首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemically synthesized fragments corresponding to the 3' end of tRNAfMet from Escherichia coli were joined by T4-induced RNA ligase to yield a heptadecanucleotide (bases 61--77). The 3' terminus of C-C-A was modified by introduction of the ethoxymethylidene group to prevent intra- and intermolecular self-joining reactions at the 3' end. The terminal trimer was phosphorylated using polynucleotide kinase and joined to C-A-A with RNA ligase. The hexamer [C-A-A-C-C-A(ethoxymethylidene)] corresponding to bases 72--77 was obtained in a yield of 60%. An undecanucleotide (bases 61--71) which had been synthesized in a yield of 34% by similar enzymatic joining of U-C-C-G-G to pC-C-C-C-C-G was allowed to react with the 5'-phosphorylated hexamer (bases 72--77) using an excess of RNA ligase to yield the heptadecanucleotide U-C-C-G-G-C-C-C-C-C-G-C-A-A-C-C-A (bases 61--77). The product was identified by homochromatography and nearest neighbor analysis.  相似文献   

2.
Donor activation in the T4 RNA ligase reaction   总被引:4,自引:0,他引:4  
T4 RNA ligase catalyzes the adenylation of donor oligonucleotide substrates. These activated intermediates react with an acceptor oligonucleotide which results in phosphodiester bond formation and the concomitant release of AMP. Adenylation of the four common nucleoside 3',5'-bisphosphates as catalyzed by T4 RNA ligase in the absence of an acceptor oligonucleotide has been examined. The extents of product formation indicate that pCp is the best substrate in the reaction and pGp is the poorest. Kinetic parameters for the joining reaction between the preadenylated nucleoside 3',5'-bisphosphates, A(5')pp(5')Cp or A(5')pp(5')Gp, and a good acceptor substrate (ApApA) or a poor acceptor substrate (UpUpU) have been determined. The apparent Km values for both preadenylated donors in the joining reaction are similar, and the reaction velocity is much faster than observed in the overall joining reaction. The nonnucleotide adenylated substrate P1-(5'-adenosyl) P2-(o-nitrobenzyl) diphosphate also exhibits a similar apparent Km but reacts with a velocity 80-fold slower than the adenylated nucleoside 3',5'-bisphosphates. By use of preadenylated donors, oligonucleotide substrates can be elongated more efficiently than occurs with the nucleoside 3',5'-bisphosphates.  相似文献   

3.
An eicosanucleotide C--G--C--G--G--G--G--U--G--G--A--G--C--A--G--C--C--U--G--Gp corresponding to the bases 1--20 of the nascent sequence for the Escherichia coli tRNAfMet has been synthesized by the joining of the chemically synthesized oligonucleotides C--G--C--G, G--G--G--U--G--G and A--G--C--A--G--C--C--U--G--Gp using RNA ligase from T4-infected E. coli. The hexanucleotide and decanucleotide were phosphorylated with polynucleotide kinase and [gamma-32P]ATP prior to the joining reactions. The decanucleotide and eicosanucleotide were reconstituted respectively with the 3'-three-quarter molecule obtained by limited digestion with RNase T1 of the natural tRNAfMet from E. coli and the activity of the complex as a methionine acceptor was tested using purified methionyl-tRNA synthetase from E. coli. The amino acid acceptor activity of the reconstituted molecules was 11% and 84% with respect to that of the intact tRNAfMet.  相似文献   

4.
A tetradecanucleotide U-A-G-C(U-C-G)2G-G-C-Up corresponding to bases 21-34 of a nascent sequence of formylmethionyl tRNA of E. coli has been synthesized by the joining of two combinations of chemically synthesized oligonucleotides: 1) U-A-G-C + U-C-G-U-C-G + G-G-C-Up and 2) U-A-G-C + U-C-G-U + C-G-G-G-C-Up. In reaction 1) and the extent of joining *pG-G-C-Up to U-C-G-U-C-G was only 15.4% and the last ligation of the decamer to U-A-G-U proceeded to 27%. In reaction 2) joining between U-A-G-C and pU-C-G-Up gave a high yield (88%). The ligation of this octamer and *pC-G-G-G-C-Up also gave a satisfactory yield (52%). These reactions suggest that sequence preferences in RNA ligase reactions may arise from the structure of the 3'-end of acceptor molecules.  相似文献   

