首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of secreted proteases are included among the virulence factors documented for Staphylococcus aureus. In light of increasing antibiotic resistance of this dangerous human pathogen, these proteases are considered as suitable targets for the development of novel therapeutic strategies. The recent discovery of staphostatins, endogenous, highly specific, staphylococcal cysteine protease inhibitors, opened a possibility for structure-based design of low molecular weight analogues. Moreover, the crystal structure of staphostatin B revealed a distinct folding pattern and an unexpected, substrate-like binding mode. The solution structure of staphostatin A reported here confirms that staphostatins constitute a novel, distinct class of cysteine protease inhibitors. In addition, the structure knowledge-based mutagenesis studies shed light on individual structural features of staphostatin A, the inhibition mechanism, and the determinants of distinct specificity of staphostatins toward their target proteases.  相似文献   

2.
Staphostatins are the endogenous, highly specific inhibitors of staphopains, the major secreted cysteine proteases from Staphylococcus aureus. We have previously shown that staphostatins A and B are competitive, active site-directed inhibitors that span the active site clefts of their target proteases in the same orientation as substrates. We now report the crystal structure of staphostatin B in complex with wild-type staphopain B at 1.9 A resolution. In the complex structure, the catalytic residues are found in exactly the positions that would be expected for uncomplexed papain-type proteases. There is robust, continuous density for the staphostatin B binding loop and no indication for cleavage of the peptide bond that comes closest to the active site cysteine of staphopain B. The carbonyl carbon atom C of this peptide bond is 4.1 A away from the active site cysteine sulfur Sgamma atom. The carbonyl oxygen atom O of this peptide bond points away from the putative oxyanion hole and lies almost on a line from the Sgamma atom to the C atom. The arrangement is strikingly similar to the "ionmolecule" arrangement for the complex of papain-type enzymes with their substrates but differs significantly from the arrangement conventionally assumed for the Michaelis complex of papain-type enzymes with their substrates and also from the arrangement that is crystallographically observed for complexes of standard mechanism inhibitors and their target serine proteases.  相似文献   

3.
Staphostatins constitute a family of staphylococcal cysteine protease inhibitors sharing a lipocalin-like fold and a unique mechanism of action. Each of these cytoplasmic proteins is co-expressed from one operon, together with a corresponding target extracellular cysteine protease (staphopain). To cast more light on staphostatin/staphopain interaction and the evolution of the encoding operons, we have cloned and characterized a staphopain (StpA2aur CH-91) and its inhibitor (StpinA2aur CH-91) from a novel staphylococcal thiol protease operon (stpAB2CH-91) identified in S. aureus strain CH-91. Furthermore, we have expressed a staphostatin from Staphylococcus warneri (StpinBwar) and characterized its target protease (StpBwar). Analysis of the reciprocal interactions among novel and previously described members of the staphostatin and staphopain families demonstrates that the co-transcribed protease is the primary target for each staphostatin. Nevertheless, the inhibitor derived from one species of Staphylococcus can inhibit the staphopain from another species, although the Ki values are generally higher and inhibition only occurs if both proteins belong to the same subgroup of either S. aureus staphopain A/staphostatin A (alpha group) or staphopain B/staphostatin B (beta group) orthologs. This indicates that both subgroups arose in a single event of ancestral allelic duplication, followed by parallel evolution of the protease/inhibitor pairs. The tight coevolution is likely the result of the known deleterious effects of uncontrolled staphopain action.  相似文献   

4.
Staphostatins are the endogenous inhibitors of the major secreted cysteine proteases of Staphylococcus aureus, the staphopains. Here, we present the 1.4 A crystal structure of staphostatin B and show that the fold can be described as a fully closed, highly sheared eight-stranded beta-barrel. Thus, staphostatin B is related to beta-barrel domains that are involved in the inhibition or regulation of proteases of various catalytic types and to the superfamily of lipocalins/cytosolic fatty acid binding proteins. Unexpectedly for a cysteine protease inhibitor, staphostatin B is not significantly similar to cystatins.  相似文献   

