首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progress in the fight against the HIV/AIDS epidemic is hindered by our failure to elucidate the precise reasons for the onset of immunodeficiency in HIV-1 infection. Increasing evidence suggests that elevated immune activation is associated with poor outcome in HIV-1 pathogenesis. However, the basis of this association remains unclear. Through ex vivo analysis of virus-specific CD8+ T-cells and the use of an in vitro model of naïve CD8+ T-cell priming, we show that the activation level and the differentiation state of T-cells are closely related. Acute HIV-1 infection induces massive activation of CD8+ T-cells, affecting many cell populations, not only those specific for HIV-1, which results in further differentiation of these cells. HIV disease progression correlates with increased proportions of highly differentiated CD8+ T-cells, which exhibit characteristics of replicative senescence and probably indicate a decline in T-cell competence of the infected person. The differentiation of CD8+ and CD4+ T-cells towards a state of replicative senescence is a natural process. It can be driven by excessive levels of immune stimulation. This may be part of the mechanism through which HIV-1-mediated immune activation exhausts the capacity of the immune system.  相似文献   

2.
BackgroundDespite successful treatment and CD4+ T-cell recovery, HIV-infected individuals often experience a profound immune dysregulation characterized by a persistently low CD4:CD8 T-cell ratio. This residual immune dysregulation is reminiscent of the Immune Risk Phenotype (IRP) previously associated with morbidity and mortality in the uninfected elderly (>85 years). The IRP consists of laboratory markers that include: a low CD4:CD8 T-cell ratio, an expansion of CD8+CD28- T-cells and cytomegalovirus (CMV) seropositivity. Despite the significant overlap in immunological phenotypes between normal aging and HIV infection, the IRP has never been evaluated in HIV-infected individuals. In this pilot study we characterized immune changes associated with the IRP in a sample of successfully treated HIV-infected subjects.Methods18 virologically suppressed HIV-infected subjects were categorized into 2 groups based on their IRP status; HIV+IRP+, (n = 8) and HIV+IRP-, (n = 10) and compared to 15 age-matched HIV uninfected IRP negative controls. All individuals were assessed for functional and phenotypic immune characteristics including: pro-inflammatory cytokine production, antigen-specific proliferation capacity, replicative senescence, T-cell differentiation and lymphocyte telomere length.ResultsCompared to HIV-infected subjects without an IRP, HIV+IRP+ subjects exhibited a higher frequency of TNF-α-producing CD8+ T-cells (p = 0.05) and a reduced proportion of CD8+ naïve T-cells (p = 0.007). The IRP status was also associated with a marked up-regulation of the replicative senescence markers CD57 and KLGR1, on the surface of CD8+T-cells (p = 0.004). Finally, HIV+IRP+ individuals had a significantly shorter mean lymphocyte telomere length than their non-IRP counterparts (p = 0.03).ConclusionsOur findings suggest that, despite similar levels of treatment-mediated viral suppression, the phenotypic and functional immune characteristics of HIV+IRP+ individuals are distinct from those observed in non-IRP individuals. The IRP appears to identify a subset of treated HIV-infected individuals with a higher degree of immune senescence.  相似文献   

3.
During untreated HIV-1 infection, a chronic state of immune activation and inflammation develops at the lymphoid tissue sites of viral replication. The early effect of potent combination drug therapy is a reduction in peripheral viral burden and a reduction in the production of inflammatory and type 1 cytokines. Further along in treatment there are trends toward normalization in the frequencies of CD88 T-cells, CD4+ CD45RA+ cells, as well as CD4+ CD45R0+ cells. Finally, the CD1a+ dendritic cell network is re-established and germinal centers are reformed. Although this restoration of the lymphoid dynamic form is coupled to a reconstitution of peripheral blood T-cell function in vitro and by skin testing, sterilizing immunity to HIV-1 does not develop. Furthermore there is no heightened development of cytotoxic CD8+ T-cell function at the site of HIV-1 latency. This is evidenced by a massive recrudescence of HIV-1 viral replication within lymphoid tissue when therapy is stopped. The development of supplemental therapies, which reconstitute anti-HIV-1 immunity, will be required. Specific defects in anti-HIV-1 activity which occur in lymphoid tissue during infection include a downregulation of perform expression by cytotoxic T-cells, the down regulation of the TCR signal transducing chain CD3ζ, and inadequate CD4+ T-cell help within the tissue compartment of immune regeneration.  相似文献   

