首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Kinetic properties of novel amine oxidase isolated from sainfoin (Onobrychis viciifolia) were compared to those of typical plant amine oxidase (EC 1.4.3.6) from lentil (Lens culinaris). The amine oxidase from sainfoin was active toward substrates, such as 1,5-diaminopentane (cadaverine) with K(m) of 0.09 mM and 1,4-diaminobutane (putrescine) with K(m) of 0.24 mM. The maximum rate of oxidation for cadaverine at saturating concentration was 2.7 fold higher than that of putrescine. The amine oxidase from lentil had the maximum rate for putrescine comparable to the rate of sainfoin amine oxidase with the same substrate. Both amine oxidases, like other plant Cu-amine oxidases, were inhibited by substrate analogs (1,5-diamino-3-pentanone, 1,4-diamino-2-butanone and aminoguanidine), Cu2+ chelating agents (diethyltriamine, 1,10-phenanthroline, 8-hydroxyquinoline, 2,2'-bipyridyl, imidazole, sodium cyanide and sodium azide), some alkaloids (L-lobeline and cinchonine), some lathyrogens (beta-aminopropionitrile and aminoacetonitrile) and other inhibitors (benzamide oxime, acetone oxime, hydroxylamine and pargyline). Tested by Ouchterlony's double diffusion in agarose gel, polyclonal antibodies against the amine oxidase from sainfoin, pea and grass pea cross-reacted with amine oxidases from several other Fabaceae and from barley (Hordeum vulgare) of Poaceae, while amine oxidase from the filamentous fungus Aspergillus niger did not cross-react at all. However, using Western blotting after SDS-PAGE with rabbit polyclonal antibodies against the amine oxidase from Aspergillus niger, some degree of similarity of plant amine oxidases from sainfoin, pea, field pea, grass pea, fenugreek, common melilot, white sweetclover and Vicia panonica with the A. niger amine oxidase was confirmed.  相似文献   

2.
Atria from reserpine-pretreated rabbits were exposed to pargyline to inhibit monoamine oxidase (amine oxidase (flavin-containing) EC 1.4.3.4) and subsequently incubated in (-)-[3H]noradrenaline to allow the cytoplasmic accumulation of amine in adrenergic nerves. The structure-activity relations for acceleration of efflux of cytoplasmic amine were examined. The most potent agents studied were (+)- and (-)-amphetamine, beta-phenethylamine, phentermine, and mephentermine. Ability to accelerate efflux was reduced by addition of phenolic hydroxyl groups, by phenolic methylation, by beta-hydroxylation, and by N-substitution. The structure-activity relations for acceleration of efflux differ notably from those for uptake, inhibition of uptake, or release of noradrenaline from adrenergic nerves, reported in previous studies. The ability and potency of a given phenethylamine derivative to accelerate the efflux of cytoplasmic noradrenaline is probably determined by such factors as the lipid solubility of the amine, the affinity of the amine for the uptake and efflux site(s) for noradrenaline, and competition for any reserpine-resistant intraneuronal binding sites.  相似文献   

3.
Cyclosporin A (CsA) was epoxidized with m-chloroperoxybenzoic acid in the presence of sodium carbonate or with tert-butyl hydroperoxide in the presence of dioxomolybdenum iminodiethanoxide. The CsA epoxide was not stable and rearranged into a compound with a more stable five-member ring structure. An amino group containing cyclosporin A derivative (CsA amine) was obtained by the reaction of CsA epoxide with excess ethylenediamine. The yield of the CsA amine was 30--40% based on the CsA. An HPMA copolymer--CsA conjugate was prepared by the reaction of the CsA amine with an HPMA and MA-Gly-Phe-Leu-Gly-ONp copolymer. The content of CsA amine in the conjugate was 8.7 wt %. The CsA amine was released from the copolymer by enzymatic hydrolysis with papain.  相似文献   