5.
Bacterial proteases are considered virulence factors and it is presumed that by abrogating their activity, host endogenous protease inhibitors play a role in host defense against invading pathogens. Here we present data showing that Staphylococcus aureus cysteine proteases (staphopains) are efficiently inhibited by Squamous Cell Carcinoma Antigen 1 (SCCA1), an epithelial-derived serpin. The high association rate constant (k(ass)) for inhibitory complex formation (1.9×10(4) m/s and 5.8×10(4) m/s for staphopain A and staphopain B interaction with SCCA1, respectively), strongly suggests that SCCA1 can regulate staphopain activity in vivo at epithelial surfaces infected/colonized by S. aureus. The mechanism of staphopain inhibition by SCCA1 is apparently the same for serpin interaction with target serine proteases whereby the formation of a covalent complex result in cleavage of the inhibitory reactive site peptide bond and associated release of the C-terminal serpin fragment. Interestingly, the SCCA1 reactive site closely resembles a motif in the reactive site loop of native S. aureus-derived inhibitors of the staphopains (staphostatins). Given that S. aureus is a major pathogen of epithelial surfaces, we suggest that SCCA1 functions to temper the virulence of this bacterium by inhibiting the staphopains.  相似文献   

6.
The increasing antibiotic resistance of an important human pathogen Staphylococcus aureus calls for the development of new therapeutic strategies. Staphylococcal cysteine proteases have been suggested as targets for such therapies. The recent discovery of staphostatins, specific protein inhibitors of these enzymes, gives prospects for the design and production of synthetic, low molecular weight analogs which might become drugs. We have decided to structurally characterize staphostatin A, a representative inhibitor of staphylococcal cysteine proteases, and to assess its binding mode to the target protease with the view of clarifying the specificity determinants. Here we report the (1)H, (15)N and (13)C NMR resonance assignments of staphostatin A.  相似文献   

7.
Staphylococcus epidermidis, a Gram-positive, coagulase-negative bacterium is a predominant inhabitant of human skin and mucous membranes. Recently, however, it has become one of the most important agents of hospital-acquired bacteriemia, as it has been found to be responsible for surgical wound infections developed in individuals with indwelling catheters or prosthetic devices, as well as in immunosupressed or neutropenic patients. Despite their medical significance, little is known about proteolytic enzymes of S. epidermidis and their possible contribution to the bacterium's pathogenicity; however, it is likely that they function as virulence factors in a manner similar to that proposed for the proteases of Staphylococcus aureus. Here we describe the purification of a cell wall-associated cysteine protease from S. epidermidis, its biochemical properties and specificity. A homology search using N-terminal sequence data revealed similarity to staphopain A (ScpA) and staphopain B (SspB), cysteine proteases from S. aureus. Moreover, the gene encoding S. epidermidis cysteine protease (Ecp) and a downstream gene coding for a putative inhibitor of the protease form an operon structure which resembles that of staphopain A in S. aureus. The active cysteine protease was detected on the bacterial cell surface as well as in the culture media and is apparently produced in a growth phase-dependent manner, with initial expression occurring in the mid-logarithmic phase. This enzyme, with elastinolytic properties, as well as the ability to cleave alpha1PI, fibrinogen and fibronectin, may possibly contribute to the invasiveness and pathogenic potential of S. epidermidis.  相似文献   

8.
Staphostatins are the endogenous inhibitors of the major secreted cysteine proteases of Staphylococcus aureus, the staphopains. Our recent crystal structure of staphostatin B has shown that this inhibitor forms a mixed, eight-stranded beta-barrel with statistically significant similarity to lipocalins, but not to cystatins. We now present the 1.8-A crystal structure of staphostatin B in complex with an inactive mutant of its target protease. The complex is held together through extensive interactions and buries a total surface area of 2300 A2. Unexpectedly for a cysteine protease inhibitor, staphostatin B binds to staphopain B in an almost substrate-like manner. The inhibitor polypeptide chain runs through the protease active site cleft in the forward direction, with residues IG-TS in P2 to P2' positions. Both in the free and complexed forms, the P1 glycine residue of the inhibitor is in a main chain conformation only accessible to glycines. Mutations in this residue lead to a loss of affinity of the inhibitor for protease and convert the inhibitor into a substrate.  相似文献   

9.
Staphylococcus aureus is a human pathogen causing a wide range of diseases. Most staphylococcal infections, unlike those caused by other bacteria are not toxigenic and very little is known about their pathogenesis. It has been proposed that a core of secreted proteins common to many infectious strains is responsible for colonization and infection. Among those proteins several proteases are present and over the years many different functions in the infection process have been attributed to them. However, little direct, in vivo data has been presented. Two cysteine proteases, staphopain A (ScpA) and staphopain B (SspB) are important members of this group of enzymes. Recently, two cysteine protease inhibitors, staphostatin A and staphostatin B (ScpB and SspC, respectively) were described in S. aureus shedding new light on the complexity of the processes involving the two proteases. The scope of this review is to summarize current knowledge on the network of staphylococcal cysteine proteases and their inhibitors in view of their possible role as virulence factors.  相似文献   

