首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A semi-automated fluorometric assay technique for free 3-methoxy-4-hydroxyphenylethyl-eneglycol (MOPEG) in rat brain and spinal cord is described. The method is based on a simple manually-performed two-step purification procedure using column chromatography on Sephadex G 10 and DEAE-Sephadex A 25 (borate form) respectively. After isolation MOPEG is converted into a fluorophore in a continuous flow system using ethylene diamine condensation in the presence of an oxidant. The MOPEG assay is highly sensitive (detection limit 2 ng/sample) and linear, with an overall recovery of approx 75%. Specificity is demonstrated by testing a number of compounds and confirmed by gas chromatography-mass spectrometry analysis. Treatment with clozapine and haloperidol (both neuroleptics), reser-pine (impairing intraneuronal storage) or phenoxybenzamine (α-adrenoceptor blocking agent) increased the content of MOPEG both in brain and spinal cord. Cerebral levels of MOPEG were decreased after injection of a single dose of the tricyclic antidepressant desipramine and after chronic destruction of the locus coeruleus by electrolytic lesion or by the administration of the neurotoxic drug 6-hydroxy-dopamine. Animals killed by microwave irradiation did not show lower MOPEG contents in brain than decapitated animals. These results indicate that MOPEG is a measure for changes in central noradrenaline turnover and that drugs affect MOPEG in the brain and spinal cord similarly. Fractional rate constants of MOPEG in the rat brain and spinal cord were estimated with the exponential decline curves produced by treatment with pargyline. Turnover rates of 193 pmol/g/h and 167 pmol/g/h in the brain and spinal cord respectively were calculated.  相似文献   

2.
The effects on GABA metabolism of an anticonvulsant drug, di-n-propylacetate (DPA), were studied. Given intraperitoneally DPA increases the brain GABA content and does not change its biosynthesis from glutamic acid. However, it inhibits in vitro both glutamate decarboxylase and aminobutyrate transaminase (GABA-T) activities. The inhibition is more pronounced on the GABA-T and this observation might explain the increase of GABA level.  相似文献   

3.
γ-Aminobutyric acid transaminase (GABA-T, EC 2.6.1.19) is a pyridoxal phosphate (PLP) dependent enzyme that catalyzes the degradation of γ-aminobutyric acid. The kinetics of this reaction are studied in vitro, both in the absence, and in the presence of two inhibitors: γ-vinyl GABA (4-aminohex-5-enoic acid), and a natural product, taurine (ethylamine-2-sulfonic acid). A kinetic model that describes the transamination process is proposed. GABA-T from Pseudomonas fluorescens is inhibited by γ-vinyl GABA and taurine at concentrations of 51.0 and 78.5?mM. Both inhibitors show competitive inhibition behavior when GABA is the substrate and the inhibition constant (Ki) values for γ-vinyl GABA and taurine were found to be 26±3?mM and 68±7?mM respectively. The transamination process of α-ketoglutarate was not affected by the presence of γ-vinyl GABA, whereas, taurine was a noncompetitive inhibitor of GABA-T when α-ketoglutarate was the substrate. The inhibition dissociation constant (Kii) for this system was found to be 96±10?mM. The Michaelis-Menten constant (Km) in the absence of inhibition, was found to be 0.79±0.11?mM, and 0.47±0.10?mM for GABA and α-ketoglutarate respectively.  相似文献   

4.
Succinic semialdehyde dehydrogenase (EC 1.2.1.16) was purified 74-fold from wheat grain (Triticum durum Desf.). The enzyme appears quite specific for succinic semialdehyde (SSA). Both NAD and NADP support the oxidation of the substrate, but the former is 7-fold more active than the latter. The optimum pH for activity is around 9; the enzyme is stable in the pH range 6–9 and retains its whole activity up to 40°C. The enzyme activity is strongly dependent on the presence of mercaptoethanol, other thiol compounds being much less effective. Kinetic data support the formation of a ternary complex between enzyme, substrate and coenzyme. The K m for SSA and for NAD are 7.4x10-6 M and 2x10-4 M, respectively. The molecular weight of the enzyme protein was estimated by gel-filtration to be about 130,000.Abbreviations GABA -aminobutyric acid - GABA-T -aminobutyric acid transaminase - ME mercaptoethanol - SSA succinic semialdehyde - SSA-DH succinic semialdehyde dehydrogenase  相似文献   

