oxidants sufficiently activate mTORC1 activity under amino acid-depleted conditions and that a reducing agent effectively suppresses amino acid-induced mTORC1 activity, thereby raising the possibility that redox-sensitive mechanisms underlie amino acid-dependent mTORC1 regulation. However, the molecular mechanism by which redox regulates mTORC1 activity is not well understood. In this study, we show that the redox-sensitive regulation of mTORC1 occurs via Rheb but not the Rag small GTPase. Enhancing cellular redox potential with cysteine oxidants significantly increases Rheb GTP levels. Importantly, modulation of the cellular redox potential with a cysteine oxidant or reducing agent failed to alter mTORC1 activity in TSC1(-/-) or TSC2(-/-) mouse embryonic fibroblast cells. Furthermore, a cysteine oxidant has little effect on mTOR localization but sufficiently activates mTORC1 activity in both p18(-/-) and control mouse embryonic fibroblast cells, suggesting that the redox-sensitive regulation of mTORC1 occurs independent of the Ragulator·Rag complex. Taken together, our results suggest that the TSC complex plays an important role in redox-sensitive mTORC1 regulation and argues for the activation of mTORC1 in places other than the lysosome upon inhibition of the TSC complex.  相似文献   

2.
The tumor suppressor tuberin, encoded by the Tuberous Sclerosis Complex (TSC) gene TSC2, negatively regulates the mammalian target of rapamycin (mTOR) pathway, which plays a key role in the control of cell growth and proliferation. In addition to naturally occurring mutations, several kinases including Akt, RSK1, and ERK are known to phosphorylate and inactivate tuberin. We demonstrate a novel mechanism of tuberin inactivation through ubiquitination by Pam, a putative RING finger-containing E3 ubiquitin (Ub) ligase in mammalian cells. We show that Pam associates with E2 ubiquitin-conjugating enzymes, and tuberin can be ubiquitinated by Pam through its RING finger domain. Tuberin ubiquitination is independent of its phosphorylation by Akt, RSK1, and ERK kinases. Pam is also self-ubiquitinated through its RING finger domain. Moreover, the TSC1 protein hamartin, which forms a heterodimer with tuberin, protects tuberin from ubiquitination by Pam. However, TSC1 fails to protect a disease-associated missense mutant of TSC2 from ubiquitination by Pam. Furthermore, Pam knockdown by RNA interference (RNAi) in rat primary neurons elevates the level of tuberin, and subsequently inhibits the mTOR pathway. Our results provide novel evidence that Pam can function as an E3 Ub ligase toward tuberin and regulate mTOR signaling, suggesting that Pam can in turn regulate cell growth and proliferation as well as neuronal function through the TSC/mTOR pathway in mammalian cells.  相似文献   

3.
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates processes including mRNA translation, proliferation, and survival. By assembling with different cofactors, mTOR forms two complexes with distinct biological functions. Raptor-bound mTOR (mTORC1) governs cap-dependent mRNA translation, whereas mTOR, rictor, and mSin1 (mTORC2) activate the survival and proliferative kinase Akt. How the balance between the competing needs for mTORC1 and -2 is controlled in normal cells and deregulated in disease is poorly understood. Here, we show that the ubiquitin hydrolase UCH-L1 regulates the balance of mTOR signaling by disrupting mTORC1. We find that UCH-L1 impairs mTORC1 activity toward S6 kinase and 4EBP1 while increasing mTORC2 activity toward Akt. These effects are directly attributable to a dramatic rearrangement in mTOR complex assembly. UCH-L1 disrupts a complex between the DDB1-CUL4 ubiquitin ligase complex and raptor and counteracts DDB1-CUL4-mediated raptor ubiquitination. These events lead to mTORC1 dissolution and a secondary increase in mTORC2. Experiments in Uchl1-deficient and transgenic mice suggest that the balance between these pathways is important for preventing neurodegeneration and the development of malignancy. These data establish UCH-L1 as a key regulator of the dichotomy between mTORC1 and mTORC2 signaling.  相似文献   

