首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel approach to study coupling of substrate and ion fluxes is presented. EmrE is an H(+)-coupled multidrug transporter from Escherichia coli. Detergent-solubilized EmrE binds substrate with high affinity in a pH-dependent mode. Here we show, for the first time in an ion-coupled transporter, substrate-induced release of protons in a detergent-solubilized preparation. The direct measurements allow for an important quantitation of the phenomenon. Thus, stoichiometry of the release in the wild type and a mutant with a single carboxyl at position 14 is very similar and about 0.8 protons/monomer. The findings demonstrate that the only residue involved in proton release is a highly conserved membrane-embedded glutamate (Glu-14) and that all the Glu-14 residues in the EmrE functional oligomer participate in proton release. Furthermore, from the pH dependence of the release we determined the pK of Glu-14 as 8.5 and for an aspartate replacement at the same position as 6.7. The high pK of the carboxyl at position 14 is essential for coupling of fluxes of protons and substrates.  相似文献   

2.
The 110-amino acid multidrug transporter from E. coli, EmrE, is a member of the family of MiniTexan or Smr drug transporters. EmrE can transport acriflavine, ethidium bromide, tetraphenylphosphonium (TPP+), benzalkonium and several other drugs with relatively high affinities. EmrE is an H+/drug antiporter, utilizing the proton electrochemical gradient generated across the bacterial cytoplasmic membrane by exchanging two protons with one substrate molecule. The EmrE multidrug transporter is unique in its small size and hydrophobic nature. Hydropathic analysis of the EmrE sequence predicts four alpha-helical transmembrane segments. This model is experimentally supported by FTIR studies that confirm the high alpha-helicity of the protein and by high-resolution heteronuclear NMR analysis of the protein structure. The TMS of EmrE are tightly packed in the membrane without any continuous aqueous domain, as was shown by Cysteine scanning experiments. These results suggest the existence of a hydrophobic pathway through which the substrates are translocated. EmrE is functional as a homo-oligomer as suggested by several lines of evidence, including co-reconstitution experiments of wild-type protein with inactive mutants in which negative dominance has been observed. EmrE has only one membrane embedded charged residue, Glu-14, that is conserved in more than fifty homologous proteins and it is a simple model system to study the role of carboxylic residues in ion-coupled transporters. We have used mutagenesis and chemical modification to show that Glu-14 is part of the substrate-binding site. Its role in proton binding and translocation was shown by a study of the effect of pH on ligand binding, uptake, efflux and exchange reactions. We conclude that Glu-14 is an essential part of a binding site, common to substrates and protons. The occupancy of this site is mutually exclusive and provides the basis of the simplest coupling of two fluxes. Because of some of its properties and its size, EmrE provides a unique system to understand mechanisms of substrate recognition and translocation.  相似文献   

3.
Aromatic residues may play several roles in integral membrane proteins, including direct interaction with substrates. In this work, we studied the contribution of tyrosine residues to the activity of EmrE, a small multidrug transporter from Escherichia coli that extrudes various drugs across the plasma membrane in exchange with protons. Each of five tyrosine residues was replaced by site-directed mutagenesis. Two of these residues, Tyr-40 and Tyr-60, can be partially replaced with hydroxyamino acids, but in the case of Tyr-40, replacement with either Ser or Thr generates a protein with modified substrate specificity. Replacement of Tyr-4 with either Trp or Phe generates a functional transporter. A Cys replacement at this position generates an uncoupled protein; it binds substrate and protons and transports the substrate downhill but is impaired in uphill substrate transport in the presence of a proton gradient. The role of these residues is discussed in the context of the published structures of EmrE.  相似文献   