4.
 The interactions of five copper-containing amine oxidases with substrates and substrate analogues in the presence of the copper ligands cyanide, azide, chloride, and 1,10-phenanthroline have been investigated. While cyanide inhibits, to varying degrees, the reaction of phenylhydrazine with porcine kidney amine oxidase (PKAO), porcine plasma amine oxidase (PPAO), bovine plasma amine oxidase (BPAO), and pea seedling amine oxidase (PSAO), it enhances the reaction of Arthrobacter P1 amine oxidase (APAO) with this substrate analogue. This indicates that cyanide exerts an indirect effect on topa quinone (TPQ) reactivity via coordination to Cu(II) rather than through cyanohydrin formation at the TPQ organic cofactor. Moreover, cyanide binding to the mechanistically relevant TPQ semiquinone form of substrate-reduced APAO and PSAO was not observable by EPR or resonance Raman spectroscopy. Hence, cyanide most likely inhibits enzyme reoxidation by binding to Cu(I) and trapping the Cu(I)-TPQ form of amine oxidases, and thus preventing the reaction of O2 with Cu(I). In contrast, ligands such as azide, chloride, and 1,10-phenanthroline, which preferentially bind to Cu(II), inhibit by stabilizing the aminoquinol Cu(II)-TPQred redox state, which is in equilibrium with Cu(I)-TPQ. Received: 12 December 1996 / Accepted: 20 March 1997  相似文献   

5.
A series of compounds derived from a previously identified substrate analogue of copper amine oxidases (CuAOs) (Shepard et al. (2002) Eur. J. Biochem. 269, 3645-3658) has been screened against six different CuAOs with a view to designing potent and selective inhibitors. The substrate analogues investigated were 4-(1-naphthyloxy)-2-butyn-1-amine, 4-(2-methylphenoxy)-2-butyn-1-amine, 4-(3-methylphenoxy)-2-butyn-1-amine, 4-(4-methylphenoxy)-2-butyn-1-amine, and 4-phenoxy-2-butyn-1-amine. These compounds were screened against equine plasma amine oxidase (EPAO), Pisum sativum amine oxidase (PSAO), Pichia pastoris lysyl oxidase (PPLO), bovine plasma amine oxidase (BPAO), human kidney diamine oxidase (KDAO), and Arthrobacter globiformis amine oxidase (AGAO) to examine the effect of different substituent groups on potency. Despite the similar structures of the 4-aryloxy analogues evaluated, striking differences in potency were observed. In addition, crystal structures of AGAO derivitized with 4-(2-naphthyloxy)-2-butyn-1-amine and 4-(4-methylphenoxy)-2-butyn-1-amine were obtained at a resolution of 1.7 A. The structures reveal a novel and unprecedented reaction mechanism involving covalent attachment of the alpha,beta-unsaturated aldehyde turnover product to the amino group of the reduced 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor. Collectively, the structural and inhibition results support the feasibility of designing selective mechanism-based inhibitors of copper amine oxidases.  相似文献   

6.
The physiologic and behavioral effects of pharmacologic agents that interfere with the transport of monoamine neurotransmitters into vesicles suggest that vesicular amine transport may contribute to human neuropsychiatric disease. To determine whether an alteration in the genes that encode vesicular amine transport contributes to the inherited component of these disorders, we have isolated a human cDNA for the brain transporter and localized the human vesicular amine transporter genes. The human brain synaptic vesicle amine transporter (SVAT) shows unexpected conservation with rat SVAT in the regions that diverge extensively between rat SVAT and the rat adrenal chromaffin granule amine transporter (CGAT). Using the cloned sequences with a panel of mouse-human hybrids and in situ hybridization for regional localization, the adrenal CGAT gene (or VAT1) maps to human chromosome 8p21.3 and the brain SVAT gene (or VAT2) maps to chromosome 10q25. Both of these sites occur very close to if not within previously described deletions that produce severe but viable phenotypes.  相似文献   

7.
B J Chen  A I Yuan  D Wang  R D Feinman 《Biochemistry》1990,29(13):3361-3365
The kinetics of reaction of alpha 2-macroglobulin (alpha 2M) with thrombin and with trypsin were studied in the presence and absence of methylamine. The rate of enzyme-induced thiol release was found to be the same whether or not amine was present. The result suggests that covalent bond formation and enzyme-catalyzed amine incorporation proceed via a common (enzyme-dependent) rate-determining step. The reaction of lysyl-modified enzymes (which show poor covalent binding with alpha 2M) was similarly unaffected by amine, indicating that enzyme-catalyzed steps were also rate determining for hydrolysis of the thiol ester. The products of the reactions were analyzed by native and denaturing gel electrophoresis. Methylamine did not affect the total binding of enzyme to alpha 2M but did cause a substantial decrease in covalent binding. Surprisingly, not all covalent complexes were affected by the presence of amine: complexes in which enzyme was covalently bound to one half-molecule increased compared to the reaction with no amine; complexes in which two half-molecules are cross-linked by two bonds to a single enzyme were substantially reduced, however. The results are consistent with a mechanism of reaction in which an enzyme-dependent step is rate determining. This step is accompanied by activation of two thiol esters. One of these reacts immediately with the bound enzyme (or may be hydrolyzed if the enzyme amine groups are blocked). The other activated center is capable of reaction with external nucleophiles such as methylamine.  相似文献   

