首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When illuminated, washed cell suspensions of Ectothiorhodospira halophila carry out a concentrative uptake of glutamate or proline. Dark-exposed cells accumulate glutamate but not proline. Proline transport was strongly inhibited by carbonylcyanide-m-chlorophenylhydrazone (CCCP), a proton permeant that uncouples photophosphorylation, and by 2-heptyl-4-hydroxyquinoline-n-oxide (HQNO), an inhibitor of photosynthetic electron transport. A stimulation of proline uptake was effected by N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of membrane adenosine triphosphatase (ATPase) which catalyzes the phosphorylation. These findings suggest that the driving force for proline transport is the proton-motive force established during photosynthetic electron transport. Glutamate uptake in the light was inhibited by CCCP and HQNO, but to a lesser extent than was the proline system. DCCD caused a mild inhibition of glutamate uptake in the light, but strongly inhibited the uptake by dark-exposed cells. CCCP strongly inhibited glutamate uptake in the dark. The light-dependent transport of glutamate is apparently driven by the proton-motive force established during photosynthetic electron transport. Hydrolysis of adenosine triphosphate (ATP) by membrane ATPase apparently establishes the proton-motive force to drive the light-independent transport. These conclusions were supported by demonstrating that light- or dark-exposed cells accumulate [3H]triphenylmethylphosphonium, a lipid-soluble cation. Several lines of indirect evidence indicated that the proline system required higher levels of energy than did the glutamate system(s). This could explain why ATP hydrolysis does not drive proline transport in the dark. Membrane vesicles were prepared by the sonic treatment of E. halophila spheroplasts. The vesicles contained active systems for the uptake of proline and glutamate.  相似文献   

2.
Synchronous cultures of Scenedesmus obtusiusculus Chod. were starved for phosphorus for 48 h. Such cells develop an efficient mechanism for phosphate binding which is very sensitive to metabolic inhibitions. Phosphate binding, fluctuations in the ATP pool during dark-light-dark transitions, and steady state levels of ATP, ADP and AMP were studied. The experiments were carried out in a CO2-free N2 atmosphere. DCMU, phloridzin and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) were used as inhibitors of photophosphorylation. Light-induced phosphate uptake was inhibited to various extents by all the inhibitions. The dark-light-dark transition experiments show that neither the light-induced increment in ATP nor the decrease at darkening are affected by DCMU, but DBMIB and phloridzin inhibit both processes. DCMU seems to affect the regulation of the ATP pool size. The steady state levels of the adenylate pools were almost the same in the light as in the dark, and they were also little sensitive to the inhibitors. In unpoisoned cells in the light the steady state ATP/ADP ratio was 1.7 and the energy charge was 0.66. The rates of phosphate binding are not correlated to any of the adenylate parameters studied. This is probably due to the diverse effects of the inhibitors on light-stimulated production of reducing equivalents, photophosphorylation and transfer of energy from the chloroplast to the cytoplasm.  相似文献   

3.
ATP levels in algal cells as influenced by environmental conditions   总被引:10,自引:0,他引:10  
The cellular content of adenosine triphosphate (ATP) relativeto cell size and cellular organic carbon has been investigatedin 30 different algal cultures representing 7 phyla. Duringexponential growth in batch culture, cellular contents of ATPremained at fairly uniform levels in all these unicellular algaeand averaged 0.35% of the cellular organic carbon content. Duringextreme nitrogen or phosphorus deficiency the cellular levelsof ATP decreased to 20–50% of that found in exponentially-growingcells, but these percentages may be low due to detrital carbonin the senescent cultures. The steady state levels of ATP in cells were similar in lightor in dark, although ATP concentrations fluctuated for a fewminutes upon any sudden change in light conditions. When thelight was turned on there was a rapid increase in ATP levels,followed by a slow decrease; when the light was turned off,there was a rapid fall in cellular ATP levels, which then rosewithin a few minutes to achieve the steady state concentration.The cellular concentrations of ATP in these algae and in othermicrobial groups are discussed relative to studies where ATPdeterminations are used to estimate microbial biomass. (Received June 2, 1970; )  相似文献   