4.
Cytomegalovirus (CMV) infection has a major impact on the T-cell pool, which is thought to be associated with ageing of the immune system. The effect on the T-cell pool has been interpreted as an effect of CMV on non-CMV specific T-cells. However, it remains unclear whether the effect of CMV could simply be explained by the presence of large, immunodominant, CMV-specific memory CD8+ T-cell populations. These have been suggested to establish through gradual accumulation of long-lived cells. However, little is known about their maintenance. We investigated the effect of CMV infection on T-cell dynamics in healthy older adults, and aimed to unravel the mechanisms of maintenance of large numbers of CMV-specific CD8+ T-cells. We studied the expression of senescence, proliferation, and apoptosis markers and quantified the in vivo dynamics of CMV-specific and other memory T-cell populations using in vivo deuterium labelling. Increased expression of late-stage differentiation markers by CD8+ T-cells of CMV+ versus CMV- individuals was not solely explained by the presence of large, immunodominant CMV-specific CD8+ T-cell populations. The lifespans of circulating CMV-specific CD8+ T-cells did not differ significantly from those of bulk memory CD8+ T-cells, and the lifespans of bulk memory CD8+ T-cells did not differ significantly between CMV- and CMV+ individuals. Memory CD4+ T-cells of CMV+ individuals showed increased expression of late-stage differentiation markers and decreased Ki-67 expression. Overall, the expression of senescence markers on T-cell populations correlated positively with their expected in vivo lifespan. Together, this work suggests that i) large, immunodominant CMV-specific CD8+ T-cell populations do not explain the phenotypical differences between CMV+ and CMV- individuals, ii) CMV infection hardly affects the dynamics of the T-cell pool, and iii) large numbers of CMV-specific CD8+ T-cells are not due to longer lifespans of these cells.  相似文献   

5.

Background

Elevated risk of HIV-1 infection among recipients of an adenovirus serotype 5 (Ad5)-vectored HIV-1 vaccine was previously reported in the Step HIV-1 vaccine efficacy trial. We assessed pre-infection cellular immune responses measured at 4 weeks after the second vaccination to determine their roles in HIV-1 infection susceptibility among Step study male participants.

Methods

We examined ex vivo interferon-γ (IFN-γ) secretion from peripheral blood mononuclear cells (PBMC) using an ELISpot assay in 112 HIV-infected and 962 uninfected participants. In addition, we performed flow cytometric assays to examine T-cell activation, and ex vivo IFN-γ and interleukin-2 secretion from CD4+ and CD8+ T cells. We accounted for the sub-sampling design in Cox proportional hazards models to estimate hazard ratios (HRs) of HIV-1 infection per 1-loge increase of the immune responses.

Findings

We found that HIV-specific immune responses were not associated with risk of HIV-1 infection. However, each 1-loge increase of mock responses measured by the ELISpot assay (i.e., IFN-γ secretion in the absence of antigen-specific stimulation) was associated with a 62% increase of HIV-1 infection risk among vaccine recipients (HR = 1.62, 95% CI: (1.28, 2.04), p<0.001). This association remains after accounting for CD4+ or CD8+ T-cell activation. We observed a moderate correlation between ELISpot mock responses and CD4+ T-cells secreting IFN-γ (ρ = 0.33, p = 0.007). In addition, the effect of the Step vaccine on infection risk appeared to vary with ELISpot mock response levels, especially among participants who had pre-existing anti-Ad5 antibodies (interaction p = 0.04).

