首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compositional dissimilarity patterns of biotic communities can vary among different types of insular systems and among taxa with different dispersal abilities. In this work we examined compositional dissimilarity patterns of four avian groups, namely birds of prey, waterbirds, seabirds and landbirds, in various insular systems around the world. Compositional dissimilarity of avian communities was calculated for 25 presence-absence matrices compiled from the literature. We used generalized linear mixed-effects models to check for differences in between-island compositional dissimilarity among the aforementioned avian groups that differ in their dispersal abilities, as well as between two different types of insular systems, oceanic and continental shelf. In agreement with our original hypothesis, landbirds which have relatively poorer dispersal abilities than birds of prey and waterbirds, exhibit higher between-island compositional dissimilarity compared to these two avian groups. On the contrary, seabirds present a deviation from the expected pattern, since they show higher between-island compositional dissimilarity compared to landbirds, even though they also have better dispersal abilities than landbirds, which can be explained by the relatively irregular occurrence of proper breeding habitats among islands for this avian group. Island type (oceanic or continental shelf) does not appear to affect between-island compositional dissimilarity of avian communities. Distance, area and elevation differences among islands are positively related to compositional dissimilarity. In conclusion, compositional dissimilarity of avian communities differs between avian groups but cannot always be associated with differences in the dispersal ability among these groups.  相似文献   

2.
The influence of colonization in nested species subsets   总被引:10,自引:0,他引:10  
Biotic communities inhabiting collections of insular habitat patches often exhibit compositional patterns described as nested subsets. In nested biotas, the assemblages of species in relatively depauperate sites comprise successive subsets of species in relatively richer sites. In theory, nestedness may result from selective extinction, selective colonization, or other mechanisms, such as nested habitats. Allopatric speciation is expected to reduce nestedness. Previous studies, based largely on comparisons between land-bridge and oceanic archipelagos, have emphasized the role of selective extinction. However, colonization could also be important in generating strong patterns of nestedness. We apply a recently published index of nestedness to more than 50 island biogeographic data sets, and examine the roles of colonization, extinction, endemism, and, to a limited extent, habitat variability on the degree on nestedness. Most data sets exhibit a significant degree of nestedness, although there is no general tendency for land-bridge biotas to appear more nested than oceanic ones. Endemic species are shown to generally reduce nestedness. Comparisons between groups of non-endemic species differing in overwater or inter-patch dispersal ability indicate that superior dispersers generally exhibit a greater degree of nestedness than poorer dispersers, a result opposite that expected if colonization were a less predictable process than extinction. These results suggest that frequent colonization is likely to enhance nestedness, thereby increasing the compositional overlap among insular biotas. The prevalence of selective extinction in natural communities remains in question. The importance of colonization in generating and maintaining nested subsets suggests that (1) minimum critical areas will be difficult to determine from patterns of species distributions on islands; (2) multiple conservation sites are likely to be required to preserve communities in subdivided landscapes; and (3) management of dispersal processes may be as important to preserving species and communities as is minimizing extinctions.  相似文献   

3.
4.
Vicariance biogeography emerged several decades ago from the fusion of cladistics and plate tectonics, and quickly came to dominate historical biogeography. The field has since been largely constrained by the notion that only processes of vicariance and not dispersal offer testable patterns and refutable hypotheses, dispersal being a random process essentially adding only noise to a vicariant system. A consequence of this thinking seems to have been a focus on the biogeography of continents and continental islands, considering the biogeography of oceanic islands less worthy of scientific attention because, being dependent on stochastic dispersal, it was uninteresting. However, the importance of dispersal is increasingly being recognized, and here we stress its fundamental role in the generation of biodiversity on oceanic islands that have been created in situ , never connected to larger land masses. Historical dispersal patterns resulting in modern distributions, once considered unknowable, are now being revealed in many plant and animal taxa, in large part through the analysis of polymorphic molecular markers. We emphasize the profound evolutionary insights that oceanic island biodiversity has provided, and the fact that, although small in area, oceanic islands harbour disproportionately high biodiversity and numbers of endemic taxa. We further stress the importance of continuing research on mechanisms generating oceanic island biodiversity, especially detection of general, non-random patterns of dispersal, and hence the need to acknowledge oceanic dispersal as significant and worthy of research.  相似文献   

5.