10.
A novel type of cysteine proteinase inhibitor (SspC) has been recently recognized in Staphylococcus aureus (Massimi, I., Park, E., Rice, K., Muller-Esterl, W., Sauder, D.N., and McGavin, M.J. (2002) J Biol Chem 277: 41770-41777). In this paper we have identified homologous proteins encoded in the genome of S. aureus and other coagulase-negative Staphylococci. Collectively we refer to these proteins as staphostatins as they specifically inhibit cysteine proteinases (staphopains) from Staphylococcus spp. The primary structure of staphostatins seems to be unique, although they resemble cystatins in size (105-108 residues). Recombinant staphostatin A, a product of the scpB gene and staphostatin B (SspC) from S. aureus have been characterized in details. Similar to the cystatins, the staphostatins interact specifically with their target proteinases forming tight and stable non-covalent complexes, staphostatin A with staphopain A and staphostatin B with staphopain B. However, in contrast to the cystatins, each of which inhibits broad range of cathepsins, complex formation between staphostatin and staphopain appears to be exclusive, with no cross interaction observed. In addition, the activities of several tested cysteine proteinases of prokaryotic- and eukaryotic-origin were not affected by staphostatins. Such narrow specificity limited to staphopains is presumed to be required to protect staphylococcal cytoplasmic proteins from being degraded by prematurely activated/folded prostaphopains. This function is guaranteed through the unique co-expression of the secreted proteinase and the intracellular inhibitor from the same operon, and represents a unique mechanism of regulation of proteolytic activity in Gram-positive bacteria.  相似文献   

11.
Protein inhibitors of proteolytic enzymes regulate proteolysis and prevent the pathological effects of excess endogenous or exogenous proteases. Cysteine proteases are a large family of enzymes found throughout the plant and animal kingdoms. Disturbance of the equilibrium between cysteine proteases and natural inhibitors is a key event in the pathogenesis of cancer, rheumatoid arthritis, osteoporosis, and emphysema. A family (I42) of cysteine protease inhibitors (http://merops.sanger.ac.uk) was discovered in protozoan parasites and recently found widely distributed in prokaryotes and eukaryotes. We report the 2.2 A crystal structure of the signature member of the I42 family, chagasin, in complex with a cysteine protease. Chagasin has a unique variant of the immunoglobulin fold with homology to human CD8alpha. Interactions of chagasin with a target protease are reminiscent of the cystatin family inhibitors. Protein inhibitors of cysteine proteases may have evolved more than once on nonhomologous scaffolds.  相似文献   

12.
CrmA is a "cross-class" serpin family inhibitor of the proapoptotic serine protease, granzyme B, as well as cysteine proteases of the caspase family. To determine whether crmA inhibits these structurally diverse proteases by a common conformational trapping mechanism, we mapped the position of the protease in crmA complexes with granzyme B or caspase-1 by fluorescence perturbation and fluorescence resonance energy transfer (FRET) analyses of site-specific fluorophore-labeled crmAs. A reactive loop P6 NBD label underwent similar large fluorescence enhancements (>200%) either upon reactive loop cleavage by AspN protease or complex formation with granzyme B or caspase-1, consistent with the insertion of the cleaved reactive loop into sheet A in both types of crmA-protease complexes. NBD labels on the noninserting part of the reactive loop docking site for protease (P1' residue) or midway between the two ends of sheet A (helix F residue 101) showed no significant perturbations due to protease complexation. By contrast, labels at positions 68 and 261, lying at the end of sheet A most distal from the reactive loop, showed marked perturbations distinct from those induced by AspN cleavage and thus ascribable to granzyme B or caspase-1 proximity in the complexes. Substantial FRET between protease tryptophans and 5-dimethylaminonaphthalene-1-sulfonyl-labeled crmAs occurred in protease complexes with crmAs labeled at the 68 and 261 positions, but not the P1' position. These results suggest that granzyme B and caspase-1 are inhibited by crmA by a common mechanism involving full reactive loop insertion into sheet A and translocation of the protease to the distal end of the sheet as previously found for inhibition of other serine proteases by serpins.  相似文献   