8.
We discovered that an Au(III)-DNA coordinate complex, Au(III)(DNA-base)2(amine)L, are formed by laser ablation of Au nanoparticles in an aqueous solution containing DNA molecules in the presence of amines and multi-valent cations, where L represents an unknown ligand (either amine or water). Optical absorption spectrum of the solution after laser ablation exhibited a 360 nm absorption peak assined to ligand-->Au(III) charge transfer (LMCT) band of the coordinate complex. The complex is considered to be formed as follows: (1) the DNA molecules are neutralized by binding the multi-valent cations to their negatively charged phosphate groups, and adsorbed on the surface of the Au nanoparticles by a hydrophobic interaction, (2) Au(III) ions are liberated from the Au nanoparticles by laser ablation, and (3) an Au(III) ion reacts with amine and two DNA bases of a DNA molecule into an Au(III)(DNA-base)2(amine)L.  相似文献   

9.
Uptake and metabolism of [3H]pyridoxine and 3H-labeled N-(4'-pyridoxyl)amines by isolated rat liver cells were studied at physiological concentration (0.5 microM) of vitamin B6 by using both membrane filtration and centrifugation methods for removal of radiolabeled solutes after incubations with cells. It was found that the characteristics of import of N-(4'-pyridoxyl)amines into liver cells is similar to those of import of natural vitamin B6. Upon entry each 4'(N)-substituted pyridoxamine was converted to its 5'-phosphate and then oxidized to release pyridoxal 5'-phosphate and the original amine. Considerable size of the amine substituent is tolerated for transport and metabolism, but a charged function impedes entry. The amount of released pyridoxal 5'-phosphate (and therefore the amount of released original amine) is controlled partially by the size of the amine affixed to B6 and partially by the enzymatic steps involved. This system illustrates how biologically active amines can be piggybacked onto a vitamin that gains facilitated entry to cells that have the enzymatic means to release the free amine for subsequent effects within the cell.  相似文献   

10.
Potential inhibitory effects of the clinically utilized monoamine oxidase inhibitor tranylcypromine (TCP) on mammalian, plant, bacterial, and fungal copper-containing amine oxidases have been examined. The following enzymes have been investigated: human kidney diamine oxidase (HKAO), bovine plasma amine oxidase (BPAO), equine plasma amine oxidase (EPAO), pea seedling amine oxidase (PSAO), Arthrobacter globiformis amine oxidase (AGAO), and Pichia pastoris lysyl oxidase (PPLO). Only BPAO, EPAO, and AGAO were found to lose significant levels of activity when incubated with varying amounts of TCP. Inhibition of BPAO was completely reversible, with dialysis restoring full activity. TCP inhibition of AGAO was also found to be ultimately reversible; however, dialysis did not remove all bound compounds. Chemical displacement with either substrate or a substrate analogue successfully removed all bound TCP, indicating that this compound has a high affinity for the active site of AGAO. The notable lack of TCP inhibition on HKAO argues against the inhibition of diamine oxidase as a potential source for some of the deleterious side effects occurring in patients treated with this antidepressant. The marked differences observed in behavior among these enzymes speaks to the importance of intrinsic structural differences between the active sites of copper amine oxidases (CAO) which affect reactivity with a given inhibitor.  相似文献   