5.
C K Ho  J L Van Etten    S Shuman 《Journal of virology》1997,71(3):1931-1937
We report that Chlorella virus PBCV-1 encodes a 298-amino-acid ATP-dependent DNA ligase. The PBCV-1 enzyme is the smallest member of the covalent nucleotidyl transferase superfamily, which includes the ATP-dependent polynucleotide ligases and the GTP-dependent RNA capping enzymes. The specificity of PBCV-1 DNA ligase was investigated by using purified recombinant protein. The enzyme catalyzed efficient strand joining on a singly nicked DNA in the presence of magnesium and ATP (Km, 75 microM). Other nucleoside triphosphates or deoxynucleoside triphosphates could not substitute for ATP. PBCV-1 ligase was unable to ligate across a 2-nucleotide gap and ligated poorly across a 1-nucleotide gap. A native gel mobility shift assay showed that PBCV-1 DNA ligase discriminated between nicked and gapped DNAs at the substrate-binding step. These findings underscore the importance of a properly positioned 3' OH acceptor terminus in substrate recognition and reaction chemistry.  相似文献   

6.
Bacteriophage T4 RNA ligase catalyzes the ATP-dependent ligation of a 5'-phosphoryl-terminated nucleic acid donor to a 3'-hydroxyl-terminated nucleic acid acceptor. We have identified adenylylated DNA and RNA reaction intermediates in which the AMP moiety is attached by a pyrophosphate bond to the 5'-phosphoryl group of the donor. A large amount of DNA-adenylate accumulates during the reaction and the dependence of joining and adenylylation on chain length are similar. The adenylylated donor is joined by ligase to an acceptor in the absence of ATP, and AMP is released stoichiometrically in this reaction. The acceptor is not only a substrate in the reaction but also a cofactor for adenylylation of the donor; in the absence of a 3'-hydroxyl group the activated intermediate does not form. The activated DNA need not join to the acceptor that initially stimulated activation but can also join to another acceptor. This process of acceptor exchanges has proven useful for promoting the cyclization of small DNA substrates and the synthesis of DNA co-polymers.  相似文献   

7.
The phenotypes of cultured cell lines established from individuals with Bloom syndrome (BLM), including an elevated spontaneous frequency of sister chromatid exchanges (SCEs), are consistent with a defect in DNA joining. We have investigated the levels of DNA ligase I and DNA ligase III in an SV40-transformed control and BLM fibroblast cell line, as well as clonal derivatives of the BLM cell line complemented or not for the elevated SCE phenotype. No differences in either DNA ligase I or DNA ligase III were detected in extracts from these cell lines. Furthermore, the data indicate that in dividing cultures of SV40-transformed fibroblasts, DNA ligase III contributes > 85% of high molecular weight DNA joining activity. This observation contrasts with previous studies in which DNA ligase I was reported to be the major DNA joining activity in extracts from proliferating mammalian cells.  相似文献   

8.
Biotin and fluorescent labeling of RNA using T4 RNA ligase.   总被引:8,自引:8,他引:0       下载免费PDF全文
Biotin, fluorescein, and tetramethylrhodamine derivatives of P1-(6-aminohex-1-yl)-P2-(5'-adenosine) pyrophosphate were synthesized and used as substrates with T4 RNA ligase. In the absence of ATP, the non-adenylyl portion of these substrates is transferred to the 3'-hydroxyl of an RNA acceptor to form a phosphodiester bond and the AMP portion is released. E. coli and D. melanogaster 5S RNA, yeast tRNAPhe, (Ap)3C, and (Ap)3A serve as acceptors with yields of products varying from 50 to 100%. Biotin-labeled oligonucleotides are bound selectively and quantitatively to avidin-agarose and may be eluted with 6 M guanidine hydrochloride, pH 2.5. Fluorescein and tetramethylrhodamine-labeled oligonucleotides are highly fluorescent and show no quenching due to attachment to the acceptor. The diverse structures of the appended groups and of the chain lengths and compositions of the acceptor RNAs show that T4 RNA ligase will be a useful modification reagent for the addition of various functional groups to the 3'-terminus of RNA molecules.  相似文献   