Background

Biogeography models typically focus on explaining patterns through island properties, such as size, complexity, age, and isolation. Such models explain variation in the richness of island biotas. Properties of the organisms themselves, such as their size, age, and dispersal abilities, in turn may explain which organisms come to occupy, and diversify across island archipelagos. Here, we restate and test the intermediate dispersal model (IDM) predicting peak diversity in clades of relatively intermediate dispersers.

Methodology

We test the model through a review of terrestrial and freshwater organisms in the western Indian Ocean examining the correlation among species richness and three potential explanatory variables: dispersal ability quantified as the number of estimated dispersal events, average body size for animals, and clade age.

Conclusions

Our study supports the IDM with dispersal ability being the best predictor of regional diversity among the explored variables. We find a weaker relationship between diversity and clade age, but not body size. Principally, we find that richness strongly and positively correlates with dispersal ability in poor to good dispersers while a prior study found a strong decrease in richness with increased dispersal ability among excellent dispersers. Both studies therefore support the intermediate dispersal model, especially when considered together. We note that many additional variables not here considered are at play. For example, some taxa may lose dispersal ability subsequent to island colonization and some poor dispersers have reached high diversity through within island radiations. Nevertheless, our findings highlight the fundamental importance of dispersal ability in explaining patterns of biodiversity generation across islands.  相似文献   

6.
Aim Most studies of avian insular adaptations have focused on oceanic islands, which may not allow characters that are insular adaptations to be teased apart from those that benefit dispersal and colonization. Using birds on continental islands, we investigated characters that evolved in situ in response to insular environments created by late Pleistocene sea level rise. Location Trinidad and Tobago and continental South America. Methods We weighed fresh flight muscles and measured museum skeletal specimens of seven species of birds common to the continental islands of Trinidad and Tobago. Results When corrected for body size, study species exhibited significantly smaller flight muscles, sterna and sternal keels on Tobago than on larger Trinidad and continental South America. Tobago populations were more ‘insular’ in their morphologies than conspecifics on Trinidad or the continent in other ways as well, including having longer bills, longer wings, longer tails and longer legs. Main conclusions We hypothesize that the longer bills enhance foraging diversity, the longer wings and tails compensate for the smaller pectoral assemblage (allowing for retention of volancy, but with a probable reduction in flight power and speed), and the longer legs expand perching ability. Each of these differences is likely to be related to the lower diversity and fewer potential predators and competitors on Tobago compared with Trinidad. These patterns of smaller flight muscles and larger bills, legs, wings and tails in island birds are not the results of selection for island dispersal and colonization, but probably arose from selection pressures acting on populations already inhabiting these islands.  相似文献   

