首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Through targeted inactivation of the ssrA and smpB genes, we establish that the trans-translation process is necessary for normal growth, adaptation to cellular stress and virulence by the bacterial pathogen Francisella tularensis. The mutant bacteria grow slower, have reduced resistance to heat and cold shocks, and are more sensitive to oxidative stress and sublethal concentrations of antibiotics. Modifications of the tmRNA tag and use of higher-resolution mass spectrometry approaches enabled the identification of a large number of native tmRNA substrates. Of particular significance to understanding the mechanism of trans-translation, we report the discovery of an extended tmRNA tag and extensive ladder-like pattern of endogenous protein-tagging events in F. tularensis that are likely to be a universal feature of tmRNA activity in eubacteria. Furthermore, the structural integrity and the proteolytic function of the tmRNA tag are both crucial for normal growth and virulence of F. tularensis. Significantly, trans-translation mutants of F. tularensis are impaired in replication within macrophages and are avirulent in mouse models of tularemia. By exploiting these attenuated phenotypes, we find that the mutant strains provide effective immune protection in mice against lethal intradermal, intraperitoneal and intranasal challenges with the fully virulent parental strain.  相似文献   

3.
Bacterial ssrA encodes tmRNA that functions both as a tRNA and an mRNA to rescue the stalled ribosome on defective mRNAs. In this study, ssrA was identified in four gastric species of Helicobacters and four enterohepatic species of Helicobacters. The tag peptide of 14 amino acids encoded by ssrA showed a pattern of Val(1)Ala(13) in gastric species, a pattern of Ala(1)Val(13 )in enterohepatic species, in contrast to the pattern of Ala(1)Ala(13) in W. succinogenes and C. jejuni, which are closely related to helicobacters. Phylogenetic analysis and the patterns of the tag peptide suggest that the Helicobacter genus could be separated into two genera. High conservation of ssrA in H. pylori was observed. The annotated ORF HP0784 in H. pylori, which largely overlaps ssrA, is unlikely to be functional. H. pylori ssrA interestingly expressed a large and a small tmRNA molecule.  相似文献   

4.
Escherichia coli ssrA encodes a small stable RNA molecule, tmRNA, that has many diverse functions, including tagging abnormal proteins for degradation, supporting phage growth, and modulating the activity of DNA binding proteins. Here we show that ssrA plays a role in Salmonella enterica serovar Typhimurium pathogenesis and in the expression of several genes known to be induced during infection. Moreover, the phage-like attachment site, attL, encoded within ssrA, serves as the site of integration of a region of Salmonella-specific sequence; adjacent to the 5' end of ssrA is another region of Salmonella-specific sequence with extensive homology to predicted proteins encoded within the unlinked Salmonella pathogenicity island SPI4. S. enterica serovar Typhimurium ssrA mutants fail to support the growth of phage P22 and are delayed in their ability to form viable phage particles following induction of a phage P22 lysogen. These data indicate that ssrA plays a role in the pathogenesis of Salmonella, serves as an attachment site for Salmonella-specific sequences, and is required for the growth of phage P22.  相似文献   

5.
6.
Transfer-messenger RNA (tmRNA, 10Sa RNA, ssrA) is bacterial RNA having both tRNA and mRNA properties and playing an essential role in recycling of 70S ribosomes that are stalled on defective mRNA. The trans-translational system is thought to play a crucial role in bacterial survival under adverse conditions. Streptomycetes are Gram-positive soil bacteria exposed to various physical and chemical stresses that activate specialized responses such as synthesis of antibiotics and morphological differentiation. Comparative sequence analysis of ssrA genes of streptomycetes revealed the most significant differences in the central parts of tag-reading frames, in the stop codons and in the 15-34 nucleotide sequences following stop codons. A major challenge in understanding the interactions that control the function of tmRNA is the definition of protein interactions. Proteins from various phases of development of Streptomyces aureofaciens associated with tmRNA were analyzed. Using affinity chromatography on tmRNA-Sepharose and photo cross-linking experiments with [(32)P]labeled tmRNA seven proteins, the beta and beta'-subunits of DNA dependent RNA polymerase, polyribonucleotide nucleotidyltransferase (PNPase), ribosomal protein SS1, ATP-binding cassette transporters, elongation factor Tu, and SmpB were identified among the proteins associated with tmRNA of S. aureofaciens. We examined the functional role of ribosomal protein SS1 in a defined in vitro trans-translation system. Our data show that the protein SS1 that structurally differs from S1 of Escherichia coli is required for translation of the tmRNA tag-reading frame.  相似文献   