Conclusions

The proportion of cells, likely CD4+ T-cells, producing IFN-γ without stimulation by exogenous antigen appears to carry information beyond T-cell activation and baseline characteristics that predict risk of HIV-1 infection. These results motivate additional investigation to understand the potential link between IFN-γ secretion and underlying causes of elevated HIV-1 infection risk among vaccine recipients in the Step study.  相似文献   

6.

Background

The influence of tobacco smoking on the immune system of HIV infected individuals is largely unknown. We investigated the impact of tobacco smoking on immune activation, microbial translocation, immune exhaustion and T-cell function in HIV infected individuals.

Method

HIV infected smokers and non-smokers (n = 25 each) with documented viral suppression on combination antiretroviral therapy and HIV uninfected smokers and non-smokers (n = 15 each) were enrolled. Markers of immune activation (CD38 and HLA-DR) and immune exhaustion (PD1, Tim3 and CTLA4) were analyzed in peripheral blood mononuclear cells (PBMCs) by flow cytometry. Plasma markers of microbial translocation (soluble-CD14 - sCD14 and lipopolysaccharide - LPS) were measured. Antigen specific functions of CD4+ and CD8+ T-cells were measured, by flow cytometry, in PBMCs after 6 hours stimulation with Cytomegalovirus, Epstein-Barr virus and Influenza Virus (CEF) peptide pool.

Results

Compared to non-smokers, smokers of HIV infected and uninfected groups showed significantly higher CD4+ and CD8+ T-cell activation with increased frequencies of CD38+HLA-DR+ cells with a higher magnitude in HIV infected smokers. Expressions of immune exhaustion markers (PD1, Tim3 and CTLA4) either alone or in combinations were significantly higher in smokers, especially on CD4+ T-cells. Compared to HIV uninfected non-smokers, microbial translocation (sCD14 and LPS) was higher in smokers of both groups and directly correlated with CD4+ and CD8+ T-cell activation. Antigen specific T-cell function showed significantly lower cytokine response of CD4+ and CD8+ T-cells to CEF peptide-pool stimulation in smokers of both HIV infected and uninfected groups.

Conclusions

Our results suggest that smoking and HIV infection independently influence T-cell immune activation and function and together they present the worst immune profile. Since smoking is widespread among HIV infected individuals, studies are warranted to further evaluate the cumulative effect of smoking on impairment of the immune system and accelerated disease progression.  相似文献   

7.
The important role of the CD8+ T-cells on HIV control is well established. However, correlates of immune protection remain elusive. Although the importance of CD8+ T-cell specificity and functionality in virus control has been underscored, further unraveling the link between CD8+ T-cell differentiation and viral control is needed. Here, an immunophenotypic analysis (in terms of memory markers and Programmed cell death 1 (PD-1) expression) of the CD8+ T-cell subset found in primary HIV infection (PHI) was performed. The aim was to seek for associations with functional properties of the CD8+ T-cell subsets, viral control and subsequent disease progression. Also, results were compared with samples from Chronics and Elite Controllers. It was found that normal maturation of total and HIV-specific CD8+ T-cells into memory subsets is skewed in PHI, but not at the dramatic level observed in Chronics. Within the HIV-specific compartment, this alteration was evidenced by an accumulation of effector memory CD8+ T (TEM) cells over fully differentiated terminal effector CD8+ T (TTE) cells. Furthermore, higher proportions of total and HIV-specific CD8+ TEM cells and higher HIV-specific TEM/(TEM+TTE) ratio correlated with markers of faster progression. Analysis of PD-1 expression on total and HIV-specific CD8+ T-cells from PHI subjects revealed not only an association with disease progression but also with skewed memory CD8+ T-cell differentiation. Most notably, significant direct correlations were obtained between the functional capacity of CD8+ T-cells to inhibit viral replication in vitro with higher proportions of fully-differentiated HIV-specific CD8+ TTE cells, both at baseline and at 12 months post-infection. Thus, a relationship between preservation of CD8+ T-cell differentiation pathway and cell functionality was established. This report presents evidence concerning the link among CD8+ T-cell function, phenotype and virus control, hence supporting the instauration of early interventions to prevent irreversible immune damage.  相似文献   