7.
Aims Insular Southeast Asia and adjacent regions are geographically complex, and were dramatically affected by both Pliocene and Pleistocene changes in climate, sea level and geology. These circumstances allow the testing of several biogeographical hypotheses regarding species distribution patterns and phylogeny. Avian species in this area present a challenge to biogeographers, as many are less hindered by barriers that may block the movements of other species. Widely distributed Southeast Asian avian lineages, of which there are many, have been generally neglected. Ficedula flycatchers are distributed across Eurasia, but are most diverse within southern Asia and Southeast Asian and Indo‐Australian islands. We tested the roles of vicariance, dispersal and the evolution of migratory behaviours as mechanisms of speciation within the Ficedula flycatchers, with a focus on species distributed in insular Southeast Asia. Methods Using a published molecular phylogeny of Ficedula flycatchers, we reconstructed ancestral geographical areas using dispersal vicariance analysis, weighted ancestral area analysis, and a maximum likelihood method. We evaluated the evolution of migratory behaviours using maximum likelihood ancestral character state reconstruction. Speciation timing estimates were calculated via local molecular clock methods. Results Ficedula originated in southern mainland Asia, c. 6.5 Ma. Our analyses indicate that two lineages within Ficedula independently and contemporaneously colonized insular Southeast Asia and Indo‐Australia, c. 5 Ma. The potential impact of vicariance due to rising sea levels is difficult to assess in these early colonization events because the ancestral areas to these clades are reconstructed as oceanic islands. Within each of these clades, inter‐island dispersal was critical to species’ diversification across oceanic and continental islands. Furthermore, Pliocene and Pleistocene climatic change may have caused the disjunct island distributions between several pairs of sister taxa. Both vicariance and dispersal shaped the distributions of continental species. Main conclusions This study presents the first evaluation, for Ficedula, of the importance of vicariance and dispersal in shaping distributions, particularly across insular Southeast Asia and Indo‐Australia. Although vicariant speciation may have initially separated the island clades from mainland ancestors, speciation within these clades was driven primarily by dispersal. Our results contribute to the emerging body of literature concluding that dynamic geological processes and climatic change throughout the Pliocene and Pleistocene have been important factors in faunal diversification across continental and oceanic islands.  相似文献   

8.
Aim To use patterns of nestedness in the indigenous and non‐indigenous biotas of the Southern Ocean islands to determine the influence of dispersal ability on biogeographical patterns, and the importance of accounting for variation in dispersal ability in their subsequent interpretation, especially in the context of the Insulantarctic and multi‐regional hypotheses proposed to explain the biogeography of these islands. Location Southern Ocean islands. Methods Nestedness was determined using a new metric, d1 (a modification of discrepancy), for the indigenous and introduced seabirds, land birds, insects and vascular plants of 26 Southern Ocean islands. To assess the possible confounding effects of spatial autocorrelation on the results, islands were assigned to 11 major island groups and each group was treated as a single island in a following analysis. In addition, nestedness of the six Southern Ocean islands comprising the South Pacific Province (New Zealand islands) was analysed. All analyses were conducted for species and genera, for each of the taxa on its own, and for the complete data sets. Results Statistically significant nestedness was found in all of the taxa examined, with nestedness declining in the order seabirds > land birds > vascular plants > insects for the indigenous species. Vagility had a marked influence on nestedness and the biogeographical patterns shown by the indigenous species. This influence was borne out by additional analyses of marine taxa and small‐sized terrestrial species, both of which were more nested than the most nested group examined here, the seabirds. Assemblages of non‐indigenous species also showed nestedness, and nestedness was generally more pronounced than in the indigenous species. Surprisingly, vagility had a significant effect on nestedness in these assemblages too. Main conclusions Nestedness analyses provide a quantitative means of comparing biogeographical patterns for groups differing in vagility. These comparisons revealed that vagility has a considerable influence on biogeographical patterns and should be taken into account in analyses. Here, investigations of more vagile taxa support hypotheses for a single origin of the Southern Ocean island biota (the Insulantarctica scenario), whilst those of less mobile taxa support the more commonly held, multi‐regional hypothesis. All biogeographical analyses across the Southern Ocean (and elsewhere) will be influenced by the effects of dispersal ability, with composite analyses dominated by sedentary groups likely to favour multi‐regional scenarios, and those dominated by mobile groups favouring single origins. Mechanisms underlying nestedness in the region range from nested physiological tolerances in more mobile groups to colonization ability and patterns of speciation in less vagile taxa. Considerable nestedness in the non‐indigenous assemblages is largely a consequence of the fact that many of these species are European weedy species.  相似文献   