7.
An Escherichia coli strain with a deletion in the ssrA gene that encodes 10Sa RNA (tmRNA) was used to screen for temperature-sensitive (ts) mutants whose ts phenotypes were suppressible by introduction of the wild-type ssrA gene. Mutants in four different genes were isolated. Ts mutants of this type were also obtained in a screen for mutations in thyA, the structural gene for thymidylate synthase. The ThyA activity in crude extracts prepared from the ts mutants was temperature-sensitive. The presence of the ssrA gene caused an increase in the total amount of the temperature-sensitive enzyme expressed, rather than suppressing the ts activity of the enzyme itself. SsrA-DD, a mutant form of 10Sa RNA, suppressed the ts phenotype of a thyA mutant, suggesting that degradation of a tagged peptide was not required for suppression of the ts phenotype. Considering the fact that ssrA-suppressible mutants could be isolated as temperature-sensitive mutants with mutations in different genes, it seems evident that trans-translation can occur on mRNA that is not lacking its stop codon.  相似文献   

8.
9.
Lon protease degrades transfer-messenger RNA-tagged proteins   总被引:1,自引:0,他引:1       下载免费PDF全文
Bacterial trans translation is activated when translating ribosomes are unable to elongate or terminate properly. Small protein B (SmpB) and transfer-messenger RNA (tmRNA) are the two known factors required for and dedicated to trans translation. tmRNA, encoded by the ssrA gene, is a bifunctional molecule that acts both as a tRNA and as an mRNA during trans translation. The functions of tmRNA ensure that stalled ribosomes are rescued, the causative defective mRNAs are degraded, and the incomplete polypeptides are marked for targeted proteolysis. We present in vivo and in vitro evidence that demonstrates a direct role for the Lon ATP-dependent protease in the degradation of tmRNA-tagged proteins. In an endogenous protein tagging assay, lon mutants accumulated excessive levels of tmRNA-tagged proteins. In a reporter protein tagging assay with lambda-CI-N, the protein product of a nonstop mRNA construct designed to activate trans translation, lon mutant cells efficiently tagged the reporter protein, but the tagged protein exhibited increased stability. Similarly, a green fluorescent protein (GFP) construct containing a hard-coded C-terminal tmRNA tag (GFP-SsrA) exhibited increased stability in lon mutant cells. Most significantly, highly purified Lon preferentially degraded the tmRNA-tagged forms of proteins compared to the untagged forms. Based on these results, we conclude that Lon protease participates directly in the degradation of tmRNA-tagged proteins.  相似文献   

10.
Stalled bacterial ribosomes are freed when they switch to the translation of transfer-messenger RNA (tmRNA). This process requires the tmRNA-binding and ribosome-binding cofactor SmpB, a beta-barrel protein with a protruding C-terminal tail of unresolved structure. Some plastid genomes encode tmRNA, but smpB genes have only been reported from bacteria. Here we identify smpB in the nuclear genomes of both a diatom and a red alga encoding a signal for import into the plastid, where mature SmpB could activate tmRNA. Diatom SmpB was active for tmRNA translation with bacterial components in vivo and in vitro, although less so than Escherichia coli SmpB. The tail-truncated diatom SmpB, the hypothetical product of a misspliced mRNA, was inactive in vivo. Tail-truncated E. coli SmpB was likewise inactive for tmRNA translation but was still able to bind ribosomes, and its affinity for tmRNA was only slightly diminished. This work suggests that SmpB is a universal cofactor of tmRNA. It also reveals a tail-dependent role for SmpB in tmRNA translation that supersedes a simple role of linking tmRNA to the ribosome, which the SmpB body alone could provide.  相似文献   

11.
Translational pausing can lead to cleavage of the A-site codon and facilitate recruitment of the transfer-messenger RNA (tmRNA) (SsrA) quality control system to distressed ribosomes. We asked whether aminoacyl-tRNA binding site (A-site) mRNA cleavage occurs during regulatory translational pausing using the Escherichia coli SecM-mediated ribosome arrest as a model. We find that SecM ribosome arrest does not elicit efficient A-site cleavage, but instead allows degradation of downstream mRNA to the 3'-edge of the arrested ribosome. Characterization of SecM-arrested ribosomes shows the nascent peptide is covalently linked via glycine 165 to tRNA(3Gly) in the peptidyl-tRNA binding site, and prolyl-tRNA(2Pro) is bound to the A-site. Although A-site-cleaved mRNAs were not detected, tmRNA-mediated ssrA tagging after SecM glycine 165 was observed. This tmRNA activity results from sequestration of prolyl-tRNA(2Pro) on overexpressed SecM-arrested ribosomes, which produces a second population of stalled ribosomes with unoccupied A-sites. Indeed, compensatory overexpression of tRNA(2Pro) readily inhibits ssrA tagging after glycine 165, but has no effect on the duration of SecM ribosome arrest. We conclude that, under physiological conditions, the architecture of SecM-arrested ribosomes allows regulated translational pausing without interference from A-site cleavage or tmRNA activities. Moreover, it seems likely that A-site mRNA cleavage is generally avoided or inhibited during regulated ribosome pauses.  相似文献   