5.
Abstract— The GABA receptor from mouse brain was solubilized with lysolecithin. A 56-fold overall purification and activation were achieved by discontinuous sucrose gradient centrifugation and solubilization. Activation of binding by both procedures was observed. The solubilized receptor has the following binding constants: KD1= 3.5 nM, KD2= 52 nM, Bmax 1= 2.8 pmol/mg protein and Bmax 2= 14 pmol/mg protein for muscimol; KD1= 12 nM, KD2= 470 nM, Bmax 1= 1.4 pmol/mg protein and Bmax 2= 17 pmol/mg protein for GABA. Specific GABA binding was inhibited by imidazoleacetic acid and bicuculline with IC50 values of 250nM and 1 μM respectively. A rapid and sensitive filtration binding assay for the solubilized receptor has been developed. Lysolecithin was also found suitable for the solubilization of acetylcholine receptor from T. californica electroplaques.  相似文献   

6.
THE UPTAKE OF GABA INTO RAT SPINAL ROOTS   总被引:1,自引:0,他引:1  
—Dorsal and ventral roots, dissected from rats anaesthetized with sodium pentobarbitone, accumulated three to four times more GABA than l -glutamate, 1-aspartate or glycine during 30 min incubation at 37°C. GABA was taken up into spinal roots by a structurally specific, sodium-dependent process with an apparent Km of approx. 3 × 10?5m . This uptake process appears to be very similar to that described in rat brain, spinal cord and dorsal root ganglia.  相似文献   

7.
The characteristics of amino acid uptake by frog spinal cord slices was studied by in vitro incubations in appropriate media. The uptake mechanisms exhibited saturation; kinetic analysis demonstrated 2 distinct systems for the influx of the possible neurotransmitters: GABA, glycine, L-glutamic acid and L-aspartic acid. One system showed a comparatively high substrate affinity (Km values, 10-26 μM) while the other system had a lower affinity (Km, 0.4-1.6 mM).-Leucine, an amino acid presumably not a transmitter, was accumulated only by a low affinity mechanism (Km 1.6 mM). The process responsible for high affinity uptake had many of the properties of an active transport mechanism. These included temperature sensitivity, energy dependence, requirement for Na+ ions and inhibition by ouabain. GABA and glycine uptake was inhibited only by closely related amino acids or structural analogues. The influx of L-glutamic acid was competitively inhibited by the presence of L-aspartic acid in the medium; the converse was also demonstrated. Thus, the high affinity uptake system for possible transmitter amino acids in the frog spinal cord closely resembles that described for mammalian CNS tissue. These results are compatible with the assumption that GABA, glycine, L-glutamic acid and L-aspartic acid are neurotransmitters in the amphibian spinal cord.  相似文献   

8.
Abstract: The oxidation of 4-aminobutyric acid (GABA) by nonsynaptosomal mitochondria isolated from rat forebrain and the inhibition of this metabolism by the branched-chain fatty acids 2-methyl-2-ethyl caproate (MEC) and 2, 2-dimethyl valerate (DMV) were studied. The rate of GABA oxidation, as measured by O2 uptake, was determined in medium containing either 5 or 100 mM-[K+]. The apparent Km for GABA was 1.16 ± 0.19 mM and the Vmax in state 3 was 23.8 ± 5.5 ng-atoms O2. min?1. mg protein?1 in 5 mM-[K+]. In a medium with 100 mM-[K+] the apparent Km was 1.11 ± 0.17 mM and Vmax was 47.4 ± 5.7 ng-atoms O2. min?1. mg protein?1. The Km for MEC was determined to be 0.58 ± 0.24 or 0.32 ± 0.08 mM, in 5 or 100 mM-[K+], respectively. For DMV, the Ki was 0.28 ± 0.05 or 0.34 ± 0.06 mM, in 5 or 100 mM-[K+] medium, respectively. The O2 uptake of the mitochondria in the presence of GABA was coupled to the formation of glutamate and aspartate; the ratio of oxygen uptake to the rate of amino acid formation was close to the theoretical value of 3. Neither the [K2] nor any of the above inhibitors had any effect on this ratio. The metabolism of exogenous succinic semialdehyde (SSA) by these same mitochondria was also examined. The Vmax for utilization of oxygen in the presence of SSA was much greater than that found with exogenously added GABA, indicating that the capacity for GABA oxidation by these mitochondria is not limited by SSA dehydrogenase. In addition, the branched-chain fatty acids did not inhibit the metabolism of exogenously added SSA. Thus, the inhibitors examined apparently act by competitively inhibiting the GABA transaminase system of the mitochondria.  相似文献   