9.
10.
The focus on place rather than space provides geography with a powerful raison d’être. As in human geography, the functional role of place is integral to the understanding of evolution, persistence and extinction of biotic taxa. This paper re‐examines concepts and biogeographical evidence from a geographical rather than ecological or evolutionary perspective. Functional areography provides convincing arguments for a postmodern deconstruction of major principles of the dynamic Equilibrium Theory of Island Biogeography (ETIB). Endemic oceanic island taxa are functionally insular as a result of long‐term island stability, confinement, isolation, and protection from continental invasion and disturbance. Most continental taxa persist in different, more complex and open spatial systems; their geographical place is therefore fundamentally distinct from the functional insularity of oceanic island taxa. This creates an insular‐continental polarity in biogeography that is currently not reflected in conservation theory. The focus on the biogeographical place leads to the development of the eigenplace concept defined as the functional spatial complex of existence. The application of still popular ETIB concepts in conservation biology is discouraged. The author calls for the integration of functional areography into modern conservation science.  相似文献   

11.
To detect the small island effect (SIE) and nestedness patterns of herpetofauna of the West Indies, we derived and updated data on the presence/absence of herpetofauna in this region from recently published reviews. We applied regression‐based analyses, including linear regression and piecewise regressions with two and three segments, to detect the SIE and then used the Akaike's information criterion (AIC) as a criterion to select the best model. We used the NODF (a nestedness metric based on overlap and decreasing fill) to quantify nestedness and employed two null models to determine significance. Moreover, a random sampling effort was made to infer about the degree of nestedness at portions of the entire community. We found piecewise regression with three segments performed best, suggesting the species–area relationships possess three different patterns that resulted from two area thresholds: a first one, delimiting the SIE, and a second one, delimiting evolutionary processes. We also found that taxa with lower resource requirement, higher dispersal ability, and stronger adaptation to the environment generally displayed lower corresponding threshold values, indicating superior taxonomic groups could earlier end the SIE period and start in situ speciation as the increase of island size. Moreover, the traditional two‐segment piecewise regression method may cause poor estimations for both slope and threshold value of the SIE. Therefore, we suggest previous SIE detection works that conducted by two‐segment piecewise regression method, ignoring the possibility of three segments, need to be reanalyzed. Antinestedness occurred in the entire system, whereas high degree of nestedness could still occur in portions within the region. Nestedness may still be applicable to conservation planning at portions even if it is antinested at the regional scale. However, nestedness may not be applicable to conservation planning at the regional scale even if nestedness does exist among sampling islands from a portion.  相似文献   

12.
Waters JM 《Molecular ecology》2011,20(21):4388-4394
Phylogeographic and evolutionary research programmes have successfully elucidated compelling genetic signatures of earth history. Particularly influential achievements include the demonstration of postglacial recolonization patterns for high-latitude taxa and phylogenetic demonstration of the 'progression rule' along oceanic island chains such as Hawaii. While both of these major biogeographic patterns clearly rely on rapid dispersal over long distances, their phylogeographic detection also apparently relies on the competitive exclusion of secondary dispersers. Such exclusion could occur either between or within species and might reflect fitness differences between lineages or, alternatively, neutral demographic processes (e.g. 'high-density blocking'). Regardless, such spatial genetic patterns would be rapidly eroded were it not for the failure of subsequent dispersers to contribute genetically to newly colonized populations. In addition to its role in revealing colonization patterns, competitive exclusion may also explain the maintenance of historic phylogeographic disjunctions long after the original physical barriers to dispersal have ceased to exist. Additionally, some of the most persuasive evidence of competitive exclusion comes from studies of anthropogenic extinction, where surviving lineages have subsequently expanded their ranges, apparently benefitting from the demise of their prehistoric sisters. Broadly, these biogeographic paradigms are united by the 'disconnect' between dispersal and colonization success, the latter being heavily influenced by inter- and intraspecific competition. Despite its apparent importance, such exclusion (especially within species) has received virtually no attention in the phylogeographic literature. Future studies should aim to test directly for the role of competitive exclusion in constraining the biogeography of highly dispersive taxa.  相似文献   