4.
EmrE is a small multidrug transporter that contains 110 amino acid residues that form four transmembrane alpha-helices. The three-dimensional structure of EmrE has been determined from two-dimensional crystals by electron cryo-microscopy. EmrE is an asymmetric homo-dimer with one substrate molecule bound in a chamber accessible laterally from one leaflet of the lipid bilayer. Evidence from substrate binding analyses and analytical ultracentrifugation of detergent-solubilised EmrE shows that the minimum functional unit for substrate binding is a dimer. However, it is possible that EmrE exists as a tetramer in vivo and plausible models are suggested based upon analyses of two-dimensional crystals.  相似文献   

5.
Bacteria evade the effects of cytotoxic compounds through the efflux activity of membrane-bound transporters such as the small multidrug resistance (SMR) proteins. Consisting typically of ca. 110 residues with four transmembrane (TM) α-helices, crystallographic studies have shown that TM helix 1 (TM1) through TM helix 3 (TM3) of each monomer create a substrate binding "pocket" within the membrane bilayer, while a TM4-TM4 interaction accounts for the primary dimer formation. Previous work from our lab has characterized a highly conserved small-residue heptad motif in the Halobacterium salinarum transporter Hsmr as (90)GLXLIXXGV(98) that lies along the TM4-TM4 dimer interface of SMR proteins as required for function. Focusing on conserved positions 91, 93, 94, and 98, we substituted the naturally occurring Hsmr residue for Ala, Phe, Ile, Leu, Met, and Val at each position in the Hsmr TM4-TM4 interface. Large-residue replacements were studied for their ability to dimerize on SDS-polyacrylamide gels, to bind the cytotoxic compound ethidium bromide, and to confer resistance by efflux. Although the relative activity of mutants did not correlate with dimer strength for all mutants, all functional mutants lay within 10% of dimerization relative to the wild type (WT), suggesting that the optimal dimer strength at TM4 is required for proper efflux. Furthermore, nonfunctional substitutions at the center of the dimerization interface that do not alter dimer strength suggest a dynamic TM4-TM4 "pivot point" that responds to the efflux requirements of different substrates. This functionally critical region represents a potential target for inhibiting the ability of bacteria to evade the effects of cytotoxic compounds.  相似文献   

6.
EmrE is an Escherichia coli multidrug transporter that confers resistance to a variety of toxins by removing them in exchange for hydrogen ions. The detergent-solubilized protein binds tetraphenylphosphonium (TPP(+)) with a K(D) of 10 nM. One mole of ligand is bound per approximately 3 mol of EmrE, suggesting that there is one binding site per trimer. The steep pH dependence of binding suggests that one or more residues, with an apparent pK of approximately 7.5, release protons prior to ligand binding. A conservative Asp replacement (E14D) at position 14 of the only membrane-embedded charged residue shows little transport activity, but binds TPP(+) at levels similar to those of the wild-type protein. The apparent pK of the Asp shifts to <5.0. The data are consistent with a mechanism requiring Glu14 for both substrate and proton recognition. We propose a model in which two of the three Glu14s in the postulated trimeric EmrE homooligomer deprotonate upon ligand binding. The ligand is released on the other face of the membrane after binding of protons to Glu14.  相似文献   

7.
When biochemistry meets structural biology: the cautionary tale of EmrE   总被引:1,自引:0,他引:1  
When biochemistry meets structural biology a more complete understanding of the mechanism of biological macromolecules is usually achieved. Several high-resolution structures of ion-coupled transporters have enriched the understanding of mechanisms of substrate recognition, translocation and coupling of substrate fluxes. However, two X-ray structures of EmrE, the smallest ion-coupled multi-drug transporter, raised questions over the veracity of the structural model and represented a cautionary tale about the difficulty of determining the 3D structures of membrane proteins and the dangers of ignoring biochemical results. The 3D structures of EmrE have since been retracted because of faulty software, but the suggestion that the protomers in the dimer are in an antiparallel topological orientation sparked controversy that is still ongoing.  相似文献   

