首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1988,107(6):2631-2645
The formation of protrusions at the leading edge of the cell is an essential step in fibroblast locomotion. Using fluorescent analogue cytochemistry, ratio imaging, multiple parameter analysis, and fluorescence photobleaching recovery, the distribution of actin and myosin was examined in the same protrusions at the leading edge of live, locomoting cells during wound-healing in vitro. We have previously defined two temporal stages of the formation of protrusions: (a) initial protrusion and (b) established protrusion (Fisher et al., 1988). Actin was slightly concentrated in initial protrusions, while myosin was either totally absent or present at extremely low levels at the base of the initial protrusions. In contrast, established protrusions contained diffuse actin and actin microspikes, as well as myosin in both diffuse and structured forms. Actin and myosin were also localized along concave transverse fibers near the base of initial and established protrusions. The dynamics of myosin penetration into a relatively stable, established protrusion was demonstrated by recording sequential images over time. Myosin was shown to be absent from an initial protrusion, but diffuse and punctate myosin was detected in the same protrusion within 1-2 min. Fluorescence photobleaching recovery indicated that myosin was 100% immobile in the region behind the leading edge containing transverse fibers, in comparison to the 21% immobile fraction detected in the perinuclear region. Possible explanations of the delayed penetration of myosin into established protrusions and the implications on the mechanism of protrusion are discussed.  相似文献   

2.
The formation of lamellipodia in migrating cells involves dynamic processes that occur in a cyclic manner as the leading edge of a cell slowly advances. We used video-enhanced contrast microscopy (VEC) to monitor the motile behavior of cells to classify protrusions into the temporal stages of initial and established protrusions (Fisher et al.: Cell Motility and the Cytoskeleton 11:235-247, 1988), and to monitor the fixation of cells. Multiple parameter fluorescence imaging methods (DeBiasio et al.: Journal of Cell Biology 105:1613-1622, 1987; Waggoner et al.: Methods in Cell Biology, Vol. 30, Part B, pp. 449-478, 1989) were then used to determine and to map accurately the distributions of actin, myosin and microtubules in specific types of protrusions. Initial protrusions exhibited no substructure as evidenced by VEC and actin was diffusely arranged, while myosin and microtubules were absent. Newly established protrusions contained diffuse actin as well as actin in microspikes. There was a delay in the appearance of myosin into established protrusions relative to the presence of actin. Microtubules were found in established protrusions after