12.
13.
The bacterial tmRNA·SmpB system facilitates recycling of stalled translational complexes in a process termed "ribosome rescue." During ribosome rescue, the nascent chain is tagged with the tmRNA-encoded ssrA peptide, which targets the tagged polypeptide for degradation. Translational pausing also induces a variety of recoding events such as frameshifts, ribosome hops, and stop codon readthrough. To examine the interplay between recoding and ribosome rescue, we determined the various fates of ribosomes that pause during translation termination. We expressed a model protein containing the C-terminal Asp-Pro nascent peptide motif (which interferes with translation termination) and quantified the protein chains produced by recoding and ssrA-peptide tagging. The nature and extent of translational recoding depended upon the codon for the C-terminal Pro residue, with CCU and CCC promoting efficient +1 frameshifting. In contrast, ssrA-peptide tagging was unaffected by C-terminal Pro coding. Moreover, +1 frameshifting was not suppressed by tmRNA·SmpB activity, suggesting that recoding and ribosome rescue are not competing events. However, cells lacking ribosomal protein L9 (ΔL9) exhibited a significant increase in recoding and a concomitant decrease in ssrA-peptide tagging. Pulse-chase analysis revealed that pre-termination ribosomes turn over more rapidly in ΔL9 cells, suggesting that increased recoding alleviates the translational arrest. Together, these results indicate that tmRNA·SmpB does not suppress transient ribosome pauses, but responds to prolonged translational arrest.  相似文献   

14.
Yu Liu  Jie Dong  Guang Yang 《FEBS letters》2010,584(20):4325-4329
SsrA RNA (small stable RNA A), also known as tmRNA and 10Sa RNA, functions both as tRNA and mRNA through its unique structure. The carotenoid pigment is the eponymous feature of human pathogen Staphylococcus aureus. Here, we found that the pigment of the mutant strain with ssrA deletion was increased. Furthermore, it was demonstrated that ssrA could act as an antisense RNA aside from its well-known biological function, and crtMN, encoding two essential enzymes for the pigment synthesis, was identified as target of ssrA. Further investigation showed ssrA could specifically base pair with the RBS (ribosomal binding site) region of the crtMN mRNA. Our results revealed a new mechanism by which ssrA regulated the biosynthesis of pigment in S. aureus.  相似文献   

15.
The major phenotypes of lon mutations, UV sensitivity and overproduction of capsule, are due to the stabilization of two substrates, SulA and RcsA. Inactivation of transfer mRNA (tmRNA) (encoded by ssrA), coupled with a multicopy kanamycin resistance determinant, suppressed both lon phenotypes and restored the rapid degradation of SulA. This novel protease activity was named Alp but was never identified further. We report here the identification, mapping, and characterization of a chromosomal mutation, faa (for function affecting Alp), that leads to full suppression of a Deltalon ssrA::cat host and thus bypasses the requirement for multicopy Kan(r); faa and ssrA mutants are additive in their ability to suppress lon mutants. The faa mutation was mapped to the C terminus of dnaJ(G232); dnaJ null mutants have similar effects. The identification of a lon suppressor in dnaJ suggested the possible involvement of heat shock. We find that ssrA mutants alone significantly induce the heat shock response. The suppression of UV sensitivity, both in the original Alp strain and in faa mutants, is reversed by mutations in clpY, encoding a subunit of the heat shock-induced ClpYQ protease that is known to degrade SulA. However, capsule synthesis is not restored by clpY mutants, probably because less RcsA accumulates in the Alp strain and because the RcsA that does accumulate is inactive. Both ssrA effects are partially relieved by ssrA derivatives encoding protease-resistant tags, implicating ribosome stalling as the primary defect. Thus, ssrA and faa each suppress two lon mutant phenotypes but by somewhat different mechanisms, with heat shock induction playing a major role.  相似文献   

