首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat retina, lens, and kidney from 8-week-old animals were assayed for the steady-state levels of mRNAs for four basement membrane components: The alpha 1 chain of type IV collagen, the alpha 2 chain of type IV collagen, the B1 chain of laminin, and the B2 chain of laminin. Each tissue exhibited markedly different ratios of the four mRNAs. The mRNA ratio for the alpha 1 chain of type IV collagen to the B1 chain of laminin varied from a value of 0.7 in retina to a value of 17 in lens. Also, the mRNA ratio for the alpha 1 chain to the alpha 2 chain of type IV collagen varied from 1.6 in retina to 17 in lens, and the mRNA ratio for the B1 chain to the B2 chain of laminin varied from 0.6 in lens to 2.9 in kidney. The mRNA coding for the alpha 1 chain of type IV collagen decreased in all three tissues as the animals increased in age from 8 to 16 weeks, with the rate of decline being greater in retina than in lens of kidney. The levels of mRNA coding for the B1 and the B2 chains of laminin decreased in the kidney between 8 and 16 weeks but at different rates. Comparison of mRNAs from kidney of rats over this time period showed that the ratio of alpha 1 to B1 remained relatively constant with age, whereas the ratio of B1 to B2 increased. One possible explanation for the results is that each tissue has elaborate, tissue-specific controls for translation that provide synthesis of basement membrane components in the same proportion, in spite of the varying steady-state levels of the mRNAs. A more likely explanation is that different tissues synthesize type IV collagen and laminin at different rates, and that even the subunit compositions of the type IV collagen and laminin molecules vary from tissue to tissue and in an age-dependent manner.  相似文献   

2.
The appearance of extracellular matrix molecules and their receptors represent key events in the differentiation of cells of the kidney. Steady-state mRNA levels for a laminin receptor, the laminin B1, B2, and A chains, and the alpha 1-chain of collagen IV (alpha 1[IV]), were examined in mouse kidneys at 16 d gestation and birth, when cell differentiation is active, and 1-3 wk after birth when this activity has subsided. Northern analysis revealed that mRNA expression of laminin receptor precedes the alpha 1(IV) and laminin B chains whereas laminin A chain mRNA expression was very low. In situ hybridization reflected this pattern and revealed the cells responsible for expression. At 16 d gestation, laminin receptor mRNA was elevated in cells of newly forming glomeruli and proximal and distal tubules of the nephrogenic zone located in the kidney cortex. These cells also expressed mRNA for alpha 1(IV) and laminin chains. At birth, mRNA expression of receptor and all chains remained high in glomeruli but was reduced in proximal and distal tubules. At 1 wk after birth, expression was located in the medulla over collecting ducts and loops of Henle. Little expression was detectable by 3 wk. These results suggest that cellular expression of steady-state mRNA for laminin receptor, laminin, and collagen IV is temporally linked, with laminin receptor expression proceeding first and thereafter subsiding.  相似文献   

3.
The steady-state levels of mRNAs coding for two components of basement membranes, the alpha 1 chain of type IV collagen and the B1 chain of laminin, were measured in the kidneys of male CDF rats following the induction of diabetes with streptozotocin for periods of between 2 days and 28 weeks. The concentration of mRNA for the alpha 1 chain of type IV collagen/microgram of RNA decreased markedly with age in control and diabetic rats. The diabetic level was significantly lower than control after 2 and 11 weeks of diabetes. After 28 weeks, however, there was no significant difference from the levels in control animals. Treatment of control and diabetic rats with the aldose reductase inhibitor Statil (350 mg/kg diet) did not affect the levels of the mRNA for the alpha 1 chain of type IV collagen. In contrast to the continuous decline in the concentration of mRNA for the alpha 1 chain of type IV collagen, the level of mRNA for the B1 chain of laminin increased two-fold between 11 and 28 weeks after induction of diabetes. This increase occurred as aging of control rats reduced the level of laminin B1 mRNA by approximately 50%. Treatment with Statil had no effect on laminin B1 mRNA levels. In control rats there was no change in the ratio of the levels of mRNAs for laminin B1: alpha 1 (IV) collagen with age. The mean ratio was 0.97 +/- 0.10 at 19 weeks and 1.0 +/- 0.10 at 36 weeks of age. In diabetic rats there was a marked increase in the ratio from 0.85 +/- 0.11 at 19 weeks to 3.2 +/- 1.2 at 36 weeks of age. The increased abundance of mRNA for laminin B1 raises the possibility that increased synthesis of laminin contributes to the thickening and abnormal function of renal basement membranes in streptozotocin-diabetic rats.  相似文献   

