首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term population dynamics and ecology of the abundant but non-dominant phytoplankton species of the shallow hypertrophic lake the Albufera of Valencia (Spain) are described for the period 1980–1988. The lake is used as a reservoir for the surrounding ricefield cultivation. It is continuously dominated by three filamentous blue-green algae, Planktothrix agardhii, Pseudanabaena galeata and Geitlerinema sp. Horizontal differences of the phytoplankton were less important than annual and seasonal variations. An annual increasing trend was observed for Planktolyngbya subtilis, Planktolyngbya contorta, Cylindrospermopsis raciborskii, Microcystis incerta, Nitzschia palea var. tenuirostris and Rhodomonas lacustris var. nannoplanctica, whereas Anabaenopsis elenkinii, Scenedesmus acuminatus, Scenedesmus quadricauda and Cyclotella meneghiniana showed an opposite trend. This pattern seems related to the increase of nitrogen and phosphorus loading in the lake and certain hydrological changes occurred in the latter years of the study. Seasonal pattern of the subdominant species showed the presence of Cyclotella meneghiniana, Scenedesmus species and Chlamydomonas spp. in spring, during moderate water renovation rates and phosphate availability. Periodicity shifted to blue-green algae and Nitzschia species in summer and early autumn, during reduced phosphate levels and initial low but later high water renewal. Autumn and winter species, such as Monoraphidium contortum, Nitzschia gracilis, Rhodomonas lacustris var. nannoplanctica and Cryptomonas erosa, were mainly related to light intensity and temperature. Although the lake has a typical hypertrophic phytoplankton assemblage, the general seasonal variation of the species is similar to that often described in temperate lakes. Diatom species composition differs to that cited in other shallow hypertrophic lakes of Europe.  相似文献   

2.
Data on some relevant environmental variables and phytoplankton species composition, collected from the hypertrophic shallow lake Albufera of Valencia (Spain) during 1980–88, were examined using Redundancy Analysis (RDA). The hydrological cycle of the lake is manipulated for rice cultivation in the area. Seasonality and the particular hydrological cycle of the lake were the principal factors influencing long-term phytoplankton dynamics. Annual or horizontal differences were less important than the seasonal factor. However, a trend of phosphate increase and underwater illumination decrease was observed between 1980 and 1988. These changes might be related to some species year-to-year variations, although in general interannual phytoplankton changes were scarce. Spatial phytoplankton differences were much smaller than physical and chemical differences, which were mainly related to loading and residence times at the different sampling zones. Shallowness, hypertrophy and the regular hydrological cycle of the Albufera for rice yield, seem to contribute to the maintenance of an almost stable and homogeneous algal community, mainly composed of filamentous cyanophytes. RDA analysis has proved to be an efficient method in yielding valuable information on phytoplankton-environment interactions and trends over a long series of data. It seems also a feasible technique to monitor the results of lake management and restoration in the future.  相似文献   

3.
1. In view of the paucity of data on the response of warm shallow lakes to reductions in nutrient loading, this paper presents a long‐term limnological data set to document changes in the food‐web of a shallow Mediterranean lake (Lake Albufera, Valencia, Spain) that has experienced reductions in phosphorus (P) (77%) and nitrogen (N) (24%) loading following sewage diversion. 2. Nine years after sewage diversion, P concentration in the lake was reduced by 30% but remained high (TP = 0.34 mg L?1), although the mean water retention time in the lake was only 0.1 years. Nitrate concentrations did not significantly change, probably because the lake continued to receive untreated effluents from ricefields. 3. Chlorophyll a concentration was reduced by half (annual mean of 180 μg L?1). Cyanobacteria abundance remained high but its composition changed towards smaller species, both filamentous and chroococcal forms. 4. Cladocera abundance increased and reached peaks twice a year (December to March and July to September). After nutrient reduction, short‐term clear‐water phases (up to 5 weeks) occurred during February to March in several years, concomitant with annual flushing of the lake and lower fish densities. The abundance of Cladocera in winter contrasted with the spring peaks observed in northern restored shallow lakes. The zooplankton to phytoplankton biomass ratio remained lower than in northern temperate shallow lakes, probably because of fish predation on zooplankton. 5. Improvement of the water quality of Lake Albufera remained insufficient to counteract littoral reed regression or improve underwater light allowing submerged plants re‐colonise the lake. 6. Sewage diversion from Lake Albufera impacted the food web through the plankton, but higher trophic levels, such as fish and waterfowl, were affected to a lesser degree. Although the fish species present in the lake are mainly omnivorous, long‐term data on commercial fish captures indicated that fish communities changed in response to nutrient level and trophic structure as has been observed in restored shallow lakes at northern latitudes. 7. Phosphorus concentrations produced similar phytoplankton biomass in Lake Albufera as in more northern shallow lakes with abundant planktivorous fish and small zooplankton. However, in Lake Albufera, high average concentrations were maintained throughout the year. Overall, results suggest that nutrient control may be a greater priority in eutrophicated warm shallow lakes than in similar lakes at higher latitudes.  相似文献   