13.
By alternative use of four RSL (reactive site loop) coding exon cassettes, the serpin (serine protease inhibitor) gene Spn4 from Drosophila melanogaster was proposed to enable the synthesis of multiple protease inhibitor isoforms, one of which has been shown to be a potent inhibitor of human furin. Here, we have investigated the inhibitory spectrum of all Spn4 RSL variants. The analyses indicate that the Spn4 gene encodes inhibitors that may inhibit serine proteases of the subtilase family (S8), the chymotrypsin family (S1), and the papain-like cysteine protease family (C1), most of them at high rates. Thus a cohort of different protease inhibitors is generated simply by grafting enzyme-adapted RSL sequences on to a single serpin scaffold, even though the target proteases contain different types and/or a varying order of catalytic residues and are descendents of different phylogenetic lineages. Since all of the Spn4 RSL isoforms are produced as intracellular residents and additionally as variants destined for export or associated with the secretory pathway, the Spn4 gene represents a versatile defence tool kit that may provide multiple antiproteolytic functions.  相似文献   

14.
We present here a comprehensive analysis of proteases in the peptide substrate space and demonstrate its applicability for lead discovery. Aligned octapeptide substrates of 498 proteases taken from the MEROPS peptidase database were used for the in silico analysis. A multiple‐category naïve Bayes model, trained on the two‐dimensional chemical features of the substrates, was able to classify the substrates of 365 (73%) proteases and elucidate statistically significant chemical features for each of their specific substrate positions. The positional awareness of the method allows us to identify the most similar substrate positions between proteases. Our analysis reveals that proteases from different families, based on the traditional classification (aspartic, cysteine, serine, and metallo), could have substrates that differ at the cleavage site (P1–P1′) but are similar away from it. Caspase‐3 (cysteine protease) and granzyme B (serine protease) are previously known examples of cross‐family neighbors identified by this method. To assess whether peptide substrate similarity between unrelated proteases could reliably translate into the discovery of low molecular weight synthetic inhibitors, a lead discovery strategy was tested on two other cross‐family neighbors—namely cathepsin L2 and matrix metallo proteinase 9, and calpain 1 and pepsin A. For both these pairs, a naïve Bayes classifier model trained on inhibitors of one protease could successfully enrich those of its neighbor from a different family and vice versa, indicating that this approach could be prospectively applied to lead discovery for a novel protease target with no known synthetic inhibitors.  相似文献   

15.
Chemerin is an attractant for cells that express the serpentine receptor CMKLR1, which include immature plasmacytoid dendritic cells (pDC) and macrophages. Chemerin circulates in the blood where it exhibits low biological activity, but upon proteolytic cleavage of its C terminus, it is converted to a potent chemoattractant. Enzymes that contribute to this conversion include host serine proteases of the coagulation, fibrinolytic, and inflammatory cascades, and it has been postulated that recruitment of pDC and macrophages by chemerin may serve to balance local tissue immune and inflammatory responses. In this work, we describe a potent, pathogen-derived proteolytic activity capable of chemerin activation. This activity is mediated by staphopain B (SspB), a cysteine protease secreted by Staphylococcus aureus. Chemerin activation is triggered by growth medium of clinical isolates of SspB-positive S. aureus, but not by that of a SspB(null) mutant. C-terminal processing by SspB generates a chemerin isoform identical with the active endogenous attractant isolated from human ascites fluid. Interestingly, SspB is a potent trigger of chemerin even in the presence of plasma inhibitors. SspB may help direct the recruitment of specialized host cells, including immunoregulatory pDC and/or macrophages, contributing to the ability of S. aureus to elicit and maintain a chronic inflammatory state.  相似文献   

16.
The CXC chemokine receptor 2 (CXCR2) on neutrophils, which recognizes chemokines produced at the site of infection, plays an important role in antimicrobial host defenses such as neutrophil activation and chemotaxis. Staphylococcus aureus is a successful human pathogen secreting a number of proteolytic enzymes, but their influence on the host immune system is not well understood. Here, we identify the cysteine protease Staphopain A as a chemokine receptor blocker. Neutrophils treated with Staphopain A are unresponsive to activation by all unique CXCR2 chemokines due to cleavage of the N-terminal domain, which can be neutralized by specific protease inhibitors. Moreover, Staphopain A inhibits neutrophil migration towards CXCR2 chemokines. By comparing a methicillin-resistant S. aureus (MRSA) strain with an isogenic Staphopain A mutant, we demonstrate that Staphopain A is the only secreted protease with activity towards CXCR2. Although the inability to cleave murine CXCR2 limits in-vivo studies, our data indicate that Staphopain A is an important immunomodulatory protein that blocks neutrophil recruitment by specific cleavage of the N-terminal domain of human CXCR2.  相似文献   