8.
EmrE is an Escherichia coli 12-kDa multidrug transporter, which confers resistance to a variety of toxic cations by removing them from the cell interior in exchange with two protons. EmrE has only one membrane-embedded charged residue, Glu-14, that is conserved in more than 50 homologous proteins and it is a simple model system to study the role of carboxylic residues in ion-coupled transporters. We have used mutagenesis and chemical modification to show that Glu-14 is part of the substrate binding site. Its role in proton binding and translocation was shown by a study of the effect of pH on ligand binding, uptake, efflux and exchange reactions. We conclude that Glu-14 is an essential part of a binding site, common to substrates and protons. The occupancy of this site is mutually exclusive and provides the basis of the simplest coupling of two fluxes.  相似文献   

9.
《Journal of molecular biology》2019,431(15):2777-2789
Proteins that perform active transport must alternate the access of a binding site, first to one side of a membrane and then to the other, resulting in the transport of bound substrates across the membrane. To better understand this process, we sought to identify mutants of the small multidrug resistance transporter EmrE with reduced rates of alternating access. We performed extensive scanning mutagenesis by changing every amino acid residue to Val, Ala, or Gly, and then screening the drug resistance phenotypes of the resulting mutants. We identified EmrE mutants that had impaired transport activity but retained the ability to bind substrate and further tested their alternating access rates using NMR. Ultimately, we were able to identify a single mutation, S64V, which significantly reduced the rate of alternating access but did not impair substrate binding. Six other transport-impaired mutants did not have reduced alternating access rates, highlighting the importance of other aspects of the transport cycle to achieve drug resistance activity in vivo. To better understand the transport cycle of EmrE, efforts are now underway to determine a high-resolution structure using the S64V mutant identified here.  相似文献   

10.
EmrE, a small multidrug resistance transporter, serves as an ideal model to study coupling between multidrug recognition and protein function. EmrE has a single small binding pocket that must accommodate the full range of diverse substrates recognized by this transporter. We have studied a series of tetrahedral compounds, as well as several planar substrates, to examine multidrug recognition and transport by EmrE. Here we show that even within this limited series, the rate of interconversion between the inward- and outward-facing states of EmrE varies over 3 orders of magnitude. Thus, the identity of the bound substrate controls the rate of this critical step in the transport process. The binding affinity also varies over a similar range and is correlated with substrate hydrophobicity within the tetrahedral substrate series. Substrate identity influences both the ground-state and transition-state energies for the conformational exchange process, highlighting the coupling between substrate binding and transport required for alternating access antiport.  相似文献   

11.
RNase P is involved in processing the 5⿲ end of pre-tRNA molecules. Bacterial RNase P contains a catalytic RNA subunit and a protein subunit. In this study, we have analyzed the residues in RNase P protein of M. tuberculosis that differ from the residues generally conserved in other bacterial RNase Ps. The residues investigated in the current study include the unique residues, Val27, Ala70, Arg72, Ala77, and Asp124, and also Phe23 and Arg93 which have been found to be important in the function of RNase P protein components of other bacteria. The selected residues were individually mutated either to those present in other bacterial RNase P protein components at respective positions or in some cases to alanine. The wild type and mutant M. tuberculosis RNase P proteins were expressed in E. coli, purified, used to reconstitute holoenzymes with wild type RNA component in vitro, and functionally characterized. The Phe23Ala and Arg93Ala mutants showed very poor catalytic activity when reconstituted with the RNA component. The catalytic activity of holoenzyme with Val27Phe, Ala70Lys, Arg72Leu and Arg72Ala was also significantly reduced, whereas with Ala77Phe and Asp124Ser the activity of holoenzyme was similar to that with the wild type protein. Although the mutants did not suffer from any binding defects, Val27Phe, Ala70Lys, Arg72Ala and Asp124Ser were less tolerant towards higher temperatures as compared to the wild type protein. The Km of Val27Phe, Ala70Lys, Arg72Ala and Ala77Phe were >2-fold higher than that of the wild type, indicating the substituted residues to be involved in substrate interaction. The study demonstrates that residues Phe23, Val27 and Ala70 are involved in substrate interaction, while Arg72 and Arg93 interact with other residues within the protein to provide it a functional conformation.  相似文献   

