首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pterasteridae comprises a diversified group of extant largely deep-sea starfishes. Generic diagnoses have been based classically on soft tissue characters and skeletal architecture. A preliminary phylogeny of sixteen extant species is here worked out by cladistic analysis. The resulting tree suggests monophyly of extant genera and the validity of dissociated plates for identification of genera. Fossil remains of Pterasteridae are here described for the first time. By comparison with extant species, all the skeletal remains from the lower Upper Campanian of Belgium and from the lower Maastrichtian of Germany are tentatively assigned to the genusPteraster. The fossil record of starfishes is poor, but the present Late Cretaceous pterasterids provide one more piece of evidence of the high diversity of starfishes during the Mesozoic. Known Late Cretaceous and Paleogene fossils are broadly similar, which suggests the end-Cretaceous extinction event did not cause major turnover in asteroid faunal composition. As suggested for other starfish groups, both the fossil record of deep-sea Pterasteridae in shelf settings and tree topology imply an onshore-offshore evolutionary trend.   相似文献   

2.
Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary.  相似文献   

3.
Abstract Although pterosaurs are a well‐known lineage of Mesozoic flying reptiles, their fossil record and evolutionary dynamics have never been adequately quantified. On the basis of a comprehensive data set of fossil occurrences correlated with taxon‐specific limb measurements, we show that the geological ages of pterosaur specimens closely approximate hypothesized patterns of phylogenetic divergence. Although the fossil record has expanded greatly in recent years, collectorship still approximates a sigmoid curve over time as many more specimens (and thus taxa) still remain undiscovered, yet our data suggest that the pterosaur fossil record is unbiased by sites of exceptional preservation (lagerstätte). This is because as new species are discovered the number of known formations and sites yielding pterosaur fossils has also increased – this would not be expected if the bulk of the record came from just a few exceptional faunas. Pterosaur morphological diversification is, however, strongly age biased: rarefaction analysis shows that peaks of diversity occur in the Late Jurassic and Early Cretaceous correlated with periods of increased limb disparity. In this respect, pterosaurs appear unique amongst flying vertebrates in that their disparity seems to have peaked relatively late in clade history. Comparative analyses also show that there is little evidence that the evolutionary diversification of pterosaurs was in any way constrained by the appearance and radiation of birds.  相似文献   

4.
A new species (Campylopodium allonense) of the moss family Dicranaceae is described for fossil sporophyte capsules and associated gametophytes from the late Santonian (Late Cretaceous) Buffalo Creek Member of the Gaillard Formation in central Georgia, USA. The sporophyte capsules are most comparable to those of the living genus Campylopodium. Sporangia are curved, cylindrical, and strumose, with an obliquely rostrate operculum, cucullate calyptra, and compound annulus. The peristome is haplolepidous with 16 dicranoid, apically bifid teeth that are vertically striate on the outer surface and asymmetrically trabeculate on the inner surface. Spores are spherical, alete, and finely rugose, and thus differ from the finely papillose spores of extant Campylopodium. Associated fossil gametophytes are consistent with the morphology of extant Campylopodium and have leaves with a broad sheathing base and a narrow blade. Spores identical to those in the sporangium occur on the leaf surfaces of one of the gametophyte specimens, providing circumstantial evidence that both sporophyte and gametophyte belong to the same species. Inadequacies of the moss fossil record have led to contrasting interpretations of the timing of evolutionary change in this lineage since the Paleozoic. Campylopodium allonense unequivocally provides the earliest evidence of Dicranaceae in the fossil record. This material, along with other fossil mosses from this late Santonian locality, indicates the presence of modern families of mosses in the Cretaceous. In a phylogenetic context, these fossils from two different subclasses imply that mosses were already diverse by the Late Cretaceous.  相似文献   