9.
Abstract— The effects of several inhibitors, including vinblastine and colchicine, on the accumulation of a number of putative transmitters by a rat brain synaptosomal preparation and their subsequent release by excess K+ was examined. In addition, the effect of the alkaloids on the ATPase activity of the actomyosin-like protein, neurostenin, isolated from the synaptosomal preparation, was studied. The uptakes of radioactive glutamate, GABA, dopamine and norepinephrine were energy-dependent, as evidenced by their susceptibility to 0.01 mM carbonyl cyanide m-chlorophenylhydrazone (Cl-CCP), 01 mM ouabain and temperature. The active accumulations of GABA, dopamine and norepinephrine were also greatly inhibited by 1 mM6-hydroxydopamine (6-OHDA), 01 mM mersalyl, 0.05–0.25mM vinblastine and 0.1–1.0 mM colchicine. Vinblastine was approximately 10-fold more potent (K1, ?0.1 mM) than colchicine as an inhibitor. The release of actively accumulated dopamine or norepinephrine by excess K+ (increasing the [K+] from 5 to 30 mM) was inhibited somewhat when vinblastine was present during the entire incubation period. If the synaptosomes were preloaded with the radioactive compounds prior to addition of vinblastine, there was no discernible effect on the relative amount of material released by excess K+. However, the addition of inhibitor under the latter conditions caused a leakage of radioactivity into the medium even without excess K+ being present. Glutamate accumulation was somewhat different from that of GABA, dopamine or norepinephrine. Although it required energy for uptake, 6-OHDA, mersalyl, vinblastine or colchicine were not inhibitory. Studies of the oxidative metabolism of glutamate and GABA by this synaptosomal preparation indicated that the mechanisms of inhibition by vinblastine was not attributable to a metabolic effect. Both vinblastine and colchicine inhibited the Mg2+-stimulated, but not the Ca2+-activated ATPase of neurostenin. This effect was probably attributable to an interaction of the vinblastine with the neurin moiety of this actomyosin-like protein. We suggest that the inhibitory phenomena exhibited by vinblastine and colchicine in this synaptosomal preparation arose from the effect of these alkaloids on the neurin associated with the synaptic membrane.  相似文献   

10.
(1) The inhibitor of γ-aminobutyrate transaminase (GABA-T), amino-oxyacetic acid (AOAA), drastically reduced the activity of GABA-T to 30 per cent of the control value, with a corresponding increase of brain GABA, but had no effect on the activity of glutamate decarboxylase (GAD). (2) The monoamine oxidase (MAO) inhibitors phenelzine, phenylpropylhydrazine and phenylvalerylhydrazine, lowered GABA-T activity to 58, 49 and 48 per cent, respectively; this was associated with a marked elevation of brain GABA. (3) The action of phenelzine and phenylpropylhydrazine in vivo and in vitro could be abolished by pre-treatment of the tissue with the structurally related MAO inhibitors phenylisopropylhydrazine and trans-2-phenylcyclopropylamine. These had no action on the GABA system in vivo, either on the GABA content or on the GABA-T activity. These latter drugs, however, were unable to influence the effects of AOAA either on GABA or on GABA-T. (4) The possible mechanism of action on GABA and the enzyme activities of the GABA system is discussed.  相似文献   

11.
Abstract— The degradation of taurine and GABA in mammalian brain was studied in vivo and in vitro. Small amounts of [35S]isethionate (10–20 pmol/g brain wet weight) and [35S]sulphate (about 2 pmol/g) were detected in mouse brain after intramuscular injection of [35S]taurine. Taurine also produced isethionate in rat brain homogenates (about 20 nmol/h/g protein) and subcellular fractions (about 40 nmol/h/g protein in synaptosomes and about 300 nmol/h/g in mitochondria), but the reaction was not stimulated either by external electrical pulses or by the addition of various cofactors (NAD and NADP in both oxidized and reduced forms, riboflavin, glutathione. pyridoxal-5'-phosphate, ATP) to the incubation medium. [14C]GABA was readily metabolized to [14C]succinate both in vivo and in vitro. Isethionate formation activity was concentrated in the mitochondrial fraction, as was also GABA-T activity. Partially purified GABA-T from calf brain also slightly catalysed the formation of [35S]isethionate (about 1.3 μmol/min/g protein) from [35S]taurine. It appears that the slight formation of isethionate from taurine is coupled to GABA-T activity. The formation of isethionate from taurine is so small, that it apparently has no role in the control of the brain taurine pool.  相似文献   

12.
Abstract—The effect of pentylenetetrazol (PTZ) on acetylcholinesterase (E.C.3.1.1.7) was studied in vitro. The kinetics of the reaction were studied on AChE in crude homogenates of rat brain and in purified preparations from Electrophorus electricus. The Km for rat brain AChE was 1·22 × 10-4m, with a Vmax of 1·37 μmol/g/min whereas the K4 for competitive inhibition of the enzyme by PTZ was 4·7 × 10-3m. The commercially purified enzyme exhibited a Km of 1·73 × 10-4m and a Ki of 1·00 × 10-3m.  相似文献   