4.
Whole-lake food-web manipulation was carried out in the hypertrophic Lake Zwemlust (The Netherlands), with the aim of studying the effects on the lake's trophic status and to gain an insight into complex interactions among lake communities. Before manipulation this small (1.5 ha) and shallow (1.5 m) lake was characterized byMicrocystis blooms in summer and high chlorophyll-a concentrations were common (ca. 250 μg 1−1). In March 1987 the planktivorous and benthivorous fish species in the lake were completely removed (ca. 1000 kg ha−1), a new simple fish community (pike and rudd) was introduced and artificial refuges were created. The effects of this manipulation on the light climate, nutrient concentrations, phytoplankton, zooplankton, fish, macrophytes, and macrofauna were monitored during 1987, 1988 and 1989. Community interactions were investigated in phytoplankton bioassays and zooplankton grazing experiments. After the manipulation, despite the still high P and N loads to the lake (ca. 2.2 g P m−2 y−1 andca. 5.3 g N m−2 y−1), the phytoplankton density was low (Chl-a<5μg l−1), due to control by large-sized zooplankton in spring and N-limitation in summer and autumn. A marked increase in the abundance of macrophytes and filamentous green algae in 1988 and 1989, as well as N loss due to denitrification, contributed to the N limitation of the phytoplankton. Before manipulation no submerged macro-vegetation was present but in 1988, the second year after manipulation, about 50% of the lake bottom was covered by macrophytes increasing to 80% in 1989. This led to substantial accumulation of both N and P, namely 76% and 73% respectively of the total nutrients in the lake in particulate matter. Undesirable features of the increase in macrophytes were: 1) direct nuisance to swimmers; and, 2) the large scale development of snails, especiallyL. peregra, which may harbour the parasite causing ‘swimmers' itch’. But harvesting of only about 3% of the total macrophyte biomass from the swimmers' area, twice a year, reduced the nuisance for swimmers without adversely affecting the water clarity.  相似文献   

5.
SUMMARY. 1. A numerical model for calculation of daily and annual nitrogen fixation in lakes is presented. The model is based on empirically-derived equations for the rates of nitrogen fixation by heterocysts (nitrogen-fixing cells) in relation to light and on functions for the vertical and tetnporal distributions of heterocysts and light in a lake. 2. Applications of the model to Lake Valencia, Venezuela, between December 1980 and December 1981 indicated that nitrogen fixation is largely a surface phenomenon in this lake: 80% of diurnal fixation occurred within 1m of the water surface. 3. Nitrogen fixation is largely restricted to periods of lake stratification, when the phytoplankton have sufficient light for growth, but dissolved inorganic nitrogen is scarce. Nitrogen fixation was maximal late in the stratification period of 1981: 85 % of fixation occurred within the last 3 months of the 9-month period. 4. The annual nitrogen fixation in Lake Valencia is 26 kg ha?1, which is comparable to the nitrogen fixation in temperate eutrophic lakes with seasonal blue-green algal blooms. However, nitrogen fixation accounted for only 23% of the total nitrogen supply to Lake Valencia in 1981.  相似文献   