4.
Stitt M 《Plant physiology》1986,81(4):1115-1122
It has been investigated how far electron transport or carbon metabolism limit the maximal rates of photosynthesis achieved by spinach leaves in saturating light and CO2. Leaf discs were illuminated with high light until a steady state rate of O2 evolution was attained, and then subjected to a 30 second interruption in low light, to generate an increased demand for the products of electron transport. Upon returning to high light there is a temporary enhancement of photosynthesis which lasts 15 to 30 seconds, and can be up to 50% above the steady state rate of O2 evolution. This temporary enhancement is only found when saturating light intensities are used for the steady state illumination, is increased when low light rather than darkness is used during the interruption, and is maximal following a 30 to 60 seconds interruption in low light. Decreasing the temperature over the 10 to 30°C range led to the transient enhancement becoming larger. The temporary enhancement is associated with an increased ATP/ADP ratio, a decreased level of 3-phosphoglycerate, and increased levels of triose phosphate and ribulose 1,5-bisphosphate. Since electron transport can occur at higher rates than in steady state conditions, and generate a higher energy status, it is concluded that leaves have a surplus electron transport capacity in saturating light and CO2. From the alterations of metabolites, it can be calculated that the enhanced O2 evolution must be accompanied by an increased rate of ribulose 1,5-bisphosphate regeneration and carboxylation. It is suggested that the capacity for sucrose synthesis ultimately limits the maximal rates of photosynthesis, by restricting the rate at which inorganic phosphate can be recycled to support electron transport and carbon fixation in the chloroplast.  相似文献   

5.
Simultaneous continuous polarographic estimation of oxygen evolutionand measurement of ATP levels by the firefly luciferase methodwere made in suspensions containing predominantly intact spinachchloroplasts. Measurements were made during light to dark anddark to light transitions in the presence and absence of bicarbonate,3-phosphoglycerate and ribose-5-phosphate and following theaddition of these compounds during steady state conditions. Absolute levels of ATP were usually in the range 3.7 µmolATP per g chlorophyll and the results of kinetic experimentsare interpreted within the established concepts of photophosphorylationand the carbon reduction cycle. In experiments involving dark to light transitions in the absenceof added bicarbonate, light to dark transitions in the presenceof 3-phosphoglycerate and during photosynthesis in the presenceof bicarbonate, 3-phosphoglycerate and ribose-5-phosphate rapidtransient changes in ATP levels were observed.  相似文献   

6.
7.
  1. Effects of various reducing reagents including dithionite,whichserve as artificial electron donors for photosystem 2,on therecovery of fluorescence induction in the presence of3-(3,4-dichlorophenyl)-l,l-dimethylurea(DCMU) during the darkincubation of preilluminated chloroplastswere investigated.
  2. The dark recovery of fluorescence induction was not affectedby the addition of the p-phenylenediamine-ascorbate couple,the hydroquinone-ascorbate couple or manganese. Incubation ofchloroplasts with dithionite caused gradual suppression of thedark recovery.
  3. Preillumination of chloroplasts caused partialinhibition ofthe recovery of fluorescence induction.
  4. At lowintensities of excitation light, the fluorescence yieldincreasedvery slowly and continuously, and never reached asteady state.This continuous increase in fluorescence yieldunder weak lightwas due to photoinhibition of the dark recovery.A techniquewas devised to determine the steady state yieldof fluorescence,without the intervention of photoinhibition,at weak light intensities.The steady state yield of fluorescencein the presence of DCMUwas suppressed at lower excitation intensities.This drop inthe fluorescence yield was not altered by the presenceof addedreducing reagents but was suppressed after long preincubationof chloroplasts with dithionite.
  5. The delayed fluorescencewith a decay time of seconds was affectedby dithionite butnot by other reductants.
  6. Results are discussed in terms ofreoxidation of the reducedprimary electron acceptor, Q, bythe oxidized primary electrondonor for photosystem 2. A modelof the electron transport associatedwith photoreaction 2 isproposed to account for the experimentalresults obtained.
(Received February 27, 1973; )  相似文献   