11.
Four substrate analogs, 4-(2-naphthyloxy)-2-butyn-1-amine (1), 1,4-diamino-2-chloro-2-butene (2), 1,6-diamino-2,4-hexadiyne (3), and 2-chloro-5-phthalimidopentylamine (4) have been tested as inhibitors against mammalian, plant, bacterial, and fungal copper-containing amine oxidases: bovine plasma amine oxidase (BPAO), equine plasma amine oxidase (EPAO), pea seedling amine oxidase (PSAO), Arthrobacter globiformis amine oxidase (AGAO), Escherichia coli amine oxidase (ECAO), and Pichia pastoris lysyl oxidase (PPLO). Reactions of 1,4-diamino-2-butyne with selected amine oxidases were also examined. Each substrate analog contains a functional group that chemical precedent suggests could produce mechanism-based inactivation. Striking differences in selectivity and rates of inactivation were observed. For example, between two closely related plasma enzymes, BPAO is more sensitive than EPAO to 1 and 3, while the reverse is true for 2 and 4. In general, inactivation appears to arise in some cases from TPQ cofactor modification and in other cases from alkylation of protein residues in a manner that blocks access of substrate to the active site. Notably, 1 completely inhibits AGAO at stoichiometric concentrations and is not a substrate, but is an excellent substrate of PSAO and inhibition is observed only at very high concentrations. Structural models of 1 in Schiff base linkage to the TPQ cofactor in AGAO and PSAO (for which crystal structures are available) reveal substantial differences in the degree of interaction of bound 1 with side-chain residues, consistent with the widely divergent activities. Collectively, these results suggest that the development of highly selective amine oxidase inhibitors is feasible.  相似文献   

12.
《Free radical research》2013,47(1):221-227
Novel iron and copper complexes having tris[N-(5-methyl-2-pyridylmethyl)-2-aminoethyl]amine (5MeT-PAA), tris[N-(3-methyl-2-pyridylmethyl)-2-aminoethyl]amine(3MeTPAA),rris[N-(5-methoxycarbonyl-2-pyridylmethyl)-2-aminoethyl]amine (TNAA), tris[(2-thienylmethyI)-2-aminoethyl]amine (TTAA), tris[(2-furylniethyl)-2-aminoethyl]amine (TFAA) or tris[(2-imidazolyl)-2-aminoethyl]amine (TIAA) as ligand. were synthesized to examine the superoxide dismutase (SOD) activity. The concentrations of Fe-3MeTPAA and Fe-TIAA equivalent to 1 unit of SOD (IC50) were 0.5 μM and I.O μM. respectively. Fe-3MeTPAA and Fe-TIAA had higher SOD activity than other Fe and Cu complexes and protected Escherichiu coli cells from paraquat toxicity. In case of using tris[N-(Cmethyl-2-pyridylrnethyl)-2-aminoethyl]amine (6MeTPAA) as ligand, the Fe complex could not be obtained, which may be due to the steric hindrance of Cmethyl substituent. Generally, Cu complexes had low SOD activity, compared with Fe complexes, and could not suppress paraquat toxicity.  相似文献   

13.
The oxidation of d-amphetamine by rabbit liver microsomes has been studied using oxygen-18 as the source of oxygen. Incorporation of heavy oxygen into the two major metabolites phenylacetone oxime and phenylacetone, was 93–95% and 25–31% respectively. These data are consistant with a mechanism in which the initial step is the hydroxylation of the substrate at the carbon atom α to the amino group. The carbinol amine which is formed by this reaction then serves as the key intermediate from which ketone and oxime are formed. Thus, oxime can form from carbinol amine in two step, (1) dehydration of carbinol amine and (2) oxygenation of the resulting imine. Phenylacetone can form by two pathways (1) loss of a molecule of ammonia from carbinol amine (incorporation of oxygen from molecular oxygen) and (2) hydrolysis of oxime (incorporation of oxygen from water). In the case of d-amphetamine the hydrolytic route appears to be the more important as suggested by Hucker, et al. (4, 5).  相似文献   