16.
17.
Transfer-messenger RNA (tmRNA) acts first as a tRNA and then as an mRNA template to rescue stalled ribosomes in eubacteria. Together with its protein partner, SmpB (small protein B), tmRNA enters stalled ribosomes and transfers an Ala residue to the growing polypeptide chain. A remarkable step then occurs: the ribosome leaves the stalled mRNA and resumes translation using tmRNA as a template, adding a short peptide tag that destines the aborted protein for destruction. Exactly how the ribosome switches templates, resuming translation on tmRNA in the proper reading frame, remains unknown. Within the tmRNA sequence itself, five nucleotides (U85AGUC) immediately upstream of the first codon appear to direct frame selection. In particular, mutation of the conserved A86 results in severe loss of function both in vitro and in vivo. The A86C mutation causes translation to resume exclusively in the + 1 frame. Several candidate binding partners for this upstream sequence have been identified in vitro. Using a genetic selection for tmRNA activity in Escherichia coli, we identified mutations in the SmpB protein that restore the function of A86C tmRNA in vivo. The SmpB mutants increase tagging in the normal reading frame and reduce tagging in the + 1 frame. These results demonstrate that SmpB is functionally linked with the sequence upstream of the tmRNA template; both contribute to reading frame selection on tmRNA.  相似文献   

18.
It has been believed that protein tagging caused by consecutive rare codons involves tmRNA action at the internal mRNA site. We demonstrated previously that ribosome stalling either at sense or stop codons caused by certain arrest sequences could induce mRNA cleavage near the arrest site, resulting in nonstop mRNAs that are recognized by tmRNA. These findings prompted us to re-examine the mechanism of tmRNA tagging at a run of rare codons. We report here that either AGG or CGA but not AGA arginine rare-codon clusters inserted into a model crp mRNA encoding cAMP receptor protein (CRP) could cause an efficient protein tagging. We demonstrate that more than three consecutive AGG codons are needed to induce an efficient ribosome stalling therefore tmRNA tagging in our system. The tmRNA tagging was eliminated by overproduction of tRNAs corresponding to rare codons, indicating that a scarcity of the corresponding tRNA caused by the rare-codon cluster is an important factor for tmRNA tagging. Mass spectrometry analyses of proteins generated in cells lacking or possessing tmRNA encoding a protease-resistant tag sequence indicated that the truncation and tmRNA tagging occur within the cluster of rare codons. Northern and S1 analyses demonstrated that nonstop mRNAs truncated within the rare-codon clusters are detected in cells lacking tmRNA but not in cells expressing tmRNA. We conclude that a ribosome stalled by the rare codon induces mRNA cleavage, resulting in nonstop mRNAs that are recognized by tmRNA.  相似文献   

19.
Activation tagging is a powerful technique for generating gain-of-function mutants in plants. We developed a new vector system for activation tagging of genes in “transformed hairy roots”. The binary vector pHR-AT (Hairy Root-Activation Tagging) and its derivative pHR-AT-GFP contain a cluster of rol (rooting locus) genes together with the right border facing four tandem repeats of the cauliflower mosaic virus (CaMV) 35S enhancer element on the same T-DNA. Transformation experiments using Arabidopsis, potato, and tobacco as model plants revealed that upon inoculating plants with Agrobacterium tumefaciens harboring these vectors, a large number of independently transformed roots could be induced from explants within a short period of time, and root culture lines were subsequently established. Molecular analyses of the pHR-AT-GFP-transformed Arabidopsis lines showed that expression of the genes adjacent to the T-DNA insertion site was significantly increased. This system may facilitate application of the activation-tagging approach to plant species that are recalcitrant to the regeneration of transgenic plants. High-throughput metabolic profiling of activation-tagged root culture lines will offer opportunities for identifying regulatory or biosynthetic genes for the production of valuable secondary metabolites of interest.  相似文献   

20.
Spore formation in Bacillus subtilis is significantly impaired by the deletion of the gene for tmRNA ( ssrA ), which facilitates the trans -translation reaction that rescues stalled ribosomes and degrades incompletely synthesized peptides. Microscopic analysis revealed that the sporulation of most Δ ssrA cells is blocked after forespore formation. Expression analysis of lacZ -fused genes directed by several RNA polymerase σ factors showed that the synthesis of active σK, encoded by the sigK gene, is predominantly inhibited in Δ ssrA cells. The defect in σK synthesis is attributable to a defect in the skin element excision, which generates the sigK gene, caused in turn by reduced expression of SpoIVCA (recombinase) in Δ ssrA cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号