8.
In this article, we show that passage in SCID mice rendered a human CD4+ T-cell line (CEM cells) highly susceptible to infection by macrophage-tropic (M-tropic) strains and primary clinical isolates of human immunodeficiency virus type 1 (HIV-1). This in vivo-acquired permissiveness of CEM cells was associated with the induction of a CD45RO+ phenotype as well as of some β-chemokine receptors. Regulated upon activation, normal T-cell expressed and secreted chemokine entirely inhibited the ability of M-tropic HIV-1 strains to infect these cells. These findings may lead to new approaches in investigating in vivo the capacity of different HIV strains to exploit chemokine receptors in relation to the dynamics of the activation and/or differentiation state of human CD4+ T cells.  相似文献   

9.

Objectives

To investigate whether T-cell activation and exhaustion is linked to HCV- and HIV disease parameters in HIV/HCV infected individuals, we studied T-cell characteristics in HIV/HCV coinfected patients and controls.

Methods

14 HIV/HCV coinfected, 19 HCV monoinfected, 10 HIV monoinfected patients and 15 healthy controls were included in this cross-sectional study. Differences in expression of activation and exhaustion markers (HLA-DR, CD38, PD-1, Tim-3 and Fas) and phenotypic markers on CD4+ and CD8+ T-cells were analysed by flow cytometry and were related to HCV disease parameters (HCV-viremia, ALT and liver fibrosis).

Results

Frequencies of activated CD4+ and CD8+ T-cells were higher in HIV/HCV-coinfected compared to healthy controls and HCV or HIV mono-infected individuals. Coinfected patients also showed high expression of the exhaustion marker PD-1 and death receptor Fas. In contrast, the exhaustion marker Tim-3 was only elevated in HIV-monoinfected patients. T-cell activation and exhaustion were correlated with HCV-RNA, suggesting that viral antigen influences T-cell activation and exhaustion. Interestingly, increased percentages of effector CD8+ T-cells were found in patients with severe (F3–F4) liver fibrosis compared to those with no to minimal fibrosis (F0–F2).

Conclusions

HIV/HCV coinfected patients display a high level of T-cell activation and exhaustion in the peripheral blood. Our data suggest that T-cell activation and exhaustion are influenced by the level of HCV viremia. Furthermore, high percentages of cytotoxic/effector CD8+ T-cells are associated with liver fibrosis in both HCV monoinfected and HIV/HCV coinfected patients.  相似文献   

10.
Human immunodeficiency virus type 1 (HIV-1) cytotoxic T-lymphocyte escape mutations represent both a major reason for loss of HIV immune control and a considerable challenge for HIV-1 vaccine design. Previous data suggest that initial HIV-1-specific CD8+ T-cell responses are determined largely by viral and host genetics, but the mechanisms influencing the subsequent viral evolution are unclear. Here, we show a random recruitment of T-cell receptor (TCR) alpha and beta clonotypes of the initial HIV-1-specific CD8+ T cells during primary infection in two genetically identical twins infected simultaneously with the same virus, suggesting that stochastic TCR recruitment of HIV-1-specific CD8+ T cells contributes to the diverse and unpredictable HIV-1 sequence evolution.  相似文献   

11.

Aim

HIV infection is associated with distortion of T-cell homeostasis and the IL-7/IL7R axis. Progressive infection results in loss of CD127+132− and gains in CD127−132+ CD4+ and CD8+ T-cells. We investigated the correlates of loss of CD127 from the T-cell surface to understand mechanisms underlying this homeostatic dysregulation.