12.
EmrE is a small multidrug transporter (110 amino acids long) from Escherichia coli that extrudes various drugs in exchange with protons, thereby rendering bacteria resistant to these compounds. Glu-14 is the only charged membrane-embedded residue in EmrE and is evolutionarily highly conserved. This residue has an unusually high pK and is an essential part of the binding domain, shared by substrates and protons. The occupancy of the binding domain is mutually exclusive, and, as such, this provides the molecular basis for the coupling between substrate and proton fluxes. Systematic cysteine-scanning mutagenesis of the residues in the transmembrane segment (TM1), where Glu-14 is located, reveals an amino acid cluster on the same face of TM1 as Glu-14 that is part of the substrate- and proton-binding domain. Substitutions at most of these positions yielded either inactive mutants or mutants with modified affinity to substrates. Substitutions at the Ala-10 position, one helix turn away from Glu-14, yielded mutants with modified affinity to protons and thereby impaired in the coupling of substrate and proton fluxes. Taken as a whole, the results strongly support the concept of a common binding site for substrate and protons and stress the importance of one face of TM1 in substrate recognition, binding, and H(+)-coupled transport.  相似文献   

13.
EmrE is a small multidrug transporter, 110 amino acids long that extrudes various drugs in exchange with protons, thereby rendering Escherichia coli cells resistant to these compounds. Negative dominance studies and radiolabeled substrate-binding studies suggested that EmrE functions as an oligomer. Projection structure of two-dimensional crystals of the protein revealed an asymmetric dimer. To identify the functional unit of EmrE, a novel approach was developed. In this method, quantitative monomer swapping is induced in detergent-solubilized EmrE by exposure to 80 degrees C, a treatment that does not impair transport activity. Oligomer formation is highly specific as judged by several criteria, among them the fact that (35)S-EmrE can be "pulled out" from a mixture prepared from generally labeled cells. Using this technique, we show that inactive mutant subunits are functionally complemented when mixed with wild type subunits. The hetero-oligomers thus formed display a decreased affinity to substrates. In addition, sulfhydryl reagents inhibit the above hetero-oligomer even though Cys residues are present only in the inactive monomer. It is concluded that, in EmrE, the oligomer is the functional unit.  相似文献   

14.
Yerushalmi H  Schuldiner S 《Biochemistry》2000,39(48):14711-14719
Both prokaryotic and eukaryotic cells contain an array of membrane transport systems maintaining the cellular homeostasis. Some of them (primary pumps) derive energy from redox reactions, ATP hydrolysis, or light absorption, whereas others (ion-coupled transporters) utilize ion electrochemical gradients for active transport. Remarkable progress has been made in understanding the molecular mechanism of coupling in some of these systems. In many cases carboxylic residues are essential for either binding or coupling. Here we suggest a model for the molecular mechanism of coupling in EmrE, an Escherichia coli 12-kDa multidrug transporter. EmrE confers resistance to a variety of toxic cations by removing them from the cell interior in exchange for two protons. EmrE has only one membrane-embedded charged residue, Glu-14, which is conserved in more than 50 homologous proteins. We have used mutagenesis and chemical modification to show that Glu-14 is part of the substrate-binding site. Its role in proton binding and translocation was shown by a study of the effect of pH on ligand binding, uptake, efflux, and exchange reactions. The studies suggest that Glu-14 is an essential part of a binding site, which is common to substrates and protons. The occupancy of this site by H(+) and substrate is mutually exclusive and provides the basis of the simplest coupling for two fluxes.  相似文献   