13.
Abstract— The incubation of brain stem slices from adult rats in a K+-enriched medium containing a 5-HT uptake inhibitor (fluoxetine) significantly increased their capacity to synthesize 5-HT from tryptophan. The K+-induced stimulation of 5-HT synthesis was at least partly dependent on the depletion of the indoleamine in tissues since: (1) a good correlation was found between the respective changes in 5-HT release and synthesis evoked by high K+ concentrations in the presence of various 5-HT uptake inhibitors; (2) the modifications in endogenous 5-HT levels produced by in vim treatments with drugs (reserpine, pargyline) or by incubating slices with 5-HT altered the stimulating effect of high K+ concentrations and fluoxetine on 5-HT synthesis; (3) the replacement of Ca2+ by Co2+ (4 mM) or EGTA (0.1 mM) in the incubating medium completely prevented the increased 5-HT release and synthesis evoked by high K+ concentrations and fluoxetine. The extraction of tryptophan hydroxylase from incubated tissues revealed that the increased 5-HT synthesis occurring in K+-enriched medium was associated with an activation of this enzyme. Kinetic analyses indicated that this activation resulted from an increase in the Vmax of tryptophan hydroxylase, its apparent affinities for both tryptophan and 6-MPH4 being not significantly affected. In contrast to the tryptophan hydroxylase from tissues incubated in normal physiological medium, the activated enzyme from tissues depolarized by K+ was hardly stimulated by Ca2+-mediated phosphorylating conditions. This led to the proposition of a hypothetical model by which the Ca2+ influx produced by the neuronal depolarization would trigger the activity of a Ca2+-dependent protein kinase capable of activating tryptophan hydroxylase. Although this sequence is still largely speculative it must be emphasized that, as expected from such a model, the regional differences in the K+-evoked activation of tryptophan hydroxylase in slices (cerebral cortex > brain stem > spinal cord) were parallel to those of the Ca2+-dependent protein phosphorylation (r= 0.92) and those of the activating effect of phosphorylating conditions on soluble tryptophan hydroxylase (r= 0.96).  相似文献   

14.
Abstract—
  • 1 L-Alanine: α-oxoglutarate aminotransferase was partly purified from rat brain and liver. The enzyme from the brain has about 10 times less activity than that from the liver.
  • 2 Both enzymes have identical apparent Km values for L-alanine, L-glutamate, α-oxoglutarate and pyruvate. Moreover they are competitively inhibited by L-leucine. α-oxoisocaproate and α-oxotsovalerate. Obtained K, values are very similar and do not depend on the course of reaction.
  • 3 α-Oxoisocaproate inhibits the activity of crystalline L-aspartate: α-oxoglutarate aminotransferase; Kj is about 4–7 mM.
  • 4 The pyridoxamine form of L-alanine: α-oxoglutarate aminotransferase seems to be more sensitive to the inhibitory effect of the compounds investigated.
  • 5 The effect of branched-chain amino acids and their α-oxoanalogues on the metabolism of amino groups in maple syrup urine disease is discussed.
  相似文献   

15.
Abstract— γ-Vinyl GABA (4-amino-hex-5-enoic acid, RMI 71754) is a catalytic inhibitor of GABA-T in vitro. When given by a peripheral route to mice, it crosses the blood-brain barrier and induces a long-lasting, dose-dependent, irreversible inhibition of brain GABA transaminase (GABA-T). Glutamate decarboxylase (GAD) is only slightly affected even at the highest doses used. γ -Vinyl GABA has little or no effect on brain succinate semialdehyde dehydrogenase, aspartate transaminase and alanine transaminase activities. GABA-T inhibition is accompanied by a sustained dose-dependent increase of brain GABA concentration. From the rate of accumulation of GABA it was estimated that GABA turnover in brain was at least 6.5 μmol/g/h. Based on recovery of enzyme activity the half-life of GABA-T was found to be 3.4 days, that of GAD was estimated to be about 2.4 days. γ -Vinyl GABA should be valuable for manipulations of brain GABA metabolism.  相似文献   