4.
Collagen IV is a major component of vertebrate basal laminae (BLs). Studies in humans have revealed a family of genes encoding alpha 1- alpha 6 collagen IV chains and implicated alpha 3-alpha 6 in disease processes (Goodpasture and Alport syndromes and diffuse leiomyomatosis). To extend studies of these components to an experimentally accessible animal, we cloned cDNAs encoding partial collagen alpha 3, alpha 4, and alpha 5(IV) chains from the mouse. Ribonuclease protection assays showed that all three genes were expressed at highest levels in kidney and lung; alpha 5(IV) was also expressed at high levels in heart. We then made antibodies specific for each collagen IV chain. Immunohistochemical studies of several tissues revealed many combinations of collagen IV chains; however, alpha 3 and alpha 4 (IV) were always coexpressed, and only appeared in BLs that were alpha 5(IV) positive. The alpha 3-alpha 5(IV) chains were frequently but not exclusively associated with the S (beta 2) chain of laminin, as were the alpha 1, 2 (IV) collagen chains with laminin B1 (beta 1). An analysis of developing rat kidney BLs showed that newly formed (S-shaped) nephrons harbored collagen alpha 1 and alpha 2(IV) and laminin B1; maturing (capillary loop stage) BLs contained collagen alpha 1-alpha 5(IV) and laminin B1 and S-laminin; and mature glomerular BLs contained mainly collagen alpha 3-alpha 5(IV) and S-laminin. Thus, collagen alpha 1 and alpha 2(IV) and laminin B1 appear to be fetal components of the glomerular BL, and there is a developmental switch to collagen alpha 3-alpha 5(IV) and S-laminin expression.  相似文献   

5.
Three polypeptide chains, A, B1, and B2, have been described for mouse laminin, a basement membrane protein. We studied expression of laminin A, B1, and B2 mRNA in the developing mouse kidney. Induction of kidney mesenchyme differentiation in vitro led to an increased expression of B1 and B2 chain mRNA on day 1 of development. In contrast, expression of A chain mRNA increased on day 2, when epithelial cell polarization begins. Laminin A mRNA and polypeptide were expressed only by epithelia during in vivo development as well. Some polarized cell types producing basement membrane (endothelium, some adult epithelia) lacked the A chain mRNA and polypeptide, although they did express B chains. Laminin with the 400 kd A chain is therefore a transient form appearing at specific sites of kidney morphogenesis, whereas isoforms with a different A chain or without it have a more widespread distribution.  相似文献   

6.
The expression of the constituent alpha 1 chain of laminin-1, a major component of basement membranes, is markedly regulated during development and differentiation. We have designed an antisense RNA strategy to analyze the direct involvement of the alpha 1 chain in laminin assembly, basement membrane formation, and cell differentiation. We report that the absence of alpha 1-chain expression, resulting from the stable transfection of the human colonic cancer Caco2 cells with an eukaryotic expression vector comprising a cDNA fragment of the alpha 1 chain inserted in an antisense orientation, led to (a) an incorrect secretion of the two other constituent chains of laminin-1, the beta 1/gamma 1 chains, (b) the lack of basement membrane assembly when Caco2-deficient cells were cultured on top of fibroblasts, assessed by the absence of collagen IV and nidogen deposition, and (c) changes in the structural polarity of cells accompanied by the inhibition of an apical digestive enzyme, sucrase-isomaltase. The results demonstrate that the alpha 1 chain is required for secretion of laminin-1 and for the assembly of basement membrane network. Furthermore, expression of the laminin alpha 1-chain gene may be a regulatory element in determining cell differentiation.  相似文献   