5.
Abstract:  The largest known flying organisms are the azhdarchid pterosaurs, a pterodactyloid clade previously diagnosed by the characters of their extremely elongate middle-series cervical vertebrae. The named species of the Azhdarchidae are from the Late Cretaceous. However, isolated mid-cervical vertebrae with similar dimensions and characters have been referred to this group that date back to the Late Jurassic, implying an almost 60 million year gap in the fossil record of this group and an unrecorded radiation in the Jurassic of all the major clades of the Pterodactyloidea. A new pterosaur from the Early Cretaceous of Liaoning Province of China, Elanodactylus prolatus gen. et sp. nov., is described with mid-cervical vertebrae that bear these azhdarchid characters but has other postcranial material that are distinct from the members of this group. Phylogenetic analysis of the new species and the Pterodactyloidea places it with the Late Jurassic vertebrae in the Late Jurassic–Early Cretaceous Ctenochasmatidae and reveals that the characters of the elongate azhdarchid vertebrae appeared independently in both groups. These results are realized though the large taxon sampling in the analysis demonstrating that the homoplastic character states present in these two taxa were acquired in a different order in their respective lineages. Some of these homoplastic characters were previously thought to appear once in the history of pterosaurs and may be correlated to the extension of the neck regions in both groups. Because the homoplastic character states in the Azhdarchidae and Ctenochasmatidae are limited to the mid-cervical vertebrae, these states are termed convergent based on a definition of the term in a phylogenetic context. A number of novel results from the analysis presented produce a reorganization in the different species and taxa of the Pterodactyloidea.  相似文献   

6.
The Asteridae is a group of some 80,000 species of flowering plants characterized by their fused corollas and iridoid compounds. Recent phylogenetic analyses have helped delimit the group and have identified four main clades within it; Cornales, Ericales, Lamiids and Campanulids, with the last two collectively known as the Euasteridae. A search for the oldest fossils representing asterids yielded a total of 261 records. Each of these fossils was evaluated as to the reliability of its identification. The oldest accepted fossils for each clade were used to estimate minimum ages for the whole of the Asteridae. The results suggest that the Asteridae dates back to at least the Turonian, Late Cretaceous (89.3 mya) and that by the Late Santonian-Early Campanian (83.5 mya) its four main clades were already represented in the fossil record.  相似文献   

7.
Neither pre-Cenozoic crown eutherian mammals (placentals) nor archaic ungulates (“condylarths”) are known with certainty based on the fossil record. Herein we report a new species of the Paleocene archaic ungulate (“condylarth”) Protungulatum from undisputed Late Cretaceous aged rocks in Montana USA based on an isolated last upper premolar, indicating rare representatives of these common early Tertiary mammals appeared in North America a minimum of 300 k  years before the extinction of non-avian dinosaurs. The other 1200 mammal specimens from the locality are characteristic Late Cretaceous taxa. This discovery overturns the current hypothesis that archaic ungulates did not appear in North America until after the Cretaceous/Tertiary (K/T) boundary and also suggests that other reports of North American Late Cretaceous archaic ungulates may be correct. Recent studies, including ours, cannot determine whether Protungulatum does or does not belong to the crown clade Placentalia.  相似文献   

8.
Preparation of the holotype specimen of Bobosaurus forojuliensis, a large sauropterygian from the lower Carnian of northeastern Italy, revealed new morphological data relevant in establishing its phylogenetic affinities among pistosauroid taxa and its relationships with plesiosaurians. Inclusion of B. forojuliensis in two phylogenetic analyses focusing, respectively, on sauropterygians and pistosauroids agreed in placing the Italian taxon as closer to plesiosaurians than to other pistosauroids. The phylogenetic interpretation of Bobosaurus was not biased by assumptions on character weighting, is consistent with its relatively younger age compared to most pistosauroids, extends the fossil record of the plesiosaurian basal lineage back to the Carnian and supports the earliest diversification of the clade during the Late Triassic in agreement with the record of several distinct lineages of rhomaleosaurids, plesiosauroids and pliosauroids in the lowermost Jurassic. Bobosaurus shows that the evolution of the plesiosaurian body plan from the ancestral pistosauroid grade was a step-wise process, and that some of the vertebral and appendicular specialisations of Jurassic and Cretaceous plesiosaurians had already developed in the earliest Late Triassic.  相似文献   

9.
Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade. Within the Australasian clade, Diprotodontia is the sister taxon to a Notoryctemorphia + Dasyuromorphia + Peramelemorphia clade. Within the Diprotodontia, Vombatiformes (wombat + koala) is the sister taxon to a paraphyletic possum group (Phalangeriformes) with kangaroos nested inside. Molecular dating analyses suggest Late Cretaceous/Paleocene dates for all interordinal divergences. All intraordinal divergences were placed in the mid to late Cenozoic except for the deepest splits within the Diprotodontia. Our UBBL estimates of the marsupial fossil record indicate that the South American record is approximately as complete as the Australasian record. The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Abstract: Limopsis is one of the most speciose and widespread bivalve genera in the Southern Ocean at the present day. However, the fossil record of the genus is poorly known from the southern high latitudes. Here, we review the fossil record in this region to help understand the evolutionary origins of the genus. Limopsis infericola sp. nov. and additional specimens of a previously described species are added to the fossil record of Antarctica. The globally distributed limopsid clade had its earliest occurrences in the Early Cretaceous of Europe and New Zealand, then radiated during the Late Cretaceous (Maastrichtian, 70.6–65.5 Ma). Fossil evidence shows that the genus underwent a second, Cenozoic, radiation related to the isolation of Antarctica and the onset of cooling in the southern hemisphere. The genus has persisted in Antarctica for the last 50 myr, adapting to extreme changes in the environmental conditions, including surviving the last glacial maximum in marine refugia.  相似文献   