13.
A key challenge in island biogeography is to quantity the role of dispersal in shaping biodiversity patterns among the islands of a given archipelago. Here, we propose such a framework. Dispersal within oceanic archipelagos may be conceptualized as a spatio‐temporal process dependent on: (1) the spatial distribution of islands, because the probability of successful dispersal is inversely related to the spatial distance between islands and (2) the chronological sequence of island formation that determines the directional asymmetry of dispersal (hypothesized to be predominantly from older to younger islands). From these premises, directional network models may be constructed, representing putative connections among islands. These models may be translated to eigenfunctions in order to be incorporated into statistical analysis. The framework was tested with 12 datasets from the Hawaii, Azores, and Canaries. The explanatory power of directional network models for explaining species composition patterns, assessed by the Jaccard dissimilarity index, was compared with simpler time‐isolation models. The amount of variation explained by the network models ranged from 5.5% (for Coleoptera in Hawaii) to 60.2% (for Pteridophytes in Canary Islands). In relation to the four studied taxa, the variation explained by network models was higher for Pteridophytes in the three archipelagos. By the contrary, small fractions of explained variation were observed for Coleoptera (5.5%) and Araneae (8.6%) in Hawaii. Time‐isolation models were, in general, not statistical significant and explained less variation than the equivalent directional network models for all the datasets. Directional network models provide a way for evaluating the spatio‐temporal signature of species dispersal. The method allows building scenarios against which hypotheses about dispersal within archipelagos may be tested. The new framework may help to uncover the pathways via which species have colonized the islands of a given archipelago and to understand the origins of insular biodiversity.  相似文献   

14.
Island disharmony refers to the biased representation of higher taxa on islands compared to their mainland source regions and represents a central concept in island biology. Here, we develop a generalizable framework for approximating these source regions and conduct the first global assessment of island disharmony and its underlying drivers. We compiled vascular plant species lists for 178 oceanic islands and 735 mainland regions. Using mainland data only, we modelled species turnover as a function of environmental and geographic distance and predicted the proportion of shared species between each island and mainland region. We then quantified the over‐ or under‐representation of families on individual islands (representational disharmony) by contrasting the observed number of species against a null model of random colonization from the mainland source pool, and analysed the effects of six family‐level functional traits on the resulting measure. Furthermore, we aggregated the values of representational disharmony per island to characterize overall taxonomic bias of a given flora (compositional disharmony), and analysed this second measure as a function of four island biogeographical variables. Our results indicate considerable variation in representational disharmony both within and among plant families. Examples of generally over‐represented families include Urticaceae, Convolvulaceae and almost all pteridophyte families. Other families such as Asteraceae and Orchidaceae were generally under‐represented, with local peaks of over‐representation in known radiation hotspots. Abiotic pollination and a lack of dispersal specialization were most strongly associated with an insular over‐representation of families, whereas other family‐level traits showed minor effects. With respect to compositional disharmony, large, high‐elevation islands tended to have the most disharmonic floras. Our results provide important insights into the taxon‐ and island‐specific drivers of disharmony. The proposed framework allows overcoming the limitations of previous approaches and provides a quantitative basis for incorporating functional and phylogenetic approaches into future studies of island disharmony.  相似文献   

15.
History and taxonomy: their roles in the core-satellite hypothesis   总被引:2,自引:0,他引:2  
Metapopulation models are important in explaining the distribution and abundance of species through time and space. These models combine population dynamics with stochastic variation in extinction and immigration parameters associated with local populations. One of the predictions of metapopulation models is a bimodal distribution of species frequency of occurrence, a pattern that led to the development of the core-satellite species hypothesis. The spatial scale and taxonomic classification of past core-satellite studies has often been undefined. In our study, we have integrated metapopulation dynamics with the roles that differential dispersal ability and history play in the shaping of communities. The differences in distribution patterns between landbridge islands and oceanic islands, and among various taxa (birds, mammals, herptiles, arthropods, fish, and plants) are analyzed. The majority of landbridge islands comprised locally and regionally abundant species (core species), whereas the majority of oceanic islands had a uniform distribution (or no end-peak in their distribution). The patterns of distribution among the taxonomic groups also showed differences. Birds (good dispersers) consistently showed bimodal- and core-distribution patterns. The bimodal prediction of species distribution is best exemplified in the landbridge islands and in birds, and least in oceanic islands and in organisms other than birds. These results illustrate the importance of testing models with various taxonomic groups and at different spatial scales and defining these scales before formally testing the predictions of the models.  相似文献   