4.
Accumulating evidence indicates that the tuberous sclerosis complex 1 (TSC1), a tumor suppressor that acts by inhibiting mTOR signaling, plays an important role in the immune system. We report here that TSC1 differentially regulates mTOR complex 1 (mTORC1) and mTORC2/Akt signaling in B cells. TSC1 deficiency results in the accumulation of transitional-1 (T1) B cells and progressive losses of B cells as they mature beyond the T1 stage. Moreover, TSC1KO mice exhibit a mild defect in the serum antibody responses or rate of Ig class-switch recombination after immunization with a T-cell-dependent antigen. In contrast to a previous report, we demonstrate that both constitutive Peyer’s patch germinal centers (GCs) and immunization-induced splenic GCs are unimpaired in TSC1-deficient (TSC1KO) mice and that the ratio of GC B cells to total B cells is comparable in WT and TSC1KO mice. Together, our data demonstrate that TSC1 plays important roles for B cell development, but it is dispensable for GC formation and serum antibody responses.  相似文献   

5.
Cell growth is influenced by environmental stress. Mammalian target of rapamycin (mTOR), the central regulator of cell growth, can be positively or negatively regulated by various stresses through different mechanisms. The p38 MAP kinase pathway is essential in cellular stress responses. Activation of MK2, a downstream kinase of p38α, enhances mTOR complex 1 (mTORC1) activity by preventing TSC2 from inhibiting mTOR activation. The p38β-PRAK cascade targets Rheb to inhibit mTORC1 activity upon glucose depletion. Here we show the activation of p38β participates in activation of mTOR complex 1 (mTORC1) induced by arsenite but not insulin, nutrients, anisomycin, or H(2)O(2). Arsenite treatment of cells activates p38β and induces interaction between p38β and Raptor, a regulatory component of mTORC1, resulting in phosphorylation of Raptor on Ser(863) and Ser(771). The phosphorylation of Raptor on these sites enhances mTORC1 activity, and contributes largely to arsenite-induced mTORC1 activation. Our results shown here and in previous work demonstrate that the p38 pathway can regulate different components of the mTORC1 pathway, and that p38β can target different substrates to either positively or negatively regulate mTORC1 activation when a cell encounters different environmental stresses.  相似文献   

6.
7.
The lack of the neuropeptide orexin, also known as hypocretin, results in narcolepsy, a chronic sleep disorder characterized by frequent sleep/cataplexy attacks and rapid eye movement sleep abnormalities. However, the downstream pathways of orexin signaling are not clearly understood. Here, we show that orexin activates the mTOR pathway, a central regulator of cell growth and metabolism, in the mouse brain and multiple recombinant cell lines that express the G protein-coupled receptors (GPCRs), orexin 1 receptor (OX1R) or orexin 2 receptor (OX2R). This orexin/GPCR-stimulated mTOR activation is sensitive to rapamycin, an inhibitor of mTOR complex 1 (mTORC1) but is independent of two well known mTORC1 activators, Erk and Akt. Rather, our studies indicate that orexin activates mTORC1 via extracellular calcium influx and the lysosome pathway involving v-ATPase and Rag GTPases. Moreover, a cytoplasmic calcium transient is sufficient to mimic orexin/GPCR signaling to mTORC1 activation in a v-ATPase-dependent manner. Together, our studies suggest that the mTORC1 pathway functions downstream of orexin/GPCR signaling, which plays a crucial role in many physiological and metabolic processes.  相似文献   

8.
Lewcock JW  Genoud N  Lettieri K  Pfaff SL 《Neuron》2007,56(4):604-620
To discover new genes involved in axon navigation, we conducted a forward genetic screen for recessive alleles affecting motor neuron pathfinding in GFP reporter mice mutagenized with ENU. In Magellan mutant embryos, motor axons were error prone and wandered inefficiently at choice points within embryos, but paradoxically responded to guidance cues with normal sensitivity in vitro. We mapped the Magellan mutation to the Phr1 gene encoding a large multidomain E3 ubiquitin ligase. Phr1 is associated with the microtubule cytoskeleton within neurons and selectively localizes to axons but is excluded from growth cones. Motor and sensory neurons from Magellan mutants display abnormal morphologies due to a breakdown in the polarized distribution of components that segregate between axons and growth cones. The Magellan phenotype can be reversed by stabilizing microtubules with taxol or inhibiting p38MAPK activity. Thus, efficacious pathfinding requires Phr1 activity for coordinating the cytoskeletal organization that distinguishes axons from growth cones.  相似文献   

