首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Estrogen has an important role to play in energy homeostasis in both men and mice. Lack of estrogen results in the development of a metabolic syndrome in humans and rodents, including excess adiposity, hepatic steatosis (in male but not female aromatase knockout (ArKO) mice) and insulin resistance. Estrogen replacement results in a prompt reversal of the energy imbalance symptoms associated with estrogen deficiency. A corollary to the perturbed energy balance observed in the ArKO mouse is the death by apoptosis of dopaminergic neurons in the hypothalamic arcuate nucleus of male ArKO mice, an area of the brain pivotal to the regulation of energy uptake, storage, and mobilisation. An extension of our work exploring the relationship between estrogen and adiposity has been to examine the role played by androgens in energy balance. We have demonstrated that an increased androgen to estrogen ratio can promote visceral fat accumulation in the rodent by inhibiting AMPK activation and stimulating lipogenesis. Therefore, understanding the regulation of energy homeostasis is becoming an increasingly fascinating challenge, as the number of contributors, their communications, and the complexity of their interactions, involved in the preservation of this equilibrium continues to increase. Models of aromatase deficiency, both naturally occurring and engineered, will continue to provide valuable insights into energy homeostasis.  相似文献   

2.
Human models of aromatase deficiency   总被引:1,自引:0,他引:1  
Estrogens exert a wide range of biological effects in both sexes also on non-reproductive systems and organs. Human congenital estrogen deficiency, due to an inactivating mutation of the aromatase gene, leads to the lack of the estrogen synthesis, with gonadotropins and circulating testosterone ranging from normal to elevated. The aromatese-deficient females show hyperandrogenism and virilization at birth with ambiguous genitalia. During childhood there are a dysfunction in the LHRH-LH/FSH axis and a progressive delay in bone age. At puberty they show primary amenorrhea, no breast development, worsening of the virilization and the absence of growth spurt. The clinical phenotype in the male affected subjects comprises tall stature, persistent linear growth and delayed bone age, osteopenia/osteoporosis, eunuchoid body proportion, different degrees of glucose-insulin and of fertility impairment. These phenotypes suggest the physiological role of estrogens on the skeleton, on pituitary function, on the reproductive system, on glucose metabolism, being the precise mechanism on each of these functions not yet known in detail. The estradiol replacement treatment leads to a complete epiphyseal closure and to the skeletal maturation. Moreover, the increasing knowledge on the role of estrogen in several metabolic pathways could be important for a better management of several metabolic diseases.  相似文献   

3.
Sex- and age-related response to aromatase deficiency in bone   总被引:14,自引:0,他引:14  
Deficiency of sex steroids causes osteoporosis, but the relationship between estrogen and androgen is not clear because androgen is converted into estrogen by aromatase. In this study, we characterized bone metabolism in the aromatase-deficient (ArKO) mouse. At 9 weeks old, a marked loss of cancellous bone due to increased bone resorption was observed not only in female ArKO mice but also in males. The degree of bone loss in ArKO males was similar to that in females, and treatment with 17beta-estradiol completely restored the bone mass in both sexes. At 32 weeks old, female ArKO mice showed severe loss of cancellous and cortical bone. Male ArKO mice of this age also showed reduced bone mass, but the degree of bone loss in females was more marked than that in males. Here, we report sex- and age-related responses to aromatase deficiency in bone.  相似文献   

4.
In the brain, the conversion from androgen into estrogen is an important process for the differentiation of the brain function in male rodents. The aromatase is expressed in some nucleus of the brain. To assess the functional significance of the aromatase gene in development and activation of sex-specific behavior, we analyzed behavioral phenotypes of the aromatase knockout (ArKO) male mice. ArKO males obviously decreased their fertility and showed deficits in male sexual behavior including mount, intromission and ejaculation. Noncontact penile erection was not significantly affected by defect of the aromatase gene. A reduction of aggressive behavior against male intruders was also observed in ArKO males, while they tend to exhibit aggression toward estrous females during male copulatory tests. Moreover, the infanticide toward the pups was observed in the ArKO males, whereas characteristic parental behavior, but not infanticide was observed in wild-type males. These results indicate that aromatase gene expression is a critical step not only for motivational and consummatory aspects of male sexual behavior, but also for aggressive and parental behaviors in male mice.  相似文献   