6.
Importance of tubificid populations on nitrogen cycle in two categories of shallow eutrophic lakes in the Danube Delta was quantitatively assessed for the 1992-1993 period. The structure of the primary producers in the studied lakes was used to discriminate between the two categories:(i) lakes dominated by macrophytes (A1) and (ii) lakes dominated by phytoplankton (A2). In both categories tubificid worms represented important fraction of the entire benthic community (35 and 32%, respectively, as number of individuals). They influence the sediment-water exchange of nutrients. The main processes involved are excretion of nutrients and their continuous release from sediments by molecular diffusion or through channels created by bioturbation. Inorganic nitrogen released from bottom sediments may regulate nitrogen load in the water body and thus, phytoplankton production. In 1992-1993, nitrogen stocks in tubificid biomass accounted for 5.3% in A1 lakes and 15.6% in A2 lakes of the amount stocked in phytoplankton, and only for 1.2 and 2.9% respectively, of the nitrogen load in water body. Nitrogen excretion rates ranged between 60.52 and 153.74 mg N m–2 year–1, and release rates from sediments between 378.26 and 960.87 mg N m–2 year–1, the lowest values being recorded for A2 category. Differences are related to tubificid biomass, structure and abundance of primary producers and to nutrient load in different ecosystems. Ratios between release rate of inorganic nitrogen by tubificid worms and sedimentation rate of organic nitrogen in the two categories of lakes were 8.3 and 6.4% respectively. Contribution of nitrogen released daily from sediments to the dissolved inorganic nitrogen load in the water column was less than 0.5%. However, in A1 and A2 lakes, the released nitrogen had a potential to sustain 24.74 and 8.01%, respectively, of the annual phytoplankton production. These values suggest the significance of tubificids in keeping the eutrophication process at a high level, especially during the periods when nitrogen is the main limiting factor for phytoplankton production.  相似文献   

7.
Studies have shown a strong linkage between zooplankton and fisheries' potential in tropical lakes. High zooplankton production provides the basis for fish production, but knowledge of zooplankton production dynamics in African lakes is extremely limited. Crustacean zooplankton production and the biomass of dominant rotifers in Lake Bosumtwi were assessed over a 2‐year period. The crustaceans comprised an endemic and extremely abundant cyclopoid copepod, Mesocyclops bosumtwii and the cladoceran Moina micrura. Mean standing stock of the crustaceans was 429 mg dw m?3, whilst annual production averaged 2.1 g dw m?3 y?1. Production doubled from 1.4 g dw m?3 y?1 in 2005 to 2.8 g dw m?3 y?1 in 2006. Copepods accounted for 98.5% of crustacean production. The biomass of the dominant rotifers Brachionus calyciflorus and Hexarthra intermedia was less than 1% of total zooplankton biomass. Daily turnover rate and turnover time of the crustaceans was 0.19 day?1 and 6.2 days respectively. Crustacean production yielded no statistical relationship with phytoplankton biomass. Production was well within the range of tropical lakes. Peak crustacean production synchronized maximum rainfall, lake mixing and phytoplankton production. Most importantly, no one year's set of dynamics can be used to characterize zooplankton production in the lake.  相似文献   

8.
The nature reserve Botshol (Utrecht, The Netherlands), consisting of two shallow lakes, ditches and reedland, originated from excavation of peat by man in the 17th century. Up to 1960 Botshol was a clear-water Charophyte lake system. Since the sixties water quality deteriorated and phytoplankton concentrations increased, while the number and dispersion of Chara species decreased. Several restoration measures were attempted to restablish a Charophyte-dominated ecosystem. This paper reports the promising results of this restoration experiment and mentions some complications that arose in restoring the reserve to a less fertile state. The restoration measures have resulted in a sixfold reduction of the external phosphorus load, from 0.6 to 0.1 g m–2.y–1, and in a significant reduction of phosphorus levels at all locations. Moreover, the light climate improved and the phyto- and zooplankton compositions changed considerably Unexpectedly, a bloom ofPrymnesium parvum and a fish kill were observed during the last three months of 1990. Despite this fish kill the restoration of the lake is successful so far.  相似文献   