9.
Phosphatidic acid (PA) is a critical mediator of mitogenic activation of mammalian target of rapamycin complex 1 (mTORC1) signaling, a master regulator of mammalian cell growth and proliferation. The mechanism by which PA activates mTORC1 signaling has remained unknown. Here, we report that PA selectively stimulates mTORC1 but not mTORC2 kinase activity in cells and in vitro. Furthermore, we show that PA competes with the mTORC1 inhibitor, FK506 binding protein 38 (FKBP38), for mTOR binding at a site encompassing the rapamycin-FKBP12 binding domain. This leads to PA antagonizing FKBP38 inhibition of mTORC1 kinase activity in vitro and rescuing mTORC1 signaling from FKBP38 in cells. Phospholipase D 1, a PA-generating enzyme that is an established upstream regulator of mTORC1, is found to negatively affect mTOR-FKBP38 interaction, confirming the role of endogenous PA in this regulation. Interestingly, removal of FKBP38 alone is insufficient to activate mTORC1 kinase and signaling, which require PA even when the FKBP38 level is drastically reduced by RNAi. In conclusion, we propose a dual mechanism for PA activation of mTORC1: PA displaces FKBP38 from mTOR and allosterically stimulates the catalytic activity of mTORC1.  相似文献   

10.
11.
The mammalian target of rapamycin complex 1 (mTORC1: mTOR-raptor interaction) and heat shock protein 70 (Hsp70) regulate various cellular processes and are crucial for the progression of many cancers and metabolic diseases. In the recent study, we reported that interaction of Hsp70 with tuberous sclerosis complex 1 (TSC1) regulated apoptosis. This study was designed to elucidate the underlying mechanism in Cos-1 cells. Here, we show that N-formyl-3,4-methylenedioxy-benzylidene-γ-butyrolaetam (KNK437), which inhibits the expression level of Hsp70, abrogated phosphorylation of mTOR and S6K in response to insulin, and inhibited mTORC1 activity via disruption of an interaction between mTOR and raptor. In addition, KNK437 did not alter TSC1/2 complex formation. Furthermore, KNK437 inhibited the mTOR-raptor interaction on the outer membrane of the mitochondria and triggered caspase-3 activation. A reduction in the level of Hsp70 could result in the inhibition of the mTORC1 signaling pathway, thereby inducing apoptosis.  相似文献   

12.
cAMP and mTOR signalling pathways control a number of critical cellular processes including metabolism, protein synthesis, proliferation and cell survival and therefore understanding the signalling events which integrate these two signalling pathways is of particular interest. In this study, we show that the pharmacological elevation of [cAMP]i in mouse embryonic fibroblasts (MEFs) and human embryonic kidney 293 (HEK293) cells inhibits mTORC1 activation via a PKA-dependent mechanism. Although the inhibitory effect of cAMP on mTOR could be mediated by impinging on signalling cascades (i.e. PKB, MAPK and AMPK) that inhibit TSC1/2, an upstream negative regulator of mTORC1, we show that cAMP inhibits mTORC1 in TSC2 knockout (TSC2−/−) MEFs. We also show that cAMP inhibits insulin and amino acid-stimulated mTORC1 activation independently of Rheb, Rag GTPases, TSC2, PKB, MAPK and AMPK, indicating that cAMP may act independently of known regulatory inputs into mTOR. Moreover, we show that the prolonged elevation in [cAMP]i can also inhibit mTORC2. We provide evidence that this cAMP-dependent inhibition of mTORC1/2 is caused by the dissociation of mTORC1 and 2 and a reduction in mTOR catalytic activity, as determined by its auto-phosphorylation on Ser2481. Taken together, these results provide an important insight into how cAMP signals to mTOR and down-regulates its activity, which may lead to the identification of novel drug targets to inhibit mTOR that could be used for the treatment and prevention of human diseases such as cancer.  相似文献   