8.
Single-turnover flash-induced ATP synthesis in chloroplasts was measured in situ with the luciferin luminescence method. In dark-adapted chloroplasts the first flashes only induce ATP hydrolysis. Once the reversible ATPase is fully activated, ATP hydrolysis persists for extended periods of darkness and flash-induced ATP-synthesis is optimal even at flash frequencies lower than 0.1 Hz. About one molecule of ATP is formed per 1000 chlorophyll and flash. In a low frequency flashing regime under steady state conditions, the newly formed ATP is stable. There is no threshold light intensity for flash-induced ATP synthesis. The data are in agreement with models involving short-range interaction between electron transport and the coupling factor.  相似文献   

9.
Anaerobic suspensions of Rhodospirillum rubrum cells which had been grown in the dark under low oxygen tension showed only a small increase of their ATP content when illuminated for 30 s. The same suspensions failed to start immediate growth in the light. Both high light-induced ATP levels and immediate phototrophic growth were elicited by small amounts of oxygen which were insufficient by themselves to raise the ATP levels or to support growth in the dark. The oxygen requirement for growth disappeared after some time of anaerobic illumination and was not observed in suspensions of cells which had been grown in the light under anaerobiosis. Furthermore, these phototrophic cells reached the maximum levels of ATP when illuminated in the absence of oxygen.Strain F11, a mutant derivative of Rhodospirillum rubrum which lacked the ability to photoreduce oxygen in vitro, needed abnormally high amounts of oxygen to increase its ATP levels and to grow in the light. Besides, KCN inhibited the increase of ATP levels in illuminated mutant cells but not wild type cells. An additional difference between both strains was that the oxygen requirement for growth did not disappear in the mutant after some time of anaerobic incubation in the light.To explain these observations, it is proposed that the photosynthetic system of semiaerobically-grown Rhodospirillum rubrum becomes overreduced under anaerobiosis. The oxygen-photoreducing system, which is impaired in the mutant, is apparently used to oxidize the photosynthetic system to its optimal redox state, carrying electrons to oxygen or to other endogenous acceptors which are formed during incubation in the light. The mutant seems to replace the defective system by a cyanide-sensitive pathway which may reduce oxygen but not the alternative endogenous acceptors.  相似文献   

10.
We have previously shown that in the red alga Rhodella violacea, exposure to continuous low intensities of light 2 (green light) or near-saturating intensities of white light induces a ΔpH-dependent PSII fluorescence quenching. In this article we further characterize this fluorescence quenching by using white, saturating, multiturnover pulses. Even though the pulses are necessary to induce the ΔpH and the quenching, the development of the latter occurred in darkness and required several tens of seconds. In darkness or in the light in the presence of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, the dissipation of the quenching was very slow (more than 15 min) due to a low consumption of the ΔpH, which corresponds to an inactive ATP synthase. In contrast, under far-red illumination or in the presence of 3-(3,4-dichlorophenyl)-1,1′-dimethylurea (only in light), the fluorescence quenching relaxed in a few seconds. The presence of N,N′-dicyclohexyl carbodiimide hindered this relaxation. We propose that the quenching relaxation is related to the consumption of ΔpH by ATP synthase, which remains active under conditions favoring pseudolinear and cyclic electron transfer.  相似文献   