17.
The effect of different protease inhibitors on the proteolytic processing of the plum pox potyvirus (PPV) polyprotein has been analyzed. Human cystatin C, an inhibitor of cysteine proteases, interfered with the outoprocessing of the viral papain-like cysteine protease HCPro. Unexpectedly, it also had an inhibitory effect on the autocatalytic cleavage of the Nla protease which, although it has a Cys residue in its active center, has been described as structurally related to serine proteases. Other protease inhibitors tested had no effect on any of the cleavage events analyzed.  相似文献   

18.
Hepatitis C virus (HCV) nonstructural 3 (NS3) serine protease disrupts important cellular antiviral signaling pathways and plays a pivotal role in the proteolytic maturation of the HCV polyprotein precursor. This recent discovery has fostered the search for NS3 protease inhibitors. However, the enzyme's unusual induced fit behavior and peculiar molecular architecture have imposed considerable obstacles to the development of small molecule inhibitors. In this article, we demonstrate that such unique induced fit behavior and the chymotrypsin-like catalytic domain can provide the structural plasticity necessary to generate protein-based inhibitors of the NS3 protease. We took advantage of the macromolecular scaffold of a Drosophila serpin, SP6, which intrinsically supports chymotrypsin-like enzyme inhibition, to design a novel class of potent and selective inhibitors. We show that altering the SP6 reactive site loop (RSL) resulted in the development of the first effective (K(i) of 34 nm) and selective serpin, SP6(EVC/S), directed at the NS3 protease. SP6(EVC/S) operates as a suicide substrate inhibitor, and its partitioning between the complex-forming and proteolytic pathways for the NS3 protease is HCV NS4A cofactor-dependent and -specific. Once bound to the protease active site, SP6(EVC/S) partitions with equal probability to undergo proteolysis by NS3 at the C-terminal site of the engineered RSL, (P(6))Glu-Ile-(P(4))Val-Met-Thr-(P(1))Cys- downward arrow -(P(1)')Ser, or to form a covalent acyl-enzyme complex characteristic of cognate protease-serpin pairs. Our results also reveal a novel cofactor-induced serpin mechanism of enzyme inhibition that could be explored for developing effective and selective inhibitors of other important induced fit viral proteases of the Flaviviridae family such as the West Nile virus NS3 endoprotease.  相似文献   

19.
This survey is the first to investigate the proteolytic potential of a large number of basidiomycetes. Aqueous extracts of 43 basidiomycetes were investigated for their content of proteolytic activities, using gelatin zymography. The activities were characterised qualitatively using class specific inhibitors. All four catalytic classes of proteases were present, with 4% of all activities classified as aspartic, 5% as cysteine, 6% as metallo and 22% as serine proteases, while the remaining activities could not be assigned unambiguously. The majority of the latter were not inhibited by any of the inhibitors used and were termed insensitive. Different proteolytic activities are evenly distributed among members of all orders of basidiomycetes, although some taxa are a richer source of proteases than others. A significant number of the cysteine protease activities shown here have not previously been reported in basidiomycetes. The fungal cysteine and serine protease inhibitors, clitocypin and CNSPI (Clitocybe nebularis serine protease inhibitor), both inhibited a number of activities and even a few activities that were otherwise insensitive to all other inhibitors used, hence indicating their potential for a regulatory role. The number and diversity of proteases in basidiomycetes are seen to be remarkable and encourage further investigation.  相似文献   

20.
Site-specific proteases are the most popular kind of enzymes for removing the fusion tags from fused target proteins. Nuclear inclusion protein a (NIa) proteases obtained from the family Potyviridae have become promising due to their high activities and stringencies of sequences recognition. NIa proteases from tobacco etch virus (TEV) and tomato vein mottling virus (TVMV) have been shown to process recombinant proteins successfully in vitro. In this report, recombinant PPV (plum pox virus) NIa protease was employed to process fusion proteins with artificial cleavage site in vitro. Characteristics such as catalytic ability and affecting factors (salt, temperature, protease inhibitors, detergents, and denaturing reagents) were investigated. Recombinant PPV NIa protease expressed and purified from Escherichia coli demonstrated efficient and specific processing of recombinant GFP and SARS-CoV nucleocapsid protein, with site F (N V V V H Q black triangle down A) for PPV NIa protease artificially inserted between the fusion tags and the target proteins. Its catalytic capability is similar to those of TVMV and TEV NIa protease. Recombinant PPV NIa protease reached its maximal proteolytic activity at approximately 30 degrees C. Salt concentration and only one of the tested protease inhibitors had minor influences on the proteolytic activity of PPV NIa protease. Recombinant PPV NIa protease was resistant to self-lysis for at least five days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号