Methods

Peripheral and cord blood mononuclear cells (PBMCs; CBMC) from healthy volunteers and PBMC from patients with HIV infection were studied. CD127+132−, CD127+132+ and CD127−132+ T-cells were phenotyped by activation, differentiation, proliferation and survival markers. Cellular HIV-DNA content and signal-joint T-cell receptor excision circles (sjTRECs) were measured.

Results

CD127+132− T-cells were enriched for naïve cells while CD127−132+ T-cells were enriched for activated/terminally differentiated T-cells in CD4+ and CD8+ subsets in health and HIV infection. HIV was associated with increased proportions of activated/terminally differentiated CD127−132+ T-cells. In contrast to CD127+132− T-cells, CD127−132+ T-cells were Ki-67+Bcl-2low and contained increased levels of HIV-DNA. Naïve CD127+132− T-cells contained a higher proportion of sjTRECs.

Conclusion

The loss of CD127 from the T-cell surface in HIV infection is driven by activation of CD127+132− recent thymic emigrants into CD127−132+ activated/terminally differentiated cells. This process likely results in an irreversible loss of CD127 and permanent distortion of T-cell homeostasis.  相似文献   

12.
T-lymphocytes play a central role in the effector and regulatory mechanisms of the adaptive immune response. Upon exiting the thymus they begin to undergo a series of phenotypic and functional changes that continue throughout the lifetime and being most pronounced in the elderly. The reason postulated for this is that the dynamic processes of repeated interaction with cognate antigens lead to multiple division cycles involving a high degree of cell differentiation, senescence, restriction of the T-cell receptor (TCR) repertoire, and cell cycle arrest. This cell cycle arrest is associated with the loss of telomere sequences from the ends of chromosomes. Telomere length is reduced at each cell cycle, and critically short telomeres recruit components of the DNA repair machinery and trigger replicative senescence or apoptosis. Repetitively stimulated T-cells become refractory to telomerase induction, suffer telomere erosion and enter replicative senescence. The latter is characterized by the accumulation of highly differentiated T-cells with new acquired functional capabilities, which can be caused by aberrant expression of genes normally suppressed by epigenetic mechanisms in CD4+ or CD8+ T-cells. Age-dependent demethylation and overexpression of genes normally suppressed by DNA methylation have been demonstrated in senescent subsets of T-lymphocytes. Thus, T-cells, principally CD4+CD28null T-cells, aberrantly express genes, including those of the KIR gene family and cytotoxic proteins such as perforin, and overexpress CD70, IFN-γ, LFA-1 and others. In summary, owing to a lifetime of exposure to and proliferation against a variety of pathogens, highly differentiated T-cells suffer molecular modifications that alter their cellular homeostasis mechanisms.  相似文献   

13.
Poxvirus vectors have proven to be highly effective for boosting immune responses in diverse vaccine settings. Recent reports reveal marked differences in the gene expression of human dendritic cells infected with two leading poxvirus-based human immunodeficiency virus (HIV) vaccine candidates, New York vaccinia virus (NYVAC) and modified vaccinia virus Ankara (MVA). To understand how complex genomic changes in these two vaccine vectors translate into antigen-specific systemic immune responses, we undertook a head-to-head vaccine immunogenicity and efficacy study in the pathogenic HIV type 1 (HIV-1) model of AIDS in Indian rhesus macaques. Differences in the immune responses in outbred animals were not distinguished by enzyme-linked immunospot assays, but differences were distinguished by multiparameter fluorescence-activated cell sorter analysis, revealing a difference between the number of animals with both CD4+ and CD8+ T-cell responses to vaccine inserts (MVA) and those that elicit a dominant CD4+ T-cell response (NYVAC). Remarkably, vector-induced differences in CD4+/CD8+ T-cell immune responses persisted for more than a year after challenge and even accompanied antigenic modulation throughout the control of chronic infection. Importantly, strong preexposure HIV-1/simian immunodeficiency virus-specific CD4+ T-cell responses did not prove deleterious with respect to accelerated disease progression. In contrast, in this setting, animals with strong vaccine-induced polyfunctional CD4+ T-cell responses showed efficacies similar to those with stronger CD8+ T-cell responses.  相似文献   