15.
Zhang Z  Ma C  Pornillos O  Xiu X  Chang G  Saier MH 《Biochemistry》2007,46(17):5218-5225
The Bacillus subtilis genome contains two tandem genes, ebrA and ebrB, which encode two homologues of the SMR family of multidrug efflux transporters. The sequences of EbrA and EbrB are highly similar to each other and to that of EmrE, the prototypical SMR transporter of Escherichia coli. Drug resistance profiling and drug binding experiments showed that the presence of both EbrA and EbrB is required for proper transport function. EbrA and EbrB directly interact and combine to form a functional transporter. They likely form a heterodimer in analogy to the EmrE homodimer. Mutagenesis experiments indicate that the conserved membrane-embedded glutamates in the first transmembrane helices of both EbrA and EbrB are required for multidrug efflux activity. However, the two glutamates are nonequivalent since EbrA E15 is required for substrate binding while EbrB E14 is not. Our studies support a model in which functional residues in EbrAB are relegated to at least two sets that participate in distinct steps of the active drug transport process.  相似文献   

16.
EmrE is a small multidrug transporter in Escherichia coli that extrudes various positively charged drugs across the plasma membrane in exchange with protons, thereby rendering cells resistant to these compounds. Biochemical experiments indicate that the basic functional unit of EmrE is a dimer where the common binding site for protons and substrate is formed by the interaction of an essential charged residue (Glu-14) from both EmrE monomers. Carbodiimide modification of EmrE has been studied using functional assays, and the evidence suggests that Glu-14 is the target of the reaction. Here we exploited electrospray ionization mass spectrometry to directly monitor the reaction with each monomer rather than following inactivation of the functional unit. A cyanogen bromide peptide containing Glu-14 allows the extent of modification by the carboxyl-specific modification reagent diisopropylcarbodiimide (DiPC) to be monitored and reveals that peptide 2NPYIYLGGAILAEVIGTTLM(21) is approximately 80% modified in a time-dependent fashion, indicating that each Glu-14 residue in the oligomer is accessible to DiPC. Furthermore, preincubation with tetraphenylphosphonium reduces the reaction of Glu-14 with DiPC by up to 80%. Taken together with other biochemical data, the findings support a "time sharing" mechanism in which both Glu-14 residues in a dimer are involved in tetraphenylphosphonium and H(+) binding.  相似文献   

17.
Small multidrug resistance (SMR) transporters contribute to bacterial resistance by coupling the efflux of a wide range of toxic aromatic cations, some of which are commonly used as antibiotics and antiseptics, to proton influx. EmrE is a prototypical small multidrug resistance transporter comprising four transmembrane segments (M1-M4) that forms dimers. It was suggested recently that EmrE molecules in the dimer have different topologies, i.e. monomers have opposite orientations with respect to the membrane plane. A 3-D structure of EmrE acquired by electron cryo-microscopy (cryo-EM) at 7.5 Angstroms resolution in the membrane plane showed that parts of the structure are related by quasi-symmetry. We used this symmetry relationship, combined with sequence conservation data, to assign the transmembrane segments in EmrE to the densities seen in the cryo-EM structure. A C alpha model of the transmembrane region was constructed by considering the evolutionary conservation pattern of each helix. The model is validated by much of the biochemical data on EmrE with most of the positions that were identified as affecting substrate translocation being located around the substrate-binding cavity. A suggested mechanism for proton-coupled substrate translocation in small multidrug resistance antiporters provides a mechanistic rationale to the experimentally observed inverted topology.  相似文献   