9.
Under the conditions that RNA ligase converts the tetranucleotide, pA-A2-A, to larger polynucleotides, no such polymerization can be detected with the derivative, pA-A2-A(MeOEt), that possesses a terminal 2'-0-(alpha-methoxyethyl) group. The protection against self condensation offered by the methoxyethyl group in this system allows the specific joining of donor and acceptor oligonucleotides in reaction mixtures containing equimolar concentrations of the two species. Thus, the enzyme, together with ATP, converts equimolar quantities of A-A2-A and pA-A2-A(MeOEt) to A-A6-A(MeOEt) in 55% yield, while a similar reaction with A-A2-A and pU-U2-U(MeOEt) results in a 40% yield of A-A3-U3-U(MeOEt). The intermediate in these ligations is a disubstituted pyrophosphate composed of the donor molecule and the adenylate moiety deriving from ATP. In the case of the intermediate arising from the blocked adenosine tetranucleotide, the assigned structure, A5'pp5'A-A2-A(MeOEt), has been confirmed by chemical synthesis. The pyrophosphate derivative is able to participate in joining reactions in the absence of ATP. These observations constitute an efficient approach to the synthesis of larger polynucleotides from a specific series of oligonucleotide blocks since (i), the methoxyethyl group can be easily introduced into each oligonucleotide using the single addition reaction catalyzed by polynucleotide phosphorylase in the presence of a 2'-0-(alpha-methoxyethyl)nucleoside 5'-diphosphate, and (ii), the blocking group may be readily removed under mild conditions after each successive ligation reaction. Two other octanucleotides, I-I2-A-U3-U and U-U2-C-I3-A, have also been synthesized by this method, and these molecules correspond (with I substituting for G) to sequences appearing near the 3' terminus of the 6S RNA transcribed from phage lambda DNA. The terminal 3'-phosphate group serves equally well as a blocking group for specific ligation reactions in that the ligase converts equimolar amounts of A-A2-A and pA-A2-Ap to A-A6-Ap in 50% yield.  相似文献   

10.
P1-Adenosine 5'-P2-o-nitrobenzyl pyrophosphate (nbzlppA) has been synthesized as a substrate for T4 RNA ligase catalyzed 3'-phosphorylation. Incubation of oligoribonucleotides and nbzlppA with RNA ligase yielded oligoribonucleotides having a 3'-o-(o-nitrobenzyl) phosphate. Photochemical removal of the o-nitrobenzyl group provided the free 3'-phosphate. Using [P2-32P] nbzlppA, 3'-termini of oligoribonucleotides could be labelled with 32P. This reaction was applied to modify the 3'-end of donor molecules in joining reaction with RNA ligase. A trinucleotide U-A-G was converted to U-A-Gpnbzl and phosphorylated with polynucleotide kinase. pU-A-Gpnbzl was then joined to an acceptor trinucleotide A-U-G to yield A-U-G-U-A-Gp.  相似文献   

11.
P1-Adenosine 5'-P2-2',3'-ethoxymethylidene nucleosides [A(5')ppN(Em)] from four common nucleosides have been prepared and used for single addition of nucleotides to elongate oligonucleotide chains in the 3'-direction in RNA ligase reaction. U-U-C, T-U-C and A-C-C were used as acceptors. Structural dependence in these acceptors was found to be smaller compared to joining reactions between oligonucleotides. Adenosine analogs including 8-bromo-, 2'-fluoro-, 2'-azido-, 8,2'-O-cyclo-, 8,2'-S-cyclo-adenosine, arabinosyladenine and 2'-deoxyadenosine were added to the 3'-end of A-C-C by adenylation chemically followed by joining with RNA ligase. Symmetrical 5'-pyrophosphates of 8-bromo-, 2'-fluoro- and 2'-azido-adenosine were not recognized as donor substrates.  相似文献   