5.
Estradiol (E2) mediates many of the activational effects of testosterone (T) on masculine reproductive and aggressive behaviors. Using Japanese quail (Coturnix coturnix japonica) as an animal model, together with a newly devised procedure for quantifying aggressiveness, we recently showed that aggression is E2-dependent and that individual differences in behavioral intensity are correlated with aromatase in the hypothalamus/preoptic area (HPOA). In this study we characterized estrogen receptors (ER) in quail brain and tested the hypothesis that aromatase in brain regulates T-induced behavioral responsiveness by regulating the quantity of E2 available for receptor binding. Based on standard binding assays and Sephadex LH-20 chromatography, quail brain ER was shown to be estrogen-specific, of high affinity (Kd = 0.88 nM), and of limited capacity with highest concentrations in limbic brain areas (Bmax 23-27 fmoles/gm HPOA). In addition, this ER adhered to DNA-cellulose under activating conditions. The quantitative relationship between aromatization, ER, and aggressiveness was tested in reproductively inactive (nonaggressive) males by treatment with T +/- the aromatase inhibitor 4-hydroxyandrostenedione (OHA). After 5 days, T markedly stimulated aggressiveness, and elevated aromatase and nuclear (occupied) ER in HPOA. Simultaneous treatment with OHA blocked effects on aggressiveness and aromatase, and lowered nuclear ER, but increased cytosolic (empty) ER. Total ER (nuclear plus cytosolic) was higher after T treatment whether or not OHA was administered, suggesting that androgen per se induces ER in quail HPOA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Varki A 《Biochimie》2001,83(7):615-622
Classic studies suggested that the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) is an oncofetal antigen in humans, being immunogenic in adult humans and yet apparently expressed in human fetuses and tumors. We and others have recently found that the human deficiency of Neu5Gc can be explained by an inactivating mutation in the gene encoding CMP-N-acetylneuraminic acid hydroxylase. Thus, Neu5Gc is not an oncofetal antigen in the classical sense, and other explanations must be found for the observed expression pattern. This review provides an update on this matter, and considers a variety of other old and new questions that arise from it.  相似文献   

7.
8.
Aromatase inhibitors are rapidly becoming the first choice for hormonal treatment of steroid receptor positive breast cancer in postmenopausal women. An understanding of the resistance mechanisms to these agents is, therefore, important for the appropriate delivery of treatment to responsive patients and the rational development of new agents targeted at the resistance pathways. De novo resistance appears to be a quantitative rather than qualitative phenomenon with virtually all oestrogen receptor positive tumours showing an anti-proliferative response to the aromatase inhibitor anastrozole. While the expression of type 1 growth factor receptors reduces response to tamoxifen this appears to have little detrimental effect on response to aromatase inhibitors. Studies of acquired resistance in vitro have indicated that acquisition of hypersensitivity to oestrogenic stimulation is a key mechanism that is dependent on enhanced cross-talk of growth factor and oestrogen signaling pathways. Collection of resistant biopsy tissues from patients is important to determine if this mechanism is clinically relevant.  相似文献   

9.
Estrogen plays a fundamental role in the maintenance of skeletal homeostasis. Although estrogen is established to have direct effects on bone cells, animal studies have identified additional regulatory effects of estrogen centered at the level of the adaptive immune response. Furthermore, a potential role for reactive oxygen species has now been identified in both humans and animals. One of the major challenges has been to integrate a multitude of redundant pathways and cytokines, that all appear capable of playing a relevant role, into a global model of postmenopausal osteoporosis. This review presents our current understanding of the process of estrogen deficiency mediated bone destruction and explores some of the most recent findings and hypotheses to explain estrogen action in bone.  相似文献   

10.
11.
F L Bellino  J O Lobo 《Steroids》1987,50(1-3):73-87
Estrogen synthetase (aromatase) is present in large amounts in human term placenta. However, the localization of aromatase within the cellular structure of the placental villus is obscure. By immunocytochemical techniques using antibodies that separately recognize each component of the aromatase cytochrome P-450 enzyme system, the fraction of term placental trophoblast cells in primary culture expressing each aromatase component antigen increased from 20% in fresh mononucleated cells to about 65% for multinucleated giant cells after 72 h. In contrast, about 80% of human choriocarcinoma cells in continuous culture (JAr line) expressed each aromatase component antigen. The fraction of trophoblast cells in primary culture containing human chorionic gonadotropin increased from about 14% in fresh mononucleated cells to about 45% after 72 h and was about 30% in the choriocarcinoma cells. Fibroblast cells in culture, derived from trypsin-treated placental villi, contained aromatase activity, albeit much lower than term placental trophoblast cells. Aromatase specific activity in these placental fibroblasts did not change following growth with dibutyryl cAMP plus theophylline for 72 h.  相似文献   

12.
13.
Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.  相似文献   

14.
Clinical trials have demonstrated the importance of aromatase inhibitor (AI) therapy in the effective treatment of hormone-dependent breast cancers. In contrast to tamoxifen, an antagonist of the estrogen receptor (ER), AIs have shown to be better tolerated along with decreased recurrence rates of the disease. Currently, three third-generation AIs are being used: exemestane, letrozole, and anastrozole. Our laboratory is attempting to understand several aspects of AI functionality. In this paper, we first review recent findings from our structure–function studies of aromatase as well as the molecular characterization of the interaction between AIs and aromatase. Based on these studies, we propose new evidence for the interaction of letrozole and exemestane with aromatase. In addition, we will discuss recent results generated from our AI-resistant cell lines. Our laboratory has generated MCF-7aro cells that are resistant to letrozole, anastrozole, exemestane, and tamoxifen. Basic functional characterization of aromatase and ER in these resistant cell lines has been done and microarray analysis has been employed in order to better understand the mechanism responsible for AI resistance on a genome-wide scale. The results generated so far suggest the presence of at least four types of resistant cell lines. Overall, the information presented in this paper supplements our understanding of AI function, and such information can be valuable for the development of treatment strategies against AI resistant breast cancers.  相似文献   