7.
The cDNA and protein sequences of the N-terminal 60% of the alpha 2(IV) chain of human basement membrane collagen have been determined. By repeated primer extension with synthetic oligodeoxynucleotides and mRNA from either HT1080 cells or human placenta overlapping clones were obtained which cover 3414 bp. The derived protein sequence allows for the first time a comparison and alignment of both alpha chains of type IV collagen from the N terminus. This alignment reveals an additional 43 amino acid residues in the alpha 2(IV) chain as compared to the alpha 1(IV) chain. 21 of these additional residues form a disulfide-bridged loop within the triple helix which is unique among all known collagens.  相似文献   

8.
9.
Laminins are extracellular matrix glycoproteins that are involved in various cellular functions, including adhesion, proliferation, and differentiation. In this study, we examine the expression patterns and the cellular origins of the laminin alpha2, alpha4, and alpha5 chains in the developing mouse intestine and in in vitro mouse/chick or chick/mouse interspecies hybrid intestines. In situ hybridization and Northern blot analysis revealed that mRNA levels for all three laminin alpha chains are highest in the fetal intestine undergoing intense morphogenetic movements. Laminin alpha4 mRNA and polypeptide are associated with mesenchyme-derived cell populations such as endothelium and smooth muscle. In contrast, laminin alpha2 and alpha5 chains participate in the structural organization of the subepithelial basement membrane and, in the mature intestine, show a complementary pattern of expression. All three laminin alpha chains occur in the smooth muscle basement membrane, with a differential expression of laminin alpha5 chain in the circular and longitudinal smooth muscle layers. The cellular origin of laminin alpha2 and alpha5 chains found in the subepithelial cell basement membrane was studied by immunocytochemical analysis of mouse/chick or chick/mouse interspecies hybrid intestines at various stages of development using mouse-specific antibodies. Laminin alpha2 was found to be deposited into the basement membrane exclusively by mesenchymal cells, while the laminin alpha5 chain was deposited by both epithelial and mesenchymal cells in an apparently developmentally regulated pattern. We conclude that (1) multiple laminin alpha chains are expressed in the intestine, implying specific roles for individual laminin isoforms during intestinal development, and (2) reciprocal epithelial/mesenchymal interactions are essential for the formation of a structured subepithelial basement membrane.  相似文献   

10.
Vitamin A is essential for lung development and pulmonary cell differentiation. Its deficiency leads to altered lung structure and function and to basement membrane architecture and composition disturbances. Previously, we showed that lack of retinoids thickens the alveolar basement membrane and increases collagen IV, which are reversed by retinoic acid, the main biologically active vitamin A form. This study analyzed how vitamin A deficiency affects the subunit composition of collagen IV and laminin of lung basement membranes and pulmonary matrix metalloproteinase content, plus the recovering effect of all-trans-retinoic acid. Male weanling pups were fed a retinol-adequate/-deficient diet until 60 days old. A subgroup of vitamin-A-deficient pups received daily intraperitoneal all-trans-retinoic acid injections for 10 days. Collagen IV and laminin chain composition were modified in vitamin-A-deficient rats. The protein and mRNA contents of chains α1(IV), α3(IV) and α4(IV) increased; those of chains α2(IV) and α5(IV) remained unchanged; and the protein and mRNA contents of laminin chains α5, β1 and γ1 decreased. The mRNA of laminin chains α2 and α4 also decreased. Matrix metalloproteinases 2 and 9 decreased, but the tissue inhibitors of metalloproteinases 1 and 2 did not change. Treating vitamin-A-deficient rats with retinoic acid reversed all alterations, but laminin chains α2, α4 and α5 and matrix metalloproteinase 2 remained low. In conclusion, vitamin A deficiency alters the subunit composition of collagen IV and laminin and the lung's proteolytic potential, which are partly reverted by retinoic acid. These alterations could contribute to impaired lung function and predispose to pulmonary disease.  相似文献   