11.
Klug, S. (2009). Monophyly, phylogeny and systematic position of the †Synechodontiformes (Chondrichthyes, Neoselachii). — Zoologica Scripta, 39 , 37–49.
Identifying the monophyly and systematic position of extinct sharks is one of the major challenges in reconstructing the phylogeny and evolutionary history of sharks in general. Although great progress has been accomplished in the last few decades with regard to resolving the interrelationships of living sharks, a comprehensive phylogeny identifying the systematic position of problematic or exclusively fossil taxa is still lacking. Fossil taxa traditionally assigned to synechodontiform sharks are very diverse with a fossil record extending back into the Palaeozoic but with uncertain inter- and intrarelationships. Here, phylogenetic analyses using robust cladistic principles are presented for the first time to evaluate the monophyly of this group, their intrarelationships and their systematic position within Neoselachii. According to the results of this study, taxa assigned to this group form a monophyletic clade, the †Synechodontiformes. This group is sister to all living sharks and displays a suite of neoselachian characters. Consequently, the concept of neoselachian systematics needs to be enlarged to include this completely extinct group, which is considered to represent stem-group neoselachians. The origin of modern sharks can be traced back into the Late Permian (250 Mya) based on the fossil record of †Synechodontiformes. The systematic position of batoids remains contradictory, which relates to the use of different data (molecular vs. morphological) in phylogentic analyses.  相似文献   

12.
? Premise of the study: Pinaceae and nonpinoid species are sister groups within the conifer clade as inferred from molecular systematic comparisons of living species and therefore should have comparable geological ages. However, the fossil record for the nonpinoid lineage of extant conifer families is Triassic, nearly 100 million years older than the oldest widely accepted Lower Cretaceous record for Pinaceae. An anatomically preserved fossil conifer seed cone described here extends the stratigraphic range of Pinaceae nearly 30 million years, thus reducing the apparent discrepancy between evidence from the fossil record and inferences from systematic studies of living species. ? Methods: Material was prepared as serial thin sections by the cellulose acetate peel technique, mounted on microscope slides, and viewed and photographed using transmitted light. ? Key results: A large cylindrical cone consisting of bract-scale complexes that diverge from the cone axis in a helical phyllotaxis has bracts and scales that separate from each other in the midregion and are of equal length and of nearly equal width. The cone has two inverted and winged seeds that are attached to the adaxial surface of each cone scale and, thus, represents an early member of the Pinaceae. ? Conclusions: Eathiestrobus mackenziei gen. et sp. nov. extends the fossil record for well-documented members of the family Pinaceae from the Lower Cretaceous to the Kimmeridgian Stage of the Upper Jurassic. This species also clarifies the set of characters that are diagnostic for seed cones of Pinaceae and reveals possible plesiomorphic characters for seed cones of the family.  相似文献   

13.
Although morphological data have historically favored a basal position for the Indian gharial (Gavialis gangeticus) within Crocodylia and a Mesozoic divergence between Gavialis and all other crocodylians, several recent molecular data sets have argued for a sister-group relationship between Gavialis and the Indonesian false gharial (Tomistoma schlegelii) and a divergence between them no earlier than the Late Tertiary. Fossils were added to a matrix of 164 discrete morphological characters and subjected to parsimony analysis. When morphology was analyzed alone, Gavialis was the sister taxon of all other extant crocodylians whether or not fossil ingroup taxa were included, and a sister-group relationship between Gavialis and Tomistoma was significantly less parsimonious. In combination with published sequence and restriction site fragment data, Gavialis was the sister taxon of all other living crocodylians, but the position of Tomistoma depended on the inclusion of fossil ingroup taxa; with or without fossils, preferred morphological and molecular topologies were not significantly different. Fossils closer to Gavialis than to Tomistoma can be recognized in the Late Cretaceous, and fossil relatives of Tomistoma are known from the basal Eocene, strongly indicating a divergence long before the Late Tertiary. Comparison of minimum divergence time from the fossil record with different measures of molecular distance indicates evolutionary rate heterogeneity within Crocodylia. Fossils strongly contradict a post-Oligocene divergence between Gavialis and any other living crocodylian, but the phylogenetic placement of Gavialis is best viewed as unresolved.  相似文献   