15.
Recent studies indicate an accelerated progression of nonalcoholic steatohepatitis (NASH) in postmenopausal women. Hypercholesterolemia, an important risk factor for NASH progression, is often observed after menopause. This study examined the effects of estrogen on NASH in ovariectomized (OVX) mice fed a high-fat and high-cholesterol (HFHC) diet. To investigate the effects of estrogen deficiency, OVX mice and sham-operated (SO) mice were fed normal chow or HFHC diet for 6 wk. Next, to investigate the effects of exogenous estrogen replenishment, OVX mice fed with HFHC diet were treated with implanted hormone release pellets (containing 17β-estradiol or placebo vehicle) for 6 wk. OVX mice on the HFHC diet showed enhanced liver injury with increased liver macrophage infiltration and elevated serum cholesterol levels compared with SO-HFHC mice. Hepatocyte monocyte chemoattractant protein-1 (MCP1) protein expression in OVX-HFHC mice was also enhanced compared with SO-HFHC mice. In addition, hepatic inflammatory gene expressions, including monocytes chemokine (C-C motif) receptor 2 (CCR2), were significantly elevated in OVX-HFHC mice. Estrogen treatment improved serum cholesterol levels, liver injury, macrophage infiltration, and inflammatory gene expressions in OVX-HFHC mice. Moreover, the elevated expression of liver CCR2 and MCP1 were decreased by estrogen treatment in OVX-HFHC mice, whereas low-density lipoprotein dose dependently enhanced CCR2 expression in THP1 monocytes. Our study demonstrated that estrogen deficiency accelerated NASH progression in OVX mice fed HFHC diet and that this effect was improved by estrogen therapy. Hypercholesterolemia in postmenopausal women would be a potential risk factor for NASH progression.  相似文献   

16.
17.
The aim of the present study was to determine whether the fetal lamb brain has the capacity to aromatize androgens to estrogens during the critical period for sexual differentiation. We also determined whether administration of the aromatase-inhibitor 1,4,6-androstatriene-3,17-dione (ATD) could cross the placenta and inhibit aromatase activity (AA) in fetal brain. Eight pregnant ewes were utilized. On Day 50 of pregnancy, four ewes were given ATD-filled Silastic implants, and the other four ewes received sham surgeries. The fetuses were surgically delivered 2 wk later (Day 64 of gestation). High levels of AA (0.8-1.4 pmol/h/mg protein) were present in the hypothalamus and amygdala. Lower levels (0.02-0.1 pmol/h/mg protein) were measured in brain stem regions, cortex, and olfactory bulbs. The Michaelis-Menten dissociation constant (K(m)) for aromatase in the fetal sheep brain was 3-4 nM. No significant sex differences in AA were observed in brain. Treatment with ATD produced significant inhibition of AA in most brain areas but did not significantly alter serum profiles of the major sex steroids in maternal and fetal serum. Concentrations of testosterone in serum from the umbilical artery and vein were significantly greater in male than in female fetuses. No other sex differences in serum steroids were observed. These data demonstrate that high levels of AA are found in the fetal sheep hypothalamus and amygdala during the critical period for sexual differentiation. They also demonstrate that AA can be inhibited in the fetal lamb brain by treating the mother with ATD, without harming fetal development.  相似文献   

18.
During amniote evolution, an early divergence occurred about 300 million years ago between the reptilian lines leading to the appearance of birds (anapsids) and mammals (synapsids). The different functional requirements of these vertebrate groups have involved divergent evolution of their brains. Even superficial examination reveals major anatomical differences between mammalian and avian brains, such as extensive development of the optic lobes and cerebellum in birds and a highly developed cortex in mammals. It has been nearly impossible to identify avian homologs of some mammalian brain regions by standard morphological criteria. This has long frustrated efforts at clarifying hypotheses regarding the anatomical location, field size, and regulation of brain functions shared between these two classes, despite the certainty that the principles of neurobiology apply equally at the cellular level in both groups. In an effort to remove this barrier, we have sought markers of common function that despite apparent anatomical dissimilarity, can allow recognition of homologous brain structures. We illustrate here how comparative analysis of the distribution of the steroid-metabolizing enzyme estrogen synthetase (aromatase) may help to understand the differences and similarities in the limbic system and hypothalamus of birds and mammals.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号