13.
Metabolic fitness of T cells is crucial for immune responses against infections and tumorigenesis. Both the T cell receptor (TCR) signal and environmental cues contribute to the induction of T cell metabolic reprogramming, but the underlying mechanism is incompletely understood. Here, we identified the E3 ubiquitin ligase Peli1 as an important regulator of T cell metabolism and antitumor immunity. Peli1 ablation profoundly promotes tumor rejection, associated with increased tumor‐infiltrating CD4 and CD8 T cells. The Peli1‐deficient T cells display markedly stronger metabolic activities, particularly glycolysis, than wild‐type T cells. Peli1 controls the activation of a metabolic kinase, mTORC1, stimulated by both the TCR signal and growth factors, and this function of Peli1 is mediated through regulation of the mTORC1‐inhibitory proteins, TSC1 and TSC2. Peli1 mediates non‐degradative ubiquitination of TSC1, thereby promoting TSC1‐TSC2 dimerization and TSC2 stabilization. These results establish Peli1 as a novel regulator of mTORC1 and downstream mTORC1‐mediated actions on T cell metabolism and antitumor immunity.  相似文献   

14.
The mammalian target of rapamycin (mTOR) is a protein kinase that forms two functionally distinct complexes important for nutrient and growth factor signaling. Both complexes phosphorylate a hydrophobic motif on downstream protein kinases, which contributes to the activation of these kinases. mTOR complex 1 (mTORC1) phosphorylates S6K1, while mTORC2 phosphorylates Akt. The TSC1-TSC2 complex is a critical negative regulator of mTORC1. However, how mTORC2 is regulated and whether the TSC1-TSC2 complex is involved are unknown. We find that mTORC2 isolated from a variety of cells lacking a functional TSC1-TSC2 complex is impaired in its kinase activity toward Akt. Importantly, the defect in mTORC2 activity in these cells can be separated from effects on mTORC1 signaling and known feedback mechanisms affecting insulin receptor substrate-1 and phosphatidylinositol 3-kinase. Our data also suggest that the TSC1-TSC2 complex positively regulates mTORC2 in a manner independent of its GTPase-activating protein activity toward Rheb. Finally, we find that the TSC1-TSC2 complex can physically associate with mTORC2 but not mTORC1. These data demonstrate that the TSC1-TSC2 complex inhibits mTORC1 and activates mTORC2, which through different mechanisms promotes Akt activation.  相似文献   

15.
The mammalian target of rapamycin (mTOR) is a protein kinase that, when present in a complex referred to as mTOR complex 1 (mTORC1), acts as an important regulator of growth and metabolism. The activity of the complex is regulated through multiple upstream signaling pathways, including those involving Akt and the extracellular-regulated kinase (ERK). Previous studies have shown that, in part, Akt and ERK promote mTORC1 signaling through phosphorylation of a GTPase activator protein (GAP), referred to as tuberous sclerosis complex 2 (TSC2), that acts as an upstream inhibitor of mTORC1. In the present study we extend the earlier studies to show that activation of the Akt and ERK pathways acts in a synergistic manner to promote mTORC1 signaling. Moreover, we provide evidence that the Akt and ERK signaling pathways converge on TSC2, and that Akt phosphorylates residues on TSC2 distinct from those phosphorylated by ERK. The results also suggest that leucine-induced stimulation of mTORC1 signaling occurs through a mechanism distinct from TSC2 and the Akt and ERK signaling pathways. Overall, the results are consistent with a model in which Akt and ERK phosphorylate distinct sites on TSC2, leading to greater repression of its GAP activity, and consequently a magnified stimulation of mTORC1 signaling, when compared with either input alone. The results further suggest that leucine acts through a mechanism distinct from TSC2 to stimulate mTORC1 signaling.  相似文献   