11.
Changes in epithelial substrate have been related to the cellular capacity for proliferation and to changes in cellular behavior. The effect of TGF beta 1 on the expression of the basement membrane genes, fibronectin, laminin B1, and collagen alpha 1 (IV), was examined. Northern analysis revealed that treatment of normal human epidermal keratinocytes with 100 pM TGF beta 1 increased the expression of each extracellular matrix (ECM) gene within 4 h of treatment. Maximal induction was reached within 24 h after treatment. The induction of ECM mRNA expression was dose dependent and was observed at doses as low as 1-3 pM TGF beta 1. Incremental doses of TGF beta 1 also increased cellular levels of fibronectin protein in undifferentiated keratinocytes and resulted in increased secretion of fibronectin. Squamous-differentiated cultures of keratinocytes expressed lower levels of the extracellular matrix RNAs than did undifferentiated cells. Treatment of these differentiated cells with TGF beta 1 induced the expression of fibronectin mRNA to levels seen in TGF beta-treated, undifferentiated keratinocytes but only marginally increased the expression of collagen alpha 1 (IV) and laminin B1 mRNA. The increased fibronectin mRNA expression in the differentiated keratinocytes was also reflected by increased accumulation of cellular and secreted fibronectin protein. The inclusion of cycloheximide in the protocol indicated that TGF beta induction of collagen alpha 1 (IV) mRNA was signaled by proteins already present in the cells but that TGF beta required the synthesis of a protein(s) to fully induce expression of fibronectin and laminin B1 mRNA. The differential regulation of these genes in differentiated cells may be important to TGF beta action in regulating reepithelialization.  相似文献   

12.
Six cDNA clones add 3549 nucleotides to the DNA sequence of the alpha 1 chain of basement membrane (type IV) collagen. Thus the complete nucleotide and derived amino acid sequence of the alpha 1 type IV collagen with 5007 nucleotides coding for 1669 amino acids with a calculated Mr of 160,827 is known. The six cDNA clones cover the putative N-terminal signal peptide, the 7 S region and two thirds of the helical region extending into the previously published murine nucleotide sequence [(1986) Gene 43, 301]. The protein sequence for 289 amino acids of the helical region adjacent to the 7 S region has not previously been published for any species.  相似文献   

13.
Pepsin-solubilized collagen VI was prepared from human placenta and used to separate three constituent chains for determining partial amino acid sequences. Antibodies raised against the chains assisted in the identification and purification of several cDNA clones from three expression lambda gt11 libraries. Most of the clones hybridized to either a 3.5-kb or 4.2-kb mRNA species which by matching peptide and nucleotide sequences could be identified as coding for the alpha 2(VI) or alpha 1(VI) chain, respectively. Other clones hybridized to either an 8.5-kb mRNA which very likely encoded the alpha 3(VI) chain or to an unknown 2.0-kb mRNA. Northern blots revealed a considerable variation in the mRNA levels for each collagen VI chain in both skin and cornea fibroblasts and in several tumor cell lines. Limited sequence data generated from peptides and cDNA clones demonstrated a characteristic cysteine pattern at the junction between N-terminal globular domain and triple helix in all three chains. In addition, the data showed occasional interruptions of triplet sequences within the triple-helical domain and the presence of two Arg-Gly-Asp sequences which are potential cell-binding structures.  相似文献   