14.
Progressive immune dysfunction and AIDS develop in most cases of human immunodeficiency virus type 1 (HIV-1) infection but in only 25 to 30% of persons with HIV-2 infection. However, the natural history and immunologic responses of individuals with dual HIV-1 and HIV-2 infection are largely undefined. Based on our previous findings, we hypothesized that among patients with dual infection the control of HIV-1 is associated with the ability to respond to HIV-2 Gag epitopes and to maintain HIV-specific CD4+ T-cell responses. To test this, we compared the HIV-specific ex vivo IFN-γ enzyme-linked immunospot (ELISPOT) assay responses of 19 dually infected individuals to those of persons infected with HIV-1 or HIV-2 only. Further, we assessed the functional profile of HIV Gag-specific CD4+ and CD8+ T cells from nine HIV dually infected patients by using a multicolor intracellular cytokine staining assay. As determined by ELISPOT assay, the magnitude and frequency of IFN-γ-secreting T-cell responses to gene products of HIV-1 were higher than those to gene products of HIV-2 (2.64 versus 1.53 log10 IFN-γ spot-forming cells/106 cells [90% versus 63%, respectively].) Further, HIV-1 Env-, Gag-, and Nef- and HIV-2 Gag-specific responses were common; HIV-2 Nef-specific responses were rare. HIV-specific CD4+ T helper responses were detected in nine of nine dually infected subjects, with the majority of these T cells producing gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) and, to a lesser extent, interleukin-2. The HIV-1 plasma viral load was inversely correlated with HIV-2 Gag-specific IFN-γ-/TNF-α-secreting CD4+ and HIV-2 Gag-specific IFN-γ-secreting CD8+ T cells. In conclusion, the T-cell memory responses associated with containment of single HIV-1 and HIV-2 infection play a similar significant role in the immune control of dual HIV-1 and HIV-2 infection.  相似文献   

15.
Virus-specific CD8+ T cells play a central role in the control of viral infections, including human immunodeficiency virus type 1 (HIV-1) infection. However, despite the presence of strong and broad HIV-specific CD8+ T-cell responses in chronic HIV-1 infection, these cells progressively lose critical effector functions and fail to clear the infection. Mounting evidence suggests that the upregulation of several inhibitory regulatory receptors on the surface of CD8+ T cells during HIV-1 infection may contribute directly to the impairment of T-cell function. Here, we investigated the role of killer immunoglobulin receptors (KIR), which are expressed on NK cells and on CD8+ T cells, in regulating CD8+ T-cell function in HIV-1 infection. KIR expression was progressively upregulated on CD8+ T cells during HIV-1 infection and correlated with the level of viral replication. Expression of KIR was associated with a profound inhibition of cytokine secretion, degranulation, proliferation, and activation by CD8+ T cells following stimulation with T-cell receptor (TCR)-dependent stimuli. In contrast, KIR+ CD8+ T cells responded potently to TCR-independent stimulation, demonstrating that these cells are functionally competent. KIR-associated suppression of CD8+ T-cell function was independent of ligand engagement, suggesting that these regulatory receptors may constitutively repress TCR activation. This ligand-independent repression of TCR activation of KIR+ CD8+ T cells may represent a significant barrier to therapeutic interventions aimed at improving the quality of the HIV-specific CD8+ T-cell response in infected individuals.  相似文献   

16.

Introduction

During HIV infection the severe depletion of intestinal CD4+ T-cells is associated with microbial translocation, systemic immune activation, and disease progression. This study examined intestinal and peripheral CD4+ T-cell subsets reconstitution under combined antiretroviral therapy (cART), and systemic immune activation markers.