16.
Adaptive radiation is a common evolutionary phenomenon in oceanic islands. From one successful immigrant population, dispersal into different island environments and directional selection can rapidly yield a series of morphologically distinct species, each adapted to its own particular environment. Not all island immigrants, however, follow this evolutionary pathway. Others successfully arrive and establish viable populations, but they remain in the same ecological zone and only slowly diverge over millions of years. This transformational speciation, or anagenesis, is also common in oceanic archipelagos. The critical question is why do some groups radiate adaptively and others not? The Juan Fernández Islands contain 105 endemic taxa of angiosperms, 49% of which have originated by adaptive radiation (cladogenesis) and 51% by anagenesis, hence providing an opportunity to examine characteristics of taxa that have undergone both types of speciation in the same general island environment. Life form, dispersal mode, and total number of species in progenitors (genera) of endemic angiosperms in the archipelago were investigated from literature sources and compared with modes of speciation (cladogenesis vs. anagenesis). It is suggested that immigrants tending to undergo adaptive radiation are herbaceous perennial herbs, with leaky self-incompatible breeding systems, good intra-island dispersal capabilities, and flexible structural and physiological systems. Perhaps more importantly, the progenitors of adaptively radiated groups in islands are those that have already been successful in adaptations to different environments in source areas, and which have also undergone eco-geographic speciation. Evolutionary success via adaptive radiation in oceanic islands, therefore, is less a novel feature of island lineages but rather a continuation of tendency for successful adaptive speciation in lineages of continental source regions.  相似文献   

17.
Spatiotemporal variation in community composition is of considerable interest in ecology. However, few studies have focused on seasonal variation patterns in taxonomic and functional community composition at the fine scale. As such, we conducted seasonal high‐density sampling of the submerged macrophyte community in Hongshan Bay of Erhai Lake in China and used the generalized dissimilarity model (GDM) to evaluate the effects of environmental factors and geographic distance on taxonomic and functional beta diversity as well as corresponding turnover and nestedness components. At the fine scale, taxonomic turnover and nestedness as well as functional turnover and nestedness showed comparable contributions to corresponding taxonomic and functional beta diversity, with different importance across seasons. All taxonomic and functional dissimilarity metrics showed seasonal variation. Of note, taxonomic beta diversity was highest in summer and lowest in winter, while functional beta diversity showed the opposite pattern. Taxonomic and functional turnover showed similar change patterns as taxonomic and functional beta diversity. Taxonomic nestedness was low in summer and high in winter. Functional nestedness was also lower in summer. These results suggest that under extreme environmental conditions, both turnover and nestedness can exist at the fine scale and seasonal community composition patterns in submerged macrophytes should be considered. Future investigations on community assembly mechanisms should pay greater attention to long‐term dynamic characteristics and functional information.  相似文献   