9.
The Waitaki River system in the South Island of New Zealand includes three large glacially-formed headwater lakes, Tekapo, Pukaki and Ohau, which drain into the manmade Lake Benmore. Phytoplankton periodicity was followed from December 1975 to January 1980 as part of a study investigating possible changes in these lakes as a consequence of hydroelectric development. The phytoplankton was highly dominated by diatoms, e.g., Diatoma elongatum, Cyclotella stelligera, Asterionella formosa, and Synedra acus, but in lakes Ohau and Benmore populations of green algae occasionally developed. In all four lakes seasonal phytoplankton periodicity was observed with maximum biomass in spring and summer. In Lake Tekapo, the first lake in the chain, maximum biomass did not exceed 300 mg m–3, but in the very turbid Lake Pukaki the maximum summer biomass ranged between 300 and 800 mg m–3. In Lake Ohau, the least turbid lake, maximum biomass was around 1 000 mg m–3. In the newly created Lake Benmore periodicity was less evident and summer maxima reached over 1 500 mg m–3. The phytoplankton periodicity in these lakes is greatly influenced by seasonal patterns of turbidity from inflowing glacial silt.  相似文献   

10.
Nutrient-phytoplankton relationships in a tropical meromictic soda lake   总被引:1,自引:1,他引:0  
Seasonal variation through one year in total nitrogen (TN), total phosphorus (TP), phytoplankton biomass, phytoplankton species composition and other environmental factors were examined in Lake Sonachi, a tropical meromictic soda lake. Mean concentrations of TN and TP were 11 000 µg N l-1 and 100 µg P l-1, respectively. Maximum concentrations of TN and TP occurred in the monimolimnion. Phytoplankton biomass ranged from 350 to 1260 mg m-3. Synechococcus bacillaris, a small coccoid cyanophyte, dominated the phytoplankton. The mean chlorophyll a concentration of 37 mg · m-3 was a modest value when compared with those of other tropical soda lakes. High TN:TP ratios indicated phosphorus limitation in the lake.  相似文献   

11.
Ecological conditions and phytoplankton succession in two shallow hypertrophic lakes (Langer See and Melangsee) and a dimictic, eutrophic lake (Scharmützelsee) in a lake chain in Eastern Germany were analyzed from 1999 to 2001 in order to find situations of phytoplankton steady state assemblages and variables controlling the phytoplankton composition according to Reynolds et al. (2002). Long term background data from 1993 to 2001 suggest steady state conditions in shallow lakes, whereas the deep lake exhibited irregular fluctuations between various phytoplankton stages. Since the phytoplankton composition in the shallow lakes was similar in all the 3 years, it was highly predictable. Steady state conditions dominated by different species of Oscillatoriales were detected during the summer period 1999 and 2000 in Langer See and in Melangsee (see Mischke & Nixdorf, this volume). This dominant assemblage found in both lakes (group S 1 acc. to Reynolds et al., 2002): Planktothrix agardhii (Gom.) Anagn. et Kom., Limnothrix redekei (Van Goor) Meffert, Pseudanabaena (Lauterb.) is typical in turbid mixed layers with highly light deficient conditions, but it is also regularly dominant in the dimictic lake Scharmützelsee as observed in 1999 and 2001 (Pseudanabaena limnetica (Lemm.) Kom. The Nostocales Cylindrospermopsis raciborskii (Wolz.) Seenayya et Subba Raju and Aphanizomenon gracile (Lemmerm.) Lemmerm. were important in the shallow lakes as well as in lake Scharmützelsee. Nevertheless, the occurrence of filamentous cyanobacteria in the dimictic lake was not regular and an unpredictable change in phytoplankton development was observed in 2000. It is discussed, whether this phenomenon of regular succession in shallow hypertrophic lakes is caused by adaptation to a resilient and an extreme environment or by the pool of species that can live or survive in that environment. This was checked through comparison of the depth of the mixed layer, the mean daily irradiance within this layer and the nutrient resources. Although the nutrient resources in both types of lake are near threshold levels, indicating growth inhibition by dissolved nutrients (DIP, DIN, TIC, DSi), the under water light supply seems to be the key factor favoring the dominance of filamentous cyanobacteria belonging to the functional group S 1.  相似文献   