Methods

This longitudinal single-arm pilot study evaluates CD4+ T cells, including Th1 and Th17, in gut and blood and soluble markers for inflammation in HIV-infected individuals before (M0) and after eight (M8) months of cART. From January 2010 to December 2011, 10 HIV-1 naïve patients were screened and 9 enrolled. Blood and gut CD4+ T-cells subsets and cellular immune activation were determined by flow-cytometry and plasma soluble CD14 by ELISA. CD4+ Th17 cells were detected in gut biopsies by immunohistochemistry. Microbial translocation was measured by limulus-amebocyte-lysate assay to detect bacterial lipopolysaccharide (LPS) and PCR Real Time to detect plasma bacterial 16S rDNA.

Results

Eight months of cART increased intestinal CD4+ and Th17 cells and reduced levels of T-cell activation and proliferation. The magnitude of intestinal CD4+ T-cell reconstitution correlated with the reduction of plasma LPS. Importantly, the magnitude of Th17 cells reconstitution correlated directly with blood CD4+ T-cell recovery.

Conclusion

Short-term antiretroviral therapy resulted in a significant increase in the levels of total and Th17 CD4+ T-cells in the gut mucosa and in decline of T-cell activation. The observation that pre-treatment levels of CD4+ and of CD8+ T-cell activation are predictors of the magnitude of Th17 cell reconstitution following cART provides further rationale for an early initiation of cART in HIV-infected individuals.

Trial Registration

ClinicalTrials.gov NCT02097381  相似文献   

17.
Despite antiretroviral therapy (ART), some HIV-infected persons maintain lower than normal CD4+ T-cell counts in peripheral blood and in the gut mucosa. This incomplete immune restoration is associated with higher levels of immune activation manifested by high systemic levels of biomarkers, including sCD14 and D-dimer, that are independent predictors of morbidity and mortality in HIV infection. In this 12-week, single-arm, open-label study, we tested the efficacy of IL-7 adjunctive therapy on T-cell reconstitution in peripheral blood and gut mucosa in 23 ART suppressed HIV-infected patients with incomplete CD4+ T-cell recovery, using one cycle (consisting of three subcutaneous injections) of recombinant human IL-7 (r-hIL-7) at 20 µg/kg. IL-7 administration led to increases of both CD4+ and CD8+ T-cells in peripheral blood, and importantly an expansion of T-cells expressing the gut homing integrin α4β7. Participants who underwent rectosigmoid biopsies at study baseline and after treatment had T-cell increases in the gut mucosa measured by both flow cytometry and immunohistochemistry. IL-7 therapy also resulted in apparent improvement in gut barrier integrity as measured by decreased neutrophil infiltration in the rectosigmoid lamina propria 12 weeks after IL-7 administration. This was also accompanied by decreased TNF and increased FOXP3 expression in the lamina propria. Plasma levels of sCD14 and D-dimer, indicative of systemic inflammation, decreased after r-hIL-7. Increases of colonic mucosal T-cells correlated strongly with the decreased systemic levels of sCD14, the LPS coreceptor - a marker of monocyte activation. Furthermore, the proportion of inflammatory monocytes expressing CCR2 was decreased, as was the basal IL-1β production of peripheral blood monocytes. These data suggest that administration of r-hIL-7 improves the gut mucosal abnormalities of chronic HIV infection and attenuates the systemic inflammatory and coagulation abnormalities that have been linked to it.  相似文献   

18.
CD4+CD25+ Regulatory T cells (Treg) have been found to down-regulate immune activation in HIV-1 infection. However, whether the depletion of Treg benefits to the disease status of HIV infection remains undefined. To address this issue, we enumerated the Treg absolute counts and frequency in 75 antiviral-naïve HIV-1-infected individuals in this study. It was found that HIV-infected patients displayed a significant decline in Treg absolute counts but a significant increase in Treg frequency. In addition, with disease progression indicated by CD4 T-cell absolute counts, circulating Treg frequency gradually increased; while Treg absolute counts were gradually decreased, suggesting that the alteration of Treg number closely correlated with disease progression in HIV infection. Functional analysis further showed that Treg efficiently inhibit both CD4 and CD8 T cell proliferation in vitro. Thus, our findings indicates that Treg actively participate in pathogenesis of chronic HIV infection, influencing the disease progression.  相似文献   