14.
The superfamily Testudinoidea is the most diverse and widely distributed clade of extant turtles. Surprisingly, despite an extensive fossil record, and increasing amount of molecular data available, the temporal origin of this group is still largely unknown. To address this issue, we used a comprehensive molecular dataset to perform phylogenetic and molecular dating analyses, as well as seven fossil constraints to calibrate the ages of the nodes in the phylogeny. The molecular dataset includes the complete mitochondrial genomes of 37 turtle species, including newly sequenced mitochondrial genomes of Phrynops hilarii, Emys orbicularis, Rhinoclemmys punctularia, and Chelonoidis nigra, and four nuclear markers. Our results revealed that the earliest divergences within crown testudinoids occurred around 95.0 Mya, in the early Late Cretaceous, earlier than previously reported, raising new questions about the historical biogeography of this group.  相似文献   

15.
The Halecomorphi are a major subdivision of the ray-finned fishes. Although living halecomorphs are represented solely by the freshwater bowfin, Amia calva, this clade has a rich fossil history, and the resolution of interrelationships among extinct members is central to the problem of understanding the origin of the Teleostei, the largest clade of extant vertebrates. The Ionoscopiformes are extinct marine halecomorphs that were inferred to have originated in the Late Jurassic of Europe, and subsequently dispersed to the Early Cretaceous of the New World. Here, we report the discovery of a new ionoscopiform, Robustichthys luopingensis gen. et sp. nov., based on eight well-preserved specimens from the Anisian (242–247 Ma), Middle Triassic marine deposits of Luoping, eastern Yunnan Province, China. The new species documents the oldest known ionoscopiform, extending the stratigraphic range of this group by approximately 90 Ma, and the geographical distribution of this group into the Middle Triassic of South China, a part of eastern Palaeotethys Ocean. These new data provide a minimum estimate for the split of Ionoscopiformes from its sister clade Amiiformes and shed new light on the origin of ionoscopiform fishes.  相似文献   

16.
Evolutionary transitions to marine habitats occurred frequently among Mesozoic reptiles. Only one such clade survives to the present: sea turtles (Chelonioidea). Other marine turtles originated during the Mesozoic, but uncertain affinities of key fossils have obscured the number of transitions to marine life, and the timing of the origin of marine adaptation in chelonioids. Phylogenetic studies support either a highly‐inclusive chelonioid total‐group including fossil marine clades from the Jurassic and Cretaceous (e.g. protostegids, thalassochelydians, sandownids) or a less inclusive chelonioid total‐group excluding those clades. Under this paradigm, these clades belong outside Cryptodira, and represent at least one additional evolutionary transition to marine life in turtles. We present a new phylogenetic hypothesis informed by high resolution computed tomographic data of living and fossil taxa. Besides a well‐supported Chelonioidea, which includes protostegids, we recover a previously unknown clade of stem‐group turtles, Angolachelonia, which includes the Late Jurassic thalassochelydians, and the Cretaceous–Palaeogene sandownids. Accounting for the Triassic Odontochelys, our results indicate three independent evolutionary transitions to marine life in non‐pleurodiran turtles (plus an additional two‐three in pleurodires). Among all independent origins of marine habits, a pelagic ecology only evolved once, among chelonioids. All turtle groups that independently invaded marine habitats in the Jurassic–Cretaceous (chelonioids, angolachelonians, bothremydid pleurodires) survived the Cretaceous–Palaeogene mass extinction event. This highlights extensive survival of marine turtles compared to other marine reptiles. Furthermore, deeply‐nested clades such as chelonioids are found by the middle Early Cretaceous, suggesting a rapid diversification of crown‐group turtles during the Early Cretaceous.  相似文献   

17.
Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ornithurines (the lineage that includes living birds), such as the marine diving birds Hesperornis and Enaliornis, but documents a new stage in avian sensory evolution: acute nocturnal vision coupled with well-developed hearing and smell, developed by the Late Cretaceous (ca 90Myr ago). This fossil also provides insights into previous 'bird-like' brain reconstructions for the most basal avian Archaeopteryx--reduction of olfactory lobes (sense of smell) and enlargement of the hindbrain (cerebellum) occurred subsequent to Archaeopteryx in avian evolution, closer to the ornithurine lineage that comprises living birds. The Melovatka bird also suggests that brain enlargement in early avians was not correlated with the evolution of powered flight.  相似文献   