12.
13.
The seasonal time course of phytoplankton primary productivitywas studied weekly in a hypertrophic, gravel-pit lake closeto Madrid, Spain. Chlorophyll a ranged 22–445 mg m–2.Gross primary productivity attained 0.28±0.14 g C m–2h–1 (range: 0.06–0.60), its yearly value being 900g C m–2, but the shallow euphotic depths and the highplankton respiration ensured that net productivity was generallylow. Respiration losses amounted to 0.31±0.24 g O2 m–2h–1, with phytoplankton respiration roughly attainingone-half of overall plankton respiration. Areal phytoplanktonproductivity and plankton respiration followed a seasonal trendbut this was not the case for photosynthetic capacity. Surfacephotoinhibition was evenly distributed throughout the study.Quantum yields showed an increasing depth trend, but no seasonaltrend. Both Pmax and Ik were both temperature- and irradiance-dependent.As compared with lakes of lesser trophic degree, phytoplanktonprimary production in hypertrophic lakes might be increasednot only by higher nutrient contents but also by low chlorophyll-specificattenuation coefficients and low background, non-algal attenuation,thereby allowing for higher areal chlorophyll contents and hencehigher areal productivity. Our study suggests that physical(irradiance and water column stability) as well as chemicalfeatures (dissolved inorganic carbon and soluble reactive phosphorus)may control seasonality of phytoplankton primary productionin this lake despite recent claims that only physical factorsare of significance in hypertrophic lakes. However, this doesnot explain all the variability observed and so a food web controlis also likely to be operating.  相似文献   

14.
In shallow hypertrophic lakes where light availability restricts the growth of macrophytes and benthic phytoplankton, pelagic phytoplankton modulates importantly ecosystem production and the energy transfer to heterotrophic bacteria. Diel and seasonal variations in primary production (PP) were studied in the hypertrophic Albufera de Valencia (Spain). Additionally, the relationship between PP and heterotrophic bacterial production (BP) was assessed. PP was extremely high, exceeding most values reported for hypertrophic lakes to date. PP displayed marked diurnal variations defined by the solar radiation curve. Likewise, PP changed importantly across seasons. Minimum PP coincided with maximum water transparency and short water residence times in winter, whereas maximum PP was observed in late spring associated with high chlorophyll a. The spring PP maximum contrasted with the summer maximum often observed in hypertrophic lakes. When compared to spring PP values, summer PP values were lower as a result of strong nitrogen limitation. In contrast to PP, BP remained fairly constant across seasons. Nonetheless, there was a joint diminution during increased water transparency followed by an increase in early spring. Phytoplankton was always the most relevant input to particulate carbon production, but the BP/PP ratio showed clear seasonal variations. The BP/PP ratio was minimum in spring, low in summer and highest in winter. The extracellular dissolved organic carbon released by phytoplankton was sufficient to meet bacterial carbon demand in all experimental dates, suggesting that allochthonous carbon sources play a minor role in sustaining BP, though they cannot be excluded. However, we hypothesize that high availability of dissolved organic carbon might explain the lack of coupling observed between BP and PP.  相似文献   