19.
HIV infection elicits defects in CD4 T-cell homeostasis in both a quantitative and qualitative manner. Interleukin-7 (IL-7) is essential to T-cell homeostasis and several groups have shown reduced levels of the IL-7 receptor alpha-chain (CD127) on both CD4 and CD8 T-cells in viremic HIV+ patients. We have shown previously that soluble HIV Tat protein specifically down regulates cell surface expression of CD127 on human CD8 T-cells in a paracrine fashion. The effects of Tat on CD127 expression in CD4 T-cells has yet to be described. To explore this effect, CD4 T-cells were isolated from healthy individuals and expression levels of CD127 were examined on cells incubated in media alone or treated with Tat protein. We show here that, similar to CD8 T-cells, the HIV-1 Tat protein specifically down regulates CD127 on primary human CD4 T-cells and directs the receptor to the proteasome for degradation. Down regulation of CD127 in response to Tat was seen on both memory and naive CD4 T-cell subsets and was blocked using either heparin or anti-Tat antibodies. Tat did not induce apoptosis in cultured primary CD4 T-cells over 72 hours as determined by Annexin V and PI staining. Pre-incubation of CD4 T-cells with HIV-1 Tat protein did however reduce the ability of IL-7 to up regulate Bcl-2 expression. Similar to exogenous Tat, endogenously expressed HIV Tat protein also suppressed CD127 expression on primary CD4 T-cells. In view of the important role IL-7 plays in lymphocyte proliferation, homeostasis and survival, down regulation of CD127 by Tat likely plays a central role in immune dysregulation and CD4 T-cell decline. Understanding this effect could lead to new approaches to mitigate the CD4 T-cell loss evident in HIV infection.  相似文献   

20.

Background

The immune parameters of HIV/AIDS vaccine candidates that might be relevant in protection against HIV-1 infection are still undefined. The highly attenuated poxvirus strain MVA is one of the most promising vectors to be use as HIV-1 vaccine. We have previously described a recombinant MVA expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (referred as MVA-B), that induced HIV-1-specific immune responses in different animal models and gene signatures in human dendritic cells (DCs) with immunoregulatory function.

Methodology/Principal Findings

In an effort to characterize in more detail the immunogenic profile of MVA-B and to improve its immunogenicity we have generated a new vector lacking two genes (A41L and B16R), known to counteract host immune responses by blocking the action of CC-chemokines and of interleukin 1β, respectively (referred as MVA-B ΔA41L/ΔB16R). A DNA prime/MVA boost immunization protocol was used to compare the adaptive and memory HIV-1 specific immune responses induced in mice by the parental MVA-B and by the double deletion mutant MVA-B ΔA41L/ΔB16R. Flow cytometry analysis revealed that both vectors triggered HIV-1-specific CD4+ and CD8+ T cells, with the CD8+ T-cell compartment responsible for >91.9% of the total HIV-1 responses in both immunization groups. However, MVA-B ΔA41L/ΔB16R enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell immune responses. HIV-1-specific CD4+ T-cell responses were polyfunctional and preferentially Env-specific in both immunization groups. Significantly, while MVA-B induced preferentially Env-specific CD8+ T-cell responses, MVA-B ΔA41L/ΔB16R induced more GPN-specific CD8+ T-cell responses, with an enhanced polyfunctional pattern. Both vectors were capable of producing similar levels of antibodies against Env.

Conclusions/Significance

These findings revealed that MVA-B and MVA-B ΔA41L/ΔB16R induced in mice robust, polyfunctional and durable T-cell responses to HIV-1 antigens, but the double deletion mutant showed enhanced magnitude and quality of HIV-1 adaptive and memory responses. Our observations are relevant in the immune evaluation of MVA-B and on improvements of MVA vectors as HIV-1 vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号