18.
The Australasian Ericaceae epitomize many problems in understanding the biogeography of the southern hemisphere, especially the relative contributions of Gondwanan vicariance and dispersal. Late Cretaceous fossil pollen of the family suggests extreme antiquity of the group in Australasia, but recent phylogenetic evidence suggests much younger histories for most of the groups in that region. This paper documents two new species of latest Oligocene-Early Miocene macrofossils of Ericaceae from New Zealand. Cyathodophyllum novae-zelandiae G.J.Jord. & Bannister gen. and sp. nov. is the oldest record of the tribe Styphelieae, but is of a clade now extinct in New Zealand, possibly related to the Tasmanian genus Cyathodes. Richeaphyllum waimumuensis G.J.Jord. & Bannister sp. nov. is a member of Richeeae, but it is ambiguous as to whether it is a member of the impressive modern New Zealand radiation in Dracophyllum. These fossils emphasize the fact that at least some of the fossil pollen of Ericaceae may have been derived from extinct lineages and therefore should not be used as evidence for the antiquity of any modern New Zealand clade of Ericaceae. New fossils and/or detailed analysis of fossil and extant pollen may help resolve such uncertainty.  相似文献   

19.
Spencer G. Lucas 《Ichnos》2013,20(1-2):5-38
Tetrapod footprints have a fossil record in rocks of Devonian-Neogene age. Three principal factors limit their use in biostratigraphy and biochronology (palichnostratigraphy): invalid ichnotaxa based on extramorphological variants, slow apparent evolutionary turnover rates and facies restrictions. The ichnotaxonomy of tetrapod footprints has generally been oversplit, largely due to a failure to appreciate extramorphological variation. Thus, many tetrapod footprint ichnogenera and most ichnospecies are useless phantom taxa that confound biostratigraphic correlation and biochronological subdivision. Tracks rarely allow identification of a genus or species known from the body fossil record. Indeed, almost all tetrapod footprint ichnogenera are equivalent to a family or a higher taxon (order, superorder, etc.) based on body fossils. This means that ichnogenera necessarily have much longer temporal ranges and therefore slower apparent evolutionary turnover rates than do body fossil genera. Because of this, footprints cannot provide as refined a subdivision of geological time as do body fossils. The tetrapod footprint record is much more facies controlled than the tetrapod body fossil record. The relatively narrow facies window for track preservation, and the fact that tracks are almost never transported, redeposited or reworked, limits the facies that can be correlated with any track-based biostratigraphy.

A Devonian-Neogene global biochronology based on tetrapod footprints generally resolves geologic time about 20 to 50 percent as well as does the tetrapod body fossil record. The following globally recognizable time intervals can be based on the track record: (1) Late Devonian; (2) Mississippian; (3) Early-Middle Pennsylvanian; (4) Late Pennsylvanian; (5) Early Permian; (6) Late Permian; (7) Early-Middle Triassic; (8) late Middle Triassic; (9) Late Triassic; (10) Early Jurassic; (11) Middle-Late Jurassic; (12) Early Cretaceous; (13) Late Cretaceous; (14) Paleogene; (15) Neogene. Tetrapod footprints are most valuable in establishing biostratigraphic datum points, and this is their primary value to understanding the stratigraphic (temporal) dimension of tetrapod evolution.  相似文献   

20.
《Palaeoworld》2008,17(2):142-152
The important question of early angiosperm growth habit (i.e., trees, shrubs or herbs?) remains unanswered. Various theories have been based on data from both living and fossil plants. The Early Cretaceous fossil wood record, however, was seldom used to investigate early angiosperm habit. We set up a database for the Early Cretaceous and Cenomanian of Europe, as this area has the most complete and stratigraphically well-constrained record. The database has 170 entries, based on a bibliographical survey and on the examination of more than 600 new fossil wood specimens from a wide range of palaeoenvironments. In our record the woody characteristic in angiosperms appeared during the Albian, whereas most of the angiosperm's early evolution took place earlier, during the earliest Cretaceous. From the European fossil wood record for the Early Cretaceous and Cenomanian, the global extension and dominance of angiosperms in the Cenomanian is concomitant with a sharp increase in heteroxylous wood diversity. It appears that small stature and weak wood limited the angiosperm ecological radiation for some time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号