11.
M. Goller  R. Hampp  H. Ziegler 《Planta》1982,156(3):255-263
Adenylate levels in chloroplasts, mitochondria and the cytosol of oat mesophyll protoplasts were determined under light and dark conditions, in the absence and presence of plasmalemma-permeable inhibitors of electron transfer and uncouplers of phosphorylation. This was achieved using a microgradient technique which allowed an integrated homogenization and fractionation of protoplasts within 60 s (Hampp et al. 1982, Plant Physiol. 69, 448–455), under conditions which quench bulk activities of metabolic interconversion in less than 2 s. In illuminated controls, ATP/ADP ratios were found to be 2.1 in chloroplasts, about unity in mitochondria, and 11 in the cytosol; whereas, in the dark, this ratio only showed a large drop in chloroplasts (0.4). None of the compounds used [carbonylcyanide m-chlorophenylhydrazone (CCCP), carbonylcyanide p-trifluoromethoxy-phenylhydrazone (FCCP), antimycin A, dibromothymoquinone (DBMIB), dichlorophenyldi-methylurea (DCMU), or salicylhydroxamic acid (SHAM)] affected the stroma adenylate ratio in the dark. Under illumination, however, the ATP/ADP ratios were partly reduced in the presence of antimycin (inhibitor of cyclic photophosphorylation) and of DCMU (inhibitor of linear electron flow), while in the presence of DBMIB, DCMU+ antimycin (inhibition of both cyclic and linear electron flow), and CCCP (uncoupling) the ratio obtained was the same as that occurring in the dark. In contrast, mitochondrial adenylate levels did not exhibit large variations under the various treatments. The cytosolic ATP/ADP ratio, however, showed dramatic changes: in darkened protoplasts, cytosolic values dropped to 0.2 and 0.1 in the presence of uncouplers and antimycin, respectively, while SHAM did not induce any significant alteration. In the light, a similar pronounced decrease in ATP levels was observed only after the application of uncouplers or inhibitors of both mitochondrial and photosynthetic electron transport, whereas selective inhibition of the latter was largely ineffective in reducing the cytosolic ATP/ADP ratio. Thus, the results show that the antimycin-sensitive electron transport is, potentially, equally active in light and darkness. In addition, they indicate that antimycin-insensitive electron transport in mitochondria (alternative pathway) does not significantly contribute to the cytosolic energy state.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DBMIB dibromothymoquinone (2,5-dibromo-3-methyl-6-isopropy-p-benzoquinone) - DCMU dichlorophenyldimethylurea - FCCP carbonylcyanide-p-trifluoromethoxy-phenylhydrazone - SHAM sancylhydroxamic acid  相似文献   

12.
Cells of Rhodospirillum rubrum were grown photoorganotrophically and chemoorganotrophically and then starved for organic carbon and combined nitrogen under four conditions: anaerobically in the light and dark and aerobically in the light and dark. Illumination prolonged viability and suppressed the net degradation of cell material of phototrophically grown cells, but had no effect on chemotrophically grown cells that did not contain bacteriochlorophyll. The half-life survival times of carbohydrate-rich phototrophically grown cells during starvation anaerobically or aerobically in the light were 17 and 14.5 days, respectively. The values for starvation aerobically and anaerobically in the dark were 3 and 0.5 days, respectively. Chemotrophically grown cells had half-life survival times of 3 and 4 days during starvation aerobically in the light and dark, respectively, and 0.8 day during starvation anaerobically in the light or dark. Of all cell constituents examined, carbohydrate was most extensively degraded during starvation, although the rate of degradation was slowest for phototrophically grown cells starved anaerobically in the light. Phototrophically grown cells containing poly-beta-hydroxybutyrate as carbon reserve were less able to survive starvation anaerobically in the light than were carbohydrate-rich cells starved under comparable conditions. Light intensity had a significant effect on viability of phototrophically grown cells starving anaerobically. At light intensities of 320 to 650 lx, the half-life survival times were 17 to 24 days. At 2,950 to 10,500 lx, the survival times decreased to 1.5 to 5.5 days. The kinetics of cell death correlated well with the rate of loss of cell mass of starving cells. However, the cause of death could not be attributed to degradation of any specific cell component.  相似文献   

13.
1. A method of studying the free nucleotides of leaf tissue is outlined and the need for a metal ion-binding agent for the complete extraction of certain nucleotides by aqueous ethanol is established. 2. The method was used to study the effect of illumination or darkening of tobacco plants on the free nucleotides present in the chloroplast and non-chloroplast tissue components. 3. When plants that had been in the dark for a prolonged period were given 30sec. of bright light there was a rapid phosphorylation of ADP to ATP in both chloroplast and non-chloroplast components of the tissue. 4. Where plants were moved into the dark from conditions suitable for rapid photosynthesis there was a rapid conversion of ATP into AMP and the AMP was formed only in the chloroplast fraction. In continuing darkness the AMP remained restricted mainly to the chloroplast fraction for at least 2min., but eventually its concentration fell to the low value that is typical of tobacco leaves during conditions of constant illumination. If the plants were returned to the light for 30sec. the AMP was rapidly rephosphorylated.  相似文献   