15.
Lars Leonardson 《Oecologia》1984,63(3):398-404
Summary Phytoplankton net carbon uptake and nitrogen fixation were studied in two shallow, eutrophic lakes in South Sweden. Ranges of diurnal net carbon uptake were estimated by subtracting 24-h respiration rates corresponding to 5–20% of P max, respectively, from daytime carbon uptake values. total nitrogen requirement of the phytoplankton assemblage was determined from the diurnal net carbon uptake, assuming a phytoplankton C:N ratio of 9.5:1. Nitrogen supplied by nitrogen fixation only occasionally corresponded to the demands of the total phytoplankton assemblage. When heterocystous algae made up a substantial proportion (10%) of the total phytoplankton biomass, nitrogen fixation could meet the requirements of heterocystous blue-green algae on c. 50% of the sampling occasions. Nitrogen deficiencies in heterocystous algae were most probably balanced by the simultaneous or sequential assimilation of dissolved inorganic nitrogen. It was concluded that uptake of ammonium or nitrate, regenerated from lake seston and sediment, is the main process by which growth of phytoplankton is maintained during summer in the lake ecosystems studied.  相似文献   

16.
Seasonal nutrient enrichment experiments (short-term bioassays) were conducted in three Florida lakes of different trophic states to determine the effects of addition of various nutrient combinations upon chlorophyll a and phytoplankton standing crops. Nutrient enriched surface water samples with crustacean zooplankton removed were incubated in situ in clear polyethylene bags for 3 to 6 days. The 25 factorial design employed two levels (ambient and enriched) of each of five nutrients [NH4 +, PO inf4 sup3− , Fe -EDTA, SiO inf3 sup2− and a cation (Ca2+ or K+) or trace elements]. Ammonium produced significant increases in chlorophyll a and phytoplankton standing crops in all experiments. Phosphate produced similar results in the mesotrophic lake, but the eutrophic lakes had both positive and nonsignificant responses which varied seasonally between lakes. Iron increased chlorophyll a in most experiments but affected total phytoplankton standing crop only during the summer and fall. Silicon had negative effects in some experiments. Cations and trace elements produced marked differences between lakes for chlorophyll a, but total phytoplankton standing crop showed few significant responses. Synergistic responses to two- and three-factor interactions were observed in all lakes. Differences in the responses of phytoplankton taxonomic divisions to enrichment may be responsible for much of the between lake variation in chlorophyll a and total phytoplankton volume responses. Nutrient limitations in these lakes are discussed and related to limnological factors and predictive models.  相似文献   

17.
Suspension feeding by bivalves has been hypothesized to control phytoplankton biomass in shallow aquatic ecosystems. Lake Waccamaw, North Carolina, USA is a shallow lake with a diverse bivalve assemblage and low to moderate phytoplankton biomass levels. Filtration and ingestion rates of two relatively abundant species in the lake, the endemic unionid, Elliptio waccamawensis, and an introduced species, Corbicula fluminea, were measured in experiments using natural phytoplankton for durations of 1 to 6 days. Measured filtration and ingestion rates averaged 1.78 and 1.121 ind.–1 d–1, much too low to control phytoplankton at the observed phytoplankton biomass levels and growth rates. Measured ingestion rates averaged 4.80 and 1.50 µg chlorophyll a ind.–1 d–1, too low to support individuals of either species. The abundance of benthic microalgae in Lake Waccamaw reaches 200 mg chlorophyll a m–2 in the littoral zone and averages almost an order of magnitude higher than depth-integrated phytoplankton chlorophyll a. Total microalgal biomass in the lake is therefore not controlled by suspension feeding by bivalves.  相似文献   

18.
The energy transfer at different trophic levels in a temperate lake ecosystem locally called Sar (lake) has been investigated. Total phytoplankton production in terms of energy fixation has been estimated at 3.2 × 106 cal m−2 y−1, out of which the fish harvest amounts to 2640 cal m−2 y−1. The conversion efficiency from phytoplankton to fish has been estimated at 0.082 %. Apart from other ecological parameters discussed in the paper, suggestions for the efficient use of other available energy from the system has been highlighted.  相似文献   