16.
Homocarnosine–carnosine synthetase and carnosinase were assayed in homogenates, 100,000 g supernatants, and ammonium sulfate fractions of the supernatants from nine regions of the central nervous system (CNS), as well as subcellular fractions of whole brains. The enzymes were detected in all CNS regions tested, with olfactory bulbs having the highest activities of both enzymes. In the subcellular fractions, the synthetase was found mainly in the cell-sap; carnosinase was detected in all fractions, the highest activity being in the mitochondria. The synthetases from olfactory bulbs, cerebellum and spinal cord have similar Km's for β-alanine and GABA.  相似文献   

17.
—The binding of [14C]GABA to nerve-ending membranes isolated from rat cerebral cortex follows a hyperbolic curve saturating at 0·4pmol/μg protein. This binding is about 60% inhibited by chloropromazine, and about 40%, inhibited by bicuculline. A hydrophobic protein fraction binding [14C]GABA was separated from the total. lipid extract of nerve-ending membranes. The binding follows a hyperbolic curve that saturates at 10·5 pmol of [14C]GABA/μg of protein, with an apparent Kd= 30 μm . The binding is competitively inhibited by bicuculline with a Ki= 273 μm . These results are compared with those previously obtained on a GABA binding protein from crustacean muscle.  相似文献   

18.
The transport of tryptophan across the blood-brain barrier is used as a specific example of a general approach by which rates of amino acid influx into brain may be predicted from existing concentrations of amino acids in plasma. The kinetics of inhibition of [14C]tryptophan transport by four natural neutral amino acids (phenylalanine, leucine, methionine, and valine) and one synthetic amino acid (α-methyl tyrosine) is studied with a tissue-sampling, single injection technique in the barbiturate-anesthetized rat. The equality of the K1 (determined from cross-inhibition studies) and the Km (determined from auto-inhibition data) for neutral amino acid transport indicate that these amino acids compete for a single transport site in accordance with the kinetics of competitive inhibition. Based on equations derived for competitive inhibition, apparent Km values are computed for the essential neutral amino acids from known data on amino acid transport Km and plasma concentrations. The apparent Km values make possible predictions of the in vivo rates of amino acid influx into brain based on given plasma amino acid concentrations. Finally, a method is presented for determining transport constants from saturation data obtained with single injection techniques.  相似文献   

19.
Abstract— The uptake of l -aspartate, l -glutamate and glycine each appeared to be mediated by two kinetically distinct systems with apparent Km's of the order of 10 ('high affinity') and 100 μM ('low affinity') in slices of cat spinal cord, whereas the uptake of GABA appeared to be mediated by a single system of high affinity. The high affinity uptake of these amino acids in slices of spinal grey matter was approximately 5 times faster than that in slices of spinal white matter. The high affinity uptake systems in the cord slices survived homogenisation of the tissue under conditions known to preserve nerve terminals. Subcellular fractionation studies indicated that osmotically-sensitive particles of equilibrium density equivalent to that of 1.0 m -sucrose were at least in part responsible for the uptake of these amino acids. Inhibition studies indicated that three structurally specific systems of high affinity transported these amino acids:
  • 1 specific for glycine—not inhibited by GABA or any of the other depressant amino acids found in cat spinal cord;
  • 2 specific for GABA—not inhibited by glycine, taurine, l -aspartate or l -glutamate and (3) specific for l -aspartate and l -glutamate—not inhibited by glycine or GABA but strongly inhibited by various acidic amino acids such as l -cysteate and l -cysteine sulphinate.
The high affinity uptake of these amino acids was not inhibited by any of the known antagonists of the postsynaptic actions of these amino acids—strychnine (glycine), bicuculline and benzyl penicillin (GABA), methioninesulphoximine and l -glutamate diethyl ester (l -aspartate and l -glutamate). p-Chloromercuriphenylsulphonate strongly inhibited the high affinity uptake of glycine and GABA but was much less effective as an inhibitor of l -aspartate/l -glutamate high affinity uptake. This is in good agreement with microelectrophoretic studies in which this mercurial was found to potentiate depression of neuronal firing induced by glycine and GABA much more readily than excitation induced by l -aspartate or l -glutamate. These findings suggest the importance of high affinity transport processes in the removal of amino acids from the synaptic environment.  相似文献   

20.
—The inhibition by catechols and biopterin of tyrosine hydroxylase from guineapig caudate nuclei has been examined. Inhibitory constants of 10–20 μm were obtained for dopamine and noradrena-line and 150–250 μm for l -DOPA and dihydroxyphenylacetic acid. When examined under similar conditions homovanillic acid was found not to be inhibitory. Using an acetone dried powder as the source of tyrosine hydroxylase no change in Km or Vmax was observed when cyclic AMP or Ca2+ were added to the medium. Enzyme mechanisms and a possible explanation of the mechanisms controlling catechol synthesis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号