14.
Glucose transport capacity of C. cryptica increases in an exponential manner over 24 hr after transfer of the cells from light to complete darkness with little simultaneous increase in cell number. The transport system is rapidly inactivated when cells are transferred back to continuous light. Most of the inactivation takes place while there is still little changes in cell number. When grown on a continuous light regime, the capacity for glucose transport per cell depends on the light intensity. At intensities sufficient to saturate photosynthesis the glucose transport system is only about 5% that of dark-grown cells, while cells grown at intensities close to the light compensation point have about 30% of the capacity of dark-grown cells. The action spectrum for inactivation of glucose transport is identical to that for photosynthesis. Cells, whether grown under continuous light, in the dark in the presence of glucose, or kept in the dark without glucose, contain high levels of glucokinase and phosphofructokinase. The glucose transport system is highly specific for glucose; only galactose inhibits the uptake of glucose by about 50% when present at 10 times the concentration of glucose. The glucokinase is even more specific for glucose and is not inhibited by galactose. The phosphofructokinase is inhibited by high concentrations of ATP in cells grown under all conditions. cycloheximide inhibits the induction of glucose transport in the dark, but not the inactivation of the system in the light.  相似文献   

15.
Both transmittance changes in a weak beam of green light (light scattering) and the slow decay of chlorophyll a fluorescence were used as indicators of the energy state of leaves of a Crassulacean acid metabolism plant, Kalanchoë pinnata, at frequent intervals during 12-hour light/12-hour dark cycles. To induce light scattering and fluorescence changes, leaves were exposed to red light for 6 minutes. When measurements were made during the light period, the leaves were kept in darkness for 6 minutes before illumination. In the middle of the light period, when malic acid decarboxylation was very active and stomatal conductance was low, light scattering changes were small and indicated that the energy state of leaves was low. This result was supported by determination of adenylate levels. Light scattering and ATP/ADP ratios increased during the late light period when the tissue was deacidified. Illumination produced maximum light scattering changes between the 2nd and 5th hour of the dark period, when rates of dark CO2 fixation were highest. Light scattering and fluorescence measurements taken from leaves, which were illuminated with red or far-red light in the presence or absence of O2 showed that, in addition to linear electron transport, K. pinnata has the potential for both cyclic and pseudocyclic electron transport. The results are relevant with regard to the high ATP demand during Crassulacean acid metabolism.  相似文献   

16.
Adenine nucleotide pools and their energy charge were measured during balanced and unbalanced growth of photoheterotrophic Chromatium cultures. The methods used involved rapid sampling, accurate to within 1 s, from isotopically labeled cultures followed by chromatographic separation of individual nucleotides. During balanced growth, both energy charge and adenosine triphosphate (ATP) concentrations, whether expressed as a function of cell protein or intracellular water, were slightly higher in limiting light intensities than in cultures growing at their maximal rate in bright light. The ATP found corresponded to 4.67 +/- 0.08 nmol/mg of protein or 1.34 +/- 0.57 mM for low-light cells and to 4.41 +/- 0.58 mmol/mg of protein or 0.85 +/- 0.12 mM for high-light cells. Corresponding energy charges were 0.85 +/- 0.02 and 0.81 +/- 0.02. Illumination shifts caused differential synthesis of photosynthetic pigments lasting 2 to 3 h without corresponding perturbation of adenine nucleotide levels. Cultures in intermittent illumination were severely affected by some cycle durations; they had abnormal morphology and very high bacteriochlorophyll-to-protein ratios. In such cultures, energy charge and nucleotide concentrations were within normal limits and relaxed to the dark steady state during the dark periods. Arsenate at AsO(4) (3-) to PO(4) (3-) ratios of 10:1 in the medium retarded growth, but no abnormality of charge or quantity of phosphate-containing nucleotides was found. These experiments therefore suggest that, within experimental error, neither the size nor the charge of the adenylate pools governs growth rate in Chromatium. Moreover, these parameters do not appear to be concerned in regulating the synthesis of photosynthetic apparatus in this organism.  相似文献   