14.
Destruction of polyelectrolyte complexes (PECs) formed by DNA and synthetic polyamines of different structures was carried out by addition of low molecular weight electrolyte to PEC solution at different pHs. The dissociation was studied by the fluorescence quenching technique using the ability of cationic dye ethidium bromide to intercalate into free sites of DNA double helix followed by ignition of ethidium fluorescence. Structure of amine groups of the polycation was shown to be a decisive factor of PEC stability. PECs formed by polycations with quaternary amine groups, i.e., poly(N-alkyl-4-vinylpyridinium) bromides, poly(N, N-dimethyldiallylammonium) chloride, and ionene bromide, were pH independent and the least tolerant to destruction by the added salt. Primary amine groups of basic polypeptides poly-L-lysine hydrobromide and poly-L-arginine hydrochloride as well as synthetic polycation poly(vinyl-2-aminoethyl ether) provided the best stability of PECs in water-salt solutions under wide pH range. Moderate and pH-dependent stability was revealed for PECs included poly(N,N-dimethylaminoethylmethacrylate) with tertiary amine groups in the chain or branched poly(ethylenimine) with primary, secondary, and tertiary amine groups in the molecule. The data obtained appear to be the basis for design of DNA-containing PECs with given and controllable stability. The design may be accomplished not only by proper choice of polyamine of one or another type, but by using of tailor-made polycations with given composition of amine groups of different structure in the chain as well. Thus, quaternization of a part of tertiary amine groups of poly(N, N-dimethylaminoethylmethacrylate) resulted in expected decrease of stability of DNA-containing PECs in water-salt solutions. The destruction of PEC formed by random copolymer of 4-vinylpyridine and N-ethyl-4-vinylpyridinium bromide was pH sensitive and could be performed under pH and ionic strength closed to the physiological conditions. This result appears to be particularly promising for addressing DNA packed in PEC species to the target cell.  相似文献   

15.
D Maibenco  P Tang  R Shinn  S Hanlon 《Biopolymers》1989,28(2):549-571
We have investigated the site and conformational preference of the reaction of a formaldehyde/amine reagent with DNA. Previous investigations of this laboratory have established that this reagent will react with native DNA, placing a positively charged amine moiety on the duplex that will survive exhaustive dialysis. The resulting adduct is duplex and base stacked in character, possessing B backbone geometry with a higher average winding angle and exhibiting remarkable stability with respect to the A-form, Z-form, or the single-strand denaturated species. In this current investigation, we have found that the stability of the adduct is dramatically reduced if the DNA is converted to mononucleotides, thus obviating the usual approach of nuclease digestion and chromatography for the identification of the modified nucleotides. Using indirect approaches, we have established that the reactive site that survives removal of the equilibrium concentrations of CH2O and amine is the exocyclic amino group of the guanine bases. This conclusion is based on (1) the positive correlation between GC content and the extent of adduct formation under standard reaction conditions (27 degrees C, 0.63M CH2O, 0.007M n-butylamine, pH 7); (2) decreases in the level of substitution of amine in DNA, which has this site blocked by trinitrobenzene modification; and (3) failure of poly(dI-dC) to retain amine upon dialysis. Raman spectra of the derivatized poly(dG-dC) show enhanced 2'-endo B character, with no marked shifts in the position of any of the lines, indicating the absence of any ring structures involving the N7 and the 06 of G. In standard reaction mixtures, other sites may react but this phenomenon appears to be minimal under conditions that do not favor fluctuational opening of base pairs. In the latter case, excess loading of amine on high GC content polymers produces a CD spectrum that is similar to one produced by poly(dA-dT) in the "X"-form [M. Vorlickova, E. Minyat, and J. Kypr (1984) Biopolymers 23, 1-4]. This conformation is lost, however, upon removal of excess reagents by dialysis and cannot be reestablished, in the absence of unbound amine and formaldehyde. The reaction is specific for the B-form of polynucleotides as demonstrated by the failure of poly(dG-m5dC) in the stable Z-form to exhibit substantial reaction. The B-form of this polymer will react readily with the retention of 0.23 moles amine/mole nucleotide under our standard reaction conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Routes to oligomers (dimers, tetramers, hexamers) of five oxetane-based dipeptide isosteres have been established. Methyl 2,4-anhydro-5-azido-5-deoxy-L-rhamnonate 'monomer' led, by coupling the corresponding carboxylic acid and amine, to a 'dimer'. Reverse-aldol ring-opening occurred on attempted saponification of the dimer, so all further oligomerization was performed using TBDMS C-3 hydroxyl protection. The silyl protected L-rhamnonate monomer led in turn to the dimer (via the monomer acid and amine), the tetramer (via the dimer acid and amine) and finally the hexamer (via the tetramer acid and dimer amine). In each case the acids were obtained through saponification of the respective methyl esters and the amines were obtained by hydrogenation of the azides; coupling was TBTU-mediated. Essentially the same strategy was employed on equivalent D-lyxonate, 6-deoxy-L-altronate, 6-deoxy-D-gulonate and D-fuconate dipeptide isosteres to give the respective dimers, tetramers and hexamers.  相似文献   