19.
Lake Muzahi,Rwanda: limnological features and phytoplankton production   总被引:1,自引:1,他引:0  
Lake Muhazi, a small lake of Rwanda (East Africa) was studied from 1986 to 1990. A dramatic decrease of the catch of Oreochromis niloticus (350 T y−1 in the fifties vs 30 T y−1 in 1982) suggested a loss of productivity or overfishing. In the same period, other ecological changes occurred: the submerged macrophytes regressed and there was a decrease in Secchi depth (0.65 m in 1987 vs 1.5 m in the fifties). Compared to other lakes of the same area, the plankton production seemed low. The results of the present study characterize lake Muhazi as a shallow lake with a rather unstable diurnal stratification and with slight differences in mixing regime between its eastern, deepest part and its western, shallowest part. Secchi disk depth does not vary seasonally to a large extent. The water has a rather high mineral content (conductivity of about 500 μS cm−1 at 25 °C) and low concentrations of dissolved N and P, except in the hypolimnion, where NH inf4 sup+ -N can be high. Two species, Microcystis aeruginosa and Ceratium hirundinella, account for most of the phytoplankton biomass, which is about 50–80 mg chlorophyll a m−2 in the euphotic zone, usually with little seasonal variation. Daily gross production estimates amount to about 6 to 9.5 g O2 m−2 d−1 with a significant difference between the two parts of the lake. Data on C:N and C:P ratio in the phytoplankton suggest that some N deficiency might occur in the eastern part. Moreover, the Zm:Zc ratio could also lead to rather low net production rates (0.21–0.25 d−1 for a mixed layer of 4 m) In conclusion, the primary production of lake Muhazi is medium for African lakes and the hypothesis that decreased planktonic production could account for a reduced fish production should be discarded. Whereas the present yield of the fishery is only 20 kg ha−1 y−1, the yield estimated from primary production ranges between 46 and 64 kg ha−1 y−1. This could be reached through proper management. Finally, some hypotheses are given to explain the ecological changes which occurred in the lake.  相似文献   

20.
Knuuttila  S.  Pietiläinen  O. P.  Kauppi  L. 《Hydrobiologia》1994,275(1):359-369
The impact of agriculture was estimated on two shallow, eutrophic lakes, Lake Kotojärvi and Lake Villikkalanjärvi in southern Finland. The main emphasis was on phosphorus and nitrogen budgets and on the phytoplankton dynamics. Special attention was paid to internal P loading and blue-green algal blooms. The mean Tot-P load from agricultural land was 1.2 kg ha-1 a-1 in both basins and Tot-N loads were 19 kg ha-1 a-1 in L. Villikkalanjärvi and 12 kg ha-1 a-1 in L. Kotojärvi. The Tot-P input to L. Kotojärvi was on an average 0.62 g m-2 a-1 (per lake surface area), and the Tot-N input 9.1 g m-2 a-1. The corresponding inputs to L. Villikkalanjärvi were 3.1 and 57 g m-2 a-1, respectively. The annual variation followed the runoff volumes. About half of the Tot-P and one third of the Tot-N load was retained in L. Kotojärvi. In L. Villikkalanjärvi the retention was only 24% for Tot-P and 19% for Tot-N. The difference was very probably due to a longer theoretical retention time in L. Kotojärvi. In L. Villikkalanjärvi the mean concentration of Tot-P was 120 µg 1-1 and that of Tot-N 1700 µg 1-1 and the corresponding figures in L. Kotojärvi 67 and 990 µg 1-1, respectively. The mean chlorophyll a concentration was, however, higher in L. Kotojärvi (26 µg 1-1) than in L. Villikkalanjärvi (20 µg 1-1). This was probably due to an internal P load in L. Kotojärvi: in 1988 the internal load of dissolved P was estimated to be as much as twofold the external load. In L. Villikkalanjärvi the internal dissolved P load was only up to 50% of the external input. In L. Kotojärvi the high internal P load coupled with a low DIN:DIP ratio resulted in a strong blue-green algal bloom in the summer of 1988. In L. Villikkalanjärvi blue-green algae were observed only in small amounts. Even in August 1990, when the DIN:DIP ratio was low enough to favor the occurrence of blue-green algae, they contributed only up to 10–15% of the total phytoplankton biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号