17.
Pyridine nucleotide levels were measured in intact spinach chloroplasts. The NADPH/NADP ratio was close to unity in darkened chloroplasts. On illumination, chloroplast NADP levels decreased rapidly. The decrease was more prominent at low than at high light intensities. In the presence of bicarbonate, NADP subsequently increased to reach a steady-state level. The kinetics of the increase were related in general, but not in detail, to the lag phase of photosynthesis. In the steady state, chloroplast NADP was sometimes, particularly during photosynthesis at high light intensities, less reduced in the light than in the dark. In the dark-light transition, phosphoglycerate reduction is driven by increases in the ratios NADPH/NADP and ATP/ADP. When photosynthesis accelerates after the initial lag phase, the NADPH/NADP ratio decreases and a high ratio of phosphoglycerate to triose phosphate becomes an important factor in driving carbon reduction. Under photosynthetic flux conditions, the redox state of the chloroplast NADP system appeared to be governed largely by the chloroplast ratio of phosphoglycerate to dihydroxyacetone phosphate and by the phosphorylation potential [ATP]/[ADP] [Pi]. The inhibitor of cyclic electron transport, antimycin A, increased reduction of the chloroplast NADP system. Even when reduction was almost complete in the presence of 5 μM antimycin A, photosynthesis was still significant at low light intensities. Electrons appeared to be effectively distributed between the cyclic electron-transport pathway and the noncyclic route to NADP at NADPH/NADP ratios as low as about 1. When bicarbonate was absent, the NADP system remained largely reduced in the light. The energy-transfer inhibitor, Dio-9, and uncouplers and agents which interfered with pH regulation of the Calvin cycle increased reduction of the NADP system while decreasing photosynthesis.  相似文献   

18.
The fluorescence transient of Chlorella pyrenoidosa, excited by saturating blue light, has a base level O, hump I, dip D, peak P, and at 1.5 sec a quasi-steady level S (12). With 2 sec exciting exposures and 4 min dark periods, preillumination-1 (lambda >/= 690 nm, intensities 1-750 ergs/sec-cm(2) incident), replacing the dark periods, lowers I more effectively than preillumination-2 (650 nm 相似文献   

19.
Thalli of the lichen Slereocaulon paschale (L.) Fr. were prctreated in the light (light activated) or in the dark (dark starved). In short-time experiments with both light activated arid dark starved thalli, the nitrogenasc activity was higher in the light than in the dark, Light activated thalli had a very much higher rale of C2H2 reduction than dark starved thalli, both in the light and in the dark. The dark starved lhalli showed increasing nilrogenase activity when incubated in the light. Either light or oxygen was necessary for nitrogenase activity in light activated thalli. and up to about 10kPa oxygen they showed additive effects. Both in the light and in the dark the nitrogenase activity decreased when the oxygen partial pressure was lower than in normal air. The experimental data thus showed a short-term effect of light on nilrogenase activity by provision of ATP and reductant, and a long term effect probably by build up of reserves that were later utilized. Any immediate effect of photorespiration on nitrogenase activity could not be found in light activated thalli.  相似文献   

20.
Meiko Aoki  Sakae Katoh 《BBA》1982,682(3):307-314
The I-D dip, an early transient of the fluorescence induction, was examined as a means to monitor redox changes of plastoquinone in cells of a cyanobacterium, Synechococcus sp. That the occurrence of the dip depends upon the reduced state of the plastoquinone pool was indicated by observations that 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone and 3-(3,4-dichlorophenyl)-1,1-dimethylurea did not affect the initial rise to I but abolished the subsequent decline from I to D and that illumination of the cells with light 1, prior to fluorescence measurements, eliminated the transient. The I-D dip was prominent in freshly harvested cells containing abundant endogenous substrates, disappeared slowly as the cells were starved by aeration but reappeared on addition of fructose to the starved cells in the dark. The dip that had been induced by a brief illumination of the starved cells with light 2 was rapidly diminished in the dark and KCN inhibited the dark decay of the transient. The results indicate that plastoquinone is reduced with endogenous as well as exogenous substrates and oxidized by a KCN-sensitive oxidase in the dark, thus providing strong support for the view that plastoquinone of photosynthetic electron transport also functions in respiration. In addition, the occurrence of a cyclic pathway of electrons from Photosystem I to plastoquinone, possibly via ferredoxin or NADP, was suggested. Several lines of evidence indicate that, under a strong light 2, Photosystem I-dependent oxidation of plastoquinone predominates over Photosystem II-dependent reduction of the quinone in the cyanobacterium which contains Photosystem I more abundantly than Photosystem II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号