17.
It has been reported that bovine aorta amine oxidase oxidizes lysine residues in tropoelastin to allysine (Rucker, R.B. and O'Dell, B.L. (1971) Biochim. Biophys. Acta 235, 32-43). Pure bovine aorta amine oxidase was isolate by DEAE-cellulose, hydroxylapatite, Bio-Gel A-1.5 m and concanavalin A-Sepharose 4B chromatography. Enzymatic, chromatographic and immunochemical tests disclosed that pure bovine aorta amine oxidase was not a lysyl oxidase capable of oxidizing the lysine residues of tropoelastin to allysine; The bovine aorta amine oxidase preparation used by Rucker and O'Dell appears to have been contaminated with lysyl oxidase which is the emzyme that oxidizes some of the lysine residues in tropoelastin and tropocollagen to allysine.  相似文献   

18.
Glycyrrhizic acid and its 30-methyl ester were conjugated with 2-amino-1,3,4,6-tetra-O-acetyl-2-deoxy-alpha-D-glucopyranose, 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl amine, 2,3,4-tri-O-acetyl-apha-L-arabinopyranosyl amine, 2-acetamido-2-deoxy-beta-D-glucopyranosyl amine, and beta-D-galactopyranosyl amine using N,N'-dicyclohexylcarbodiimide and its mixtures with N-hydroxybenzotriazole. Structures of the conjugates were confirmed by IR, UV, 1H, and 13C NMR spectroscopy. The glycoconjugate with the residues of 2-acetamido-2-deoxy-beta-D-glucopyranosyl amine in the carbohydrate part of its molecule exhibited antiviral activity (ID50 4 microg/ml) toward the herpes simplex type 1 virus (HSV-1) in the VERO cell culture. Two compounds demonstrated anti-HIV-1 activity (50-70% inhibition of p24) in a culture of MT-4 cells at concentrations of 0.5-20 microg/ml. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 3; see also http://www.maik.ru.  相似文献   

19.
A common feature of all the proposed mechanisms for monoamine oxidase is the initiation of catalysis with the deprotonated form of the amine substrate in the enzyme-substrate complex. However, recent steady-state kinetic studies on the pH dependence of monoamine oxidase led to the suggestion that it is the protonated form of the amine substrate that binds to the enzyme. To investigate this further, the pH dependence of monoamine oxidase A was characterized by both steady-state and stopped-flow techniques with protiated and deuterated substrates. For all substrates used, there is a macroscopic ionization in the enzyme-substrate complex attributed to a deprotonation event required for optimal catalysis with a pK(a) of 7.4-8.4. In stopped-flow assays, the pH dependence of the kinetic isotope effect decreases from approximately 13 to 8 with increasing pH, leading to assignment of this catalytically important deprotonation to that of the bound amine substrate. The acid limb of the bell-shaped pH profile for the rate of flavin reduction over the substrate binding constant (k(red)/K(s), reporting on ionizations in the free enzyme and/or free substrate) is due to deprotonation of the free substrate, and the alkaline limb is due to unfavourable deprotonation of an unknown group on the enzyme at high pH. The pK(a) of the free amine is above 9.3 for all substrates, and is greatly perturbed (DeltapK(a) approximately 2) on binding to the enzyme active site. This perturbation of the substrate amine pK(a) on binding to the enzyme has been observed with other amine oxidases, and likely identifies a common mechanism for increasing the effective concentration of the neutral form of the substrate in the enzyme-substrate complex, thus enabling efficient functioning of these enzymes at physiologically relevant pH.  相似文献   

20.
In this paper, a straightforward and generic protocol is presented to label the C-terminus of a peptide with any desired moiety that is functionalized with a primary amine. Amine-functional molecules included are polymers (useful for hybrid polymers), long alkyl chains (used in peptide amphiphiles and stabilization of peptides), propargyl amine and azido propyl-amine (desirable for 'click' chemistry), dansyl amine (fluorescent labeling of peptides) and crown ethers (peptide switches/hybrids). In the first part of the procedure, the primary amine is attached to an aldehyde-functional resin via reductive amination. To the secondary amine that is produced, an amino acid sequence is coupled via a standard solid-phase peptide synthesis protocol. Since one procedure can be applied for any given amine-functional moiety, a robust method for C-terminal peptide labeling is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号