12.
We describe a simple procedure for RNA 5'-adenylation using T4 DNA ligase. The 5'-monophosphorylated terminus of an RNA substrate is annealed to a complementary DNA strand that has a 3'-overhang of 10 nucleotides. Then, T4 DNA ligase and ATP are used to synthesize 5'-adenylated RNA (5'-AppRNA), which should find use in a variety of practical applications. In the absence of an acceptor nucleic acid strand, the two-step T4 DNA ligase mechanism is successfully interrupted after the adenylation step, providing 40%-80% yield of 5'-AppRNA after PAGE purification with few side products (the yield varies with RNA sequence). Optimized reaction conditions are described for 5'-adenylating RNA substrates of essentially any length including long and structured RNAs, without need for sequestration of the RNA 3'-terminus to avoid circularization. The new procedure is applicable on the preparative nanomole scale. This 5'-adenylation strategy using T4 DNA ligase is a substantial improvement over our recently reported adenylation method that uses T4 RNA ligase, which often leads to substantial amounts of side products and requires careful optimization for each RNA substrate. Efficient synthetic access to 5'-adenylated RNA will facilitate a range of applications by providing substrates for in vitro selection; by establishing a new protocol for RNA 5'-capping; and by providing an alternative approach for labeling RNA with (32)P or biophysical probes at the 5'-terminus.  相似文献   

13.
Abstract

For non-RI labeling of RNAs with fluorescence markers, deoxycytidine 3′,5′-bisphosphate derivatives (1 and 2) were synthesized as dansyl donors which could be linked to the 3′-terminus of RNAs by T4 RNA ligase catalized joining reactions. Ligations of GpApC with these dansyl donors in the presence of T4 RNA ligase were studied.  相似文献   

14.
Low levels of DNA ligases III and IV sufficient for effective NHEJ   总被引:1,自引:0,他引:1  
Cells of higher eukaryotes rejoin double strand breaks (DSBs) in their DNA predominantly by a non-homologous DNA end joining (NHEJ) pathway that utilizes the products of DNA-PKcs, Ku, LIG4, XRCC4, XLF/Cernunnos, Artemis as well as DNA polymerase lambda (termed D-NHEJ). Mutants with defects in these proteins remove a large proportion of DSBs from their genome utilizing an alternative pathway of NHEJ that operates as a backup (B-NHEJ). While D-NHEJ relies exclusively on DNA ligase IV, recent work points to DNA ligase III as a component of B-NHEJ. Here, we use RNA interference (RNAi) to further investigate the activity requirements for DNA ligase III and IV in the pathways of NHEJ. We report that 70-80% knock down of LIG3 expression has no detectable effect on DSB rejoining, either in D-NHEJ proficient cells, or in cells where D-NHEJ has been chemically or genetically compromised. Surprisingly, also LIG4 knock down has no effect on repair proficient cells, but inhibits DSB rejoining in a radiosensitive cell line with a hypomorphic LIG4 mutation that severely compromises its activity. The results suggest that complete coverage for D-NHEJ or B-NHEJ is afforded by very low ligase levels and demonstrate residual end joining by DNA ligase IV in cells of patients with mutations in LIG4.  相似文献   

15.
DNA ligase has been purified to homogeneity from 6-12 h Drosophila melanogaster embryos (Rabin, B. A., Hawley, R. S., and Chase, J. W. (1986) J. Biol. Chem. 261, 10637-10645). This enzyme had an apparent Km for ATP of 1.6 microM. Of a variety of nucleotides tested, only adenosine 5'-O-(3-thio)triphosphate could substitute for ATP in the joining reaction. The enzyme was competitively inhibited by dATP, with an apparent Ki of 2.3 microM. The apparent Km for DNA using p(dT)20 annealed with poly(dA) as substrate was 1.0 microM. Studies utilizing synthetic homopolymers showed that in addition to joining DNA to DNA, this enzyme could join the 5'-phosphoryl termini of RNA to the 3'-hydroxyl termini of DNA or RNA, when they were annealed with DNA. In addition, p(dT)7U could be joined when annealed with poly(dA). No joining was detected when RNA served as the template. Drosophila DNA ligase also catalyzed the joining of oligonucleotides containing a single mismatched nucleotide at their 3'-hydroxyl termini, as well as DNA containing short, complementary 5'-protruding ends, and in the presence of polyethylene glycol 6000, blunt-ended duplex DNA. The overall reaction mechanism was shown to be identical to that of the homologous prokaryotic DNA ligases. The joining reactions catalyzed by the Drosophila and T4 DNA ligases were shown to be reversible. Incubation of superhelical closed circular DNA molecules with the purified enzymes and AMP resulted in the production of a population of DNA molecules which had lost most, if not all, of their superhelical density.  相似文献   