14.
We have isolated and characterized overlapping cDNA clones which code for a previously unidentified human collagen chain. Although the cDNA-derived primary structure of this new polypeptide is very similar to the basement membrane collagen alpha 1(IV) and alpha 2(IV) chains, the carboxyl-terminal collagenous/non-collagenous junction sequence does not correspond to the junction sequence in either of the newly described alpha 3(IV) or alpha 4(IV) chains (Butkowski, R.J., Langeveld, J.P.M., Wieslander, J., Hamilton, J., and Hudson, B. G. (1987) J. Biol. Chem. 262, 7874-7877). Thus the protein presented here has been designated the alpha 5 chain of type IV collagen. Four clones encode an open reading frame of 1602 amino acids that cover about 95% of the entire chain including half of the amino-terminal 7S domain and all of the central triple-helical region and carboxyl-terminal NC1 domain. The collagenous region of the alpha 5(IV) chain contains 22 interruptions which are in most cases identical in distribution to those in both the alpha 1(IV) and alpha 2(IV) chains. Despite the relatively low degree of conservation among the amino acids in the triple-helical region of the three type IV collagen chains, analysis of the sequences clearly showed that alpha 5(IV) is more related to alpha 1(IV) than to alpha 2(IV). This similarity between the alpha 5(IV) and alpha 1(IV) chains is particularly evident in the NC1 domains where the two polypeptides are 83% identical in contrast to the alpha 5(IV) and alpha 2(IV) identity of 63%. In addition to greatly increasing the complexity of basement membranes, the alpha 5 chain of type IV collagen may be responsible for specialized functions of some of these extracellular matrices. In this regard, it is important to note that we have recently assigned the alpha 5(IV) gene to the region of the X chromosome containing the locus for a familial type of hereditary nephritis known as Alport syndrome (Myers, J.C., Jones, T.A., Pohjalainen, E.-R., Kadri, A.S., Goddard, A.D., Sheer, D., Solomon, E., and Pihlajaniemi, T. (1990) Am. J. Hum. Genet. 46, 1024-1033). Consequently, the newly discovered alpha 5(IV) collagen chain may have a critical role in inherited diseases of connective tissue.  相似文献   

15.
The sequence of 511 residues from the C-terminal portion of the triple helix of mouse alpha 2(IV) chain was determined by using the pepsin fragment P2 of collagen IV and two cDNA clones selected from an Engelbreth-Holm-Swarm (EHS) tumor library. The sequence contains nine interruptions of the triplet repeat Gly-Xaa-Yaa ranging in size from single insertions or deletions up to stretches of eleven amino acid residues. Five of these interruptions match those present in the homologous segment of the alpha 1(IV) chain but are otherwise different in length and/or sequence. A low homology was found for the triplet regions of the alpha 1(IV) and alpha 2(IV) chain which constitute more than 90% of the sequence. The data indicate a remote evolutionary relationship of the triple-helical sequences of the two constituent chains of basement membrane collagen.  相似文献   

16.
A Drosophila laminin A chain gene was characterized as a 14 kb genomic nucleotide sequence which encodes an open reading frame of 3712 amino acids in 15 exons. Overall, this A chain is similar to its vertebrate counterparts, especially in its N- and C-terminal globular domains, but the sequence that forms the laminin A short arm is quite different and larger. Laminin messages appear in newly formed mesoderm and are later prominently expressed in hemocytes, which also synthesize basement membrane collagen IV. The composition of Drosophila basement membranes changes with development. A novel method of tandemly fused RNA probes showed that developmental increases of laminin mRNAs were primarily associated with periods of morphogenesis, and preceded those of collagen IV, a protein strongly expressed during growth. The ratio of A:B1:B2 mRNAs varied little during embryogenesis, with less mRNA for A than B chains. Staining of embryos with antibodies confirmed and extended the information provided by in situ hybridization. Homologs of the G-subdomains of this A chain, which occur in interacting regions of agrin, perlecan, laminin and sex steroid binding protein, may be involved in protein associations.  相似文献   