16.
17.
《Cellular signalling》2014,26(3):461-467
The mechanistic target of rapamycin (mTOR) in complex 1 (mTORC1) pathway integrates signals generated by hormones and nutrients to control cell growth and metabolism. The activation state of mTORC1 is regulated by a variety of GTPases including Rheb and Rags. Recently, Rho1, the yeast ortholog of RhoA, was shown to interact directly with TORC1 and repress its activation state in yeast. Thus, the purpose of the present study was to test the hypothesis that the RhoA GTPase modulates signaling through mTORC1 in mammalian cells. In support of this hypothesis, exogenous overexpression of either wild type or constitutively active (ca)RhoA repressed mTORC1 signaling as assessed by phosphorylation of p70S6K1 (Thr389), 4E-BP1 (Ser65) and ULK1 (Ser757). Additionally, RhoA·GTP repressed phosphorylation of mTORC1-associated mTOR (Ser2481). The RhoA·GTP mediated repression of mTORC1 signaling occurred independent of insulin or leucine induced stimulation. In contrast to the action of Rho1 in yeast, no evidence was found to support a direct interaction of RhoA·GTP with mTORC1. Instead, expression of caRheb, but not caRags, was able to rescue the RhoA·GTP mediated repression of mTORC1 suggesting RhoA functions upstream of Rheb to repress mTORC1 activity. Consistent with this suggestion, RhoA·GTP repressed phosphorylation of TSC2 (Ser939), PRAS40 (Thr246), Akt (Ser473), and mTORC2-associated mTOR (Ser2481). Overall, the results support a model in which RhoA·GTP represses mTORC1 signaling upstream of Akt and mTORC2.  相似文献   

18.
19.
Resveratrol (RSV) is a naturally occurring polyphenol that has been found to exert antioxidant, anti-inflammatory, and neuroprotective properties. However, how RSV exerts its beneficial health effects remains largely unknown. Here, we show that RSV inhibits insulin- and leucine-stimulated mTOR signaling in C2C12 fibroblasts via a Sirt1-independent mechanism. Treating C2C12 cells with RSV dramatically inhibited insulin-stimulated Akt, S6 kinase, and 4E-BP1 phosphorylation but had little effect on tyrosine phosphorylation of the insulin receptor and activation of the p44/42 MAPK signaling pathway. RSV treatment also partially blocked mTOR and S6 kinase phosphorylation in TSC1/2-deficient mouse embryonic fibroblasts, suggesting the presence of an inhibitory site downstream of TSC1/2. Knocking out PDK1 or suppressing AMP-activated protein kinase had little effect on leucine-stimulated mTOR signaling. On the other hand, RSV significantly increased the association between mTOR and its inhibitor, DEPTOR. Furthermore, the inhibitory effect of RSV on leucine-stimulated mTOR signaling was greatly reduced in cells in which the expression levels of DEPTOR were suppressed by RNAi. Taken together, our studies reveal that RSV inhibits leucine-stimulated mTORC1 activation by promoting mTOR/DEPTOR interaction and thus uncover a novel mechanism by which RSV negatively regulates mTOR activity.  相似文献   

20.
In higher eukaryotes, growth factors promote anabolic processes and stimulate cell growth, proliferation, and survival by activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Deregulation of PI3K/Akt signaling is linked to human diseases, including cancer and metabolic disorders. The PI3K-dependent signaling kinase complex mTORC2 (mammalian target of rapamycin complex 2) has been defined as the regulatory Ser-473 kinase of Akt. The regulation of mTORC2 remains very poorly characterized. We have reconstituted mTORC2 by its assembly in vitro or by co-expression its four essential components (rictor, SIN1, mTOR, mLST8). We show that the functional mTOR kinase domain is required for the mTORC2 activity as the Ser-473 kinase of Akt. We also found that mTOR by phosphorylation of SIN1 prevents its lysosomal degradation. Thus, the kinase domain of mTOR is required for the functional activity of mTORC2, and it controls integrity of mTORC2 by maintaining the protein stability of SIN1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号