16.
A biochemical characterization was performed with a partially purified RNA ligase from isolated mitochondria of Leishmania tarentolae. This ligase has a K(m) of 25 +/- 0.75 nM and a V(max) of 1.0 x 10(-4) +/- 2.4 x 10(-4) nmol/min when ligating a nicked double-stranded RNA substrate. Ligation was negatively affected by a gap between the donor and acceptor nucleotides. The catalytic efficiency of the circularization of a single-stranded substrate was 5-fold less than that of the ligation of a nicked substrate. These properties of the mitochondrial RNA ligase are consistent with an expected in vivo role in the process of uridine insertion/deletion RNA editing, in which the mRNA cleavage fragments are bridged by a cognate guide RNA.  相似文献   

17.
Bacteriophage T4 RNA ligase 2 (Rnl2) exemplifies a polynucleotide ligase family that includes the trypanosome RNA-editing ligases and putative RNA ligases encoded by eukaryotic viruses and archaea. Here we analyzed 12 individual amino acids of Rnl2 that were identified by alanine scanning as essential for strand joining. We determined structure-activity relationships via conservative substitutions and examined mutational effects on the isolated steps of ligase adenylylation and phosphodiester bond formation. The essential residues of Rnl2 are located within conserved motifs that define a superfamily of nucleotidyl transferases that act via enzyme-(lysyl-N)-NMP intermediates. Our mutagenesis results underscore a shared active site architecture in Rnl2-like ligases, DNA ligases, and mRNA capping enzymes. They also highlight two essential signature residues, Glu(34) and Asn(40), that flank the active site lysine nucleophile (Lys(35)) and are unique to the Rnl2-like ligase family.  相似文献   

18.
Intermediates of chromosomal DNA replication in Escherichia coli   总被引:2,自引:0,他引:2  
The product of bacteriophage T4 gene 63 has two activities, one which catalyzes the attachment of tail fibers to base plates during morphogenesis (TFA) and one which catalyzes the joining of single-stranded polynucleotides (RNA ligase). The only phenotype attributed to mutations in gene 63 is a defect in attachment of tail fibers leading to fiberless T4 particles. However, it is suspected that TFA and RNA ligase are unrelated activities of the same protein since they have very different requirements in vitro.We have isolated new mutants which have lost the RNA ligase but have retained the TFA activity of the product of gene 63. These mutants exhibit defects in T4 DNA replication and late gene expression in some strains of Escherichia coli. This work allows us to draw three conclusions: (1) the TFA and RNA ligase activities are unrelated functions of the gene 63 product making this the prototype for a protein which has more than one unrelated function; (2) the RNA ligase is probably involved in DNA metabolism rather than RNA processing as has been proposed: (3) the RNA ligase and polynucleotide 5′ kinase 3′ phosphatase of T4 perform intimately related functions.  相似文献   

19.
Oligonucleotides corresponding to the total tRNAfMET FROM E. coli have been synthesized. These fragments were joined by using RNA ligase to yield quarter molecules. The 5'-quarter molecule showed 84% amino acid acceptor activity when it was combined with the natural three quarter molecule.  相似文献   

20.
RNA ligase has been extensively purified by a new procedure in high yield from T4-infected Escherichia coli. The enzyme consists of a single polypeptide chain of molecular weight 47,000. It catalyzes the formation of a phosphodiester bond between a 5′-PO4-terminated oligonucleotide and a 3′-OH terminated oligonucleotide. The purified enzyme catalyzes both the intramolecular formation of single-stranded circles with longer oligonucleotides of the type pAp(Ap)nA?OH, where n is about 15 or greater and the intermolecular joining of pAp(Ap)3AOH (where the 5′-PO4-terminated oligonucleotide is short enough to prevent apposition of its 3′ and 5′ ends) to UpUpUOH when high concentrations of the 3′-OH-terminated acceptor oligonucleotide are present. Preparations of RNA ligase at all stages of purification show an unusual dependence of specific activity of the enzyme on the concentration of enzyme present in the assay. However, when care is taken to determine meaningful specific activities at each step, the ligase is found to be very stable during chromatography on various ion-exchange columns and may be purified by conventional techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号