18.
Biotic homogenization reduces the regional distinctiveness of biotas with significant ecological and evolutionary consequences. The outcome of this process may depend on the spatial scale of inquiry (both resolution and extent), the selected taxon and dissimilarity index as well as on the contribution of species extinctions and introductions. In the present research, we try to disentangle the effects of these factors on homogenization patterns comparing six taxonomic groups (pteridophytes, spermatophytes, breeding birds, mammals, reptiles and non-marine molluscs) within and between five Atlantic archipelagos of the Macaronesian Region. Taxonomic homogenization was analyzed by partitioning β-diversity into spatial turnover of species composition and nestedness. Total compositional change was divided into changes related to extinctions/extirpations of native and to introductions of alien species. Analyses were carried out at two different spatial resolutions (island versus archipelago unit) and geographic extents (within each archipelago and across the whole Macaronesian Region). Pteridophytes and reptiles tended to taxonomic differentiation, while mammals and molluscs showed homogenization regardless of scale and resolution. For spermatophytes, the most species-rich group, taxonomic heterogenization traded off with homogenization from the local to regional extent. Birds revealed heterogenization at the island, but not at the archipelago resolution. Extirpations of native species generally led to homogenization at the local extent, whereas the effect of alien introductions varied according to taxon and spatial scale. Furthermore, overall changes in species pool similarities were driven both by spatial turnover and nestedness. We demonstrate that biotic homogenization after human colonization within Macaronesia clearly depended on taxon, spatial scale and the dissimilarity measure. We suggest that homogenization of island biotas is first conditioned by initial dissimilarity related to taxon characteristics, such as dispersal capacity or endemicity, evolutionary processes, archipelago configurations and environmental variation along spatial scales. Thus, similarity change is the outcome of the impacts of number, proportion and distribution type of lost and gained species. Rare extirpated and common introduced species homogenize, while common extirpated and rare introduced species differentiate island biotas. Partitioning of beta diversity helps to improve our understanding of the homogenization process.  相似文献   

19.
For marine, benthic animals, duration of planktonic larval stagesis expected to correlate with dispersal ability, and thus speciesranges, at least where planktonic dispersal is necessary toreach habitats. Yet past analyses of larval duration and speciesranges across the insular Pacific show at most a weak correlation.So, do larvae matter in determining species ranges in such anisland setting? We analyze an extensive dataset on cowries andfind, again, that estimated larval duration does not correlatewith species ranges. Several factors can obscure a real correlation,however, including estimation error, intraspecific variation,other factors affecting dispersal, poor taxonomy, and remoteendemics. We show that taking these into consideration greatlyimproves correlation. Further evidence for the importance oflarval duration comes from diversity and speciation patterns.Diversity of poor dispersers drops more rapidly eastward acrossthe Pacific and leads to taxonomic differences in communitycomposition across the basin. Geographic scale of differentiationis strongly influenced by larval duration and leads to the mostrapid diversification at intermediate dispersal capacities.A major lesson from the phylogenetically corrected cowrie datasetis that without accurate and appropriate taxonomy, clear andimportant distributional and diversity patterns can become obscured.Inappropriate taxonomic scale can also obscure macroecologicalpatterns: cowrie tribes/subfamilies show substantial variationin the steepness of their diversity cline across the Pacificand in their proportional local abundance, showing the importanceof ecological traits in controlling distributions. In contrastsuch variation was not evident in a study focused at the familylevel in corals and fishes.  相似文献   

20.
As part of the International Kuril Island Project, we collected data on the distribution patterns of native terrestrial, non-volant mammals inhabiting the Kuril archipelago in the northwest Pacific. The Kurils have a complex physical geography, featuring both landbridge and oceanic islands in which small mammal-occupied islands are near mainlands, whereas larger islands are more isolated. This geography, in combination with the Kurils' cold climate, causes the mammalian fauna to deviate from traditional island biogeographic patterns. We examined these patterns and the mechanisms influencing them using both nestedness analyses and measures of compositional disharmony. We found, as island isolation increases, carnivores constitute an increasing fraction of the mammalian fauna. We suggest that this intriguing pattern of carnivore dominance occurs because species' dispersal abilities increase with increasing body size in the Kurils' cold climate. Substantial energy reserves and cold tolerance of large-bodied carnivores may have been a major factor in determining mam- malian colonization patterns, patterns which are perhaps indicative of the complex manners in which challenging climates impact mammalian community assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号