17.
Nidogen-1 binds several basement membrane components by well-defined, domain-specific interactions. Organ culture and gene targeting approaches suggest that a high-affinity nidogen-binding site of the laminin gamma1 chain (gamma1III4) is important for kidney development and for nerve guidance. Other proteins may also bind gamma1III4, although human nidogen-2 binds poorly to the mouse laminin gamma1 chain. We therefore characterized recombinant mouse nidogen-2 and its binding to basement membrane proteins and cells. Mouse nidogen-1 and -2 interacted at comparable levels with collagen IV, perlecan, and fibulin-2 and, most notably, also with laminin-1 fragments P1 and gamma1III3-5, which both contain the gamma1III4 module. In embryos, nidogen-2 mRNA was produced by mesenchyme at sites of epithelial-mesenchymal interactions, but the protein was deposited on epithelial basement membranes, as previously shown for nidogen-1. Hence, binding of both nidogens to the epithelial laminin gamma1 chain is dependent on epithelial-mesenchymal interactions. Epidermal growth factor stimulated expression of both nidogens in embryonic submandibular glands. Both nidogens were found in all studied embryonic and adult basement membranes. Nidogen-2 was more adhesive than nidogen-1 for some cell lines and was mainly mediated by alpha3beta1 and alpha6beta1 integrins as shown by antibody inhibition. These findings revealed extensive coregulation of nidogen-1 and -2 expression and much more complementary functions of the two nidogens than previously recognized.  相似文献   

18.
We describe the identification of a novel laminin chain. Overlapping clones were isolated from a human fibrosarcoma HT1080 cell cDNA library spanning a total of 5,200 bp. A second set of clones contained an alternative 3' end sequence giving a total of 4,316 bp. The longer sequence contained an open reading frame for a 1,193-residue-long polypeptide. The alternative sequence was shortened at the carboxyl-terminal end coding for a 1,111-residue-long polypeptide. The amino acid sequence contained 21 amino acids of a putative signal peptide and 1,172 residues or alternatively 1,090 residues of a sequence with five distinct domains homologous to domains I-V in laminin chains. Comparison of the amino acid sequences showed that the novel laminin chain is homologous to the laminin B2 chain. However, the structure of the novel laminin chain isolated here differs significantly from that of the B2 chain in that it has no domain VI and domains V, IV, and III are shorter, resulting in a truncated laminin chain. The alternative sequence had a shortened domain I/II. In accordance with the current nomenclature, the chain characterized here is termed B2t. Calculation of possible chain interactions of laminin chains with the B2t chain domain I/II indicated that the B2t chain can replace the B2 chain in some laminin molecules. The gene for the laminin B2t chain (LAMB2T) was localized to chromosome 1q25-q31 in close proximity to the laminin B2 chain gene. Northern analysis showed that the B2t chain is expressed in several human fetal tissues but differently from the laminin B1 and B2 chains. By in situ hybridization expression of the B2t chain was localized to specific epithelial cells in skin, lung, and kidney as opposed to a general epithelial and endothelial cell expression of the laminin B2 chain in the same tissues.  相似文献   

19.
Type IV collagen is a major structural component of basement membranes. Four constituent polypeptides have been described and characterized to different degrees. Whereas the primary structure of the alpha 1(IV) and alpha 2(IV) chains has been completely established, only short protein sequences have been reported for the recently recognized alpha 3(IV) and alpha 4(IV) subunits. We have isolated overlapping human cDNA clones whose derived amino acid sequence is highly homologous to the alpha 1(IV) and alpha 2(IV) chains. However, these clones code for neither alpha 3(IV) nor alpha 4(IV), and thus this new polypeptide has been designated the alpha 5 chain of type IV collagen. To determine whether the gene encoding the alpha 5(IV) chain is syntenic with the contiguously arranged alpha 1(IV) and alpha 2(IV) genes at 13q34, the alpha 5(IV) cloned DNA was hybridized to genomic DNA from somatic cell hybrids and to metaphase chromosomes. The results demonstrated that the alpha 5(IV) collagen gene is located on the long arm of the X chromosome. Since 14 collagen genes have previously been assigned to nine autosomes, these data represent the first mapping of a collagen gene to the X chromosome. Most important, the alpha 5(IV) gene has been sublocalized to bands Xq22----q23, which are in the same region known to contain the locus for the X-linked form of Alport syndrome. It is therefore possible that this severe dominantly inherited nephritis, manifested by splitting of the glomerular basement membrane, could be caused by mutations in the alpha 5(IV) collagen gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号