18.
EmrE is a multidrug transporter that utilises the proton gradient across bacterial cell membranes to pump hydrophobic cationic toxins out of the cell. The structure of EmrE is very unusual, because it is an asymmetric homodimer containing eight alpha-helices, six of which form the substrate-binding chamber and translocation pathway. Despite this structural information, the precise oligomeric order of EmrE in both the detergent-solubilised state and in vivo is unclear, although it must contain an even number of subunits to satisfy substrate-binding data. We have studied the oligomeric state of EmrE, purified in a functional form in dodecylmaltoside, by high-resolution size-exclusion chromatography (hrSEC) and by analytical ultracentrifugation. The data from equilibrium analytical ultracentrifugation were analysed using a measured density increment for the EmrE-lipid-detergent complex, which showed that the purified EmrE was predominantly a dimer. This value was consistent with the apparent mass for the EmrE-lipid-detergent complex (137 kDa) determined by hrSEC. EmrE was purified under different conditions using minimal concentrations of dodecylmaltoside, which would have maintained the structure of any putative higher oligomeric states: this EmrE preparation had an apparent mass of 206 kDa by hrSEC and equilibrium analytical ultracentrifugation showed unequivocally that EmrE was a dimer, although it was associated with a much larger mass of phospholipid. In addition, the effect of the substrate tetraphenylphosphonium on the oligomeric state was also analysed for both preparations of EmrE; velocity analytical ultracentrifugation showed that the substrate had no effect on the oligomeric state. Therefore, in the detergent dodecylmaltoside and under conditions where the protein is fully competent for substrate binding, EmrE is dimeric and there is no evidence from our data to suggest higher oligomeric states. These observations are discussed in relation to the recently published structures of EmrE from two- and three-dimensional crystals.  相似文献   

19.
The small multidrug resistance transporter EmrE is a homodimer that uses energy provided by the proton motive force to drive the efflux of drug substrates. The pKa values of its “active-site” residues—glutamate 14 (Glu14) from each subunit—must be poised around physiological pH values to efficiently couple proton import to drug export in vivo. To assess the protonation of EmrE, pH titrations were conducted with 1H-15N TROSY-HSQC nuclear magnetic resonance (NMR) spectra. Analysis of these spectra indicates that the Glu14 residues have asymmetric pKa values of 7.0 ± 0.1 and 8.2 ± 0.3 at 45°C and 6.8 ± 0.1 and 8.5 ± 0.2 at 25°C. These pKa values are substantially increased compared with typical pKa values for solvent-exposed glutamates but are within the range of published Glu14 pKa values inferred from the pH dependence of substrate binding and transport assays. The active-site mutant, E14D-EmrE, has pKa values below the physiological pH range, consistent with its impaired transport activity. The NMR spectra demonstrate that the protonation states of the active-site Glu14 residues determine both the global structure and the rate of conformational exchange between inward- and outward-facing EmrE. Thus, the pKa values of the asymmetric active-site Glu14 residues are key for proper coupling of proton import to multidrug efflux. However, the results raise new questions regarding the coupling mechanism because they show that EmrE exists in a mixture of protonation states near neutral pH and can interconvert between inward- and outward-facing forms in multiple different protonation states.  相似文献   

20.
EmrE is a small multidrug transporter in Escherichia coli that extrudes various positively charged drugs across the plasma membrane in exchange with protons, thereby rendering cells resistant to these compounds. Biochemical experiments indicate that the basic functional unit of EmrE is a dimer where the common binding site for protons and substrate is formed by the interaction of an essential charged residue (Glu14) from both EmrE monomers. Previous studies implied that other residues in the vicinity of Glu14 are part of the binding domain. Alkylation of Cys replacements in the same transmembrane domain inhibits the activity of the protein and this inhibition is fully prevented by substrates of EmrE. To monitor directly the reaction we tested also the extent of modification using fluorescein-5-maleimide. While most residues are not accessible or only partially accessible, four, Y4C, I5C, L7C, and A10C, were modified at least 80%. Furthermore, preincubation with tetraphenylphosphonium reduces the reaction of two of these residues by up to 80%. To study other essential residues we generated functional hetero-oligomers and challenged them with various methane thiosulfonates. Taken together the findings imply the existence of a binding cavity accessible to alkylating reagents where at least three residues from TM1, Tyr40 from TM2, and Trp63 in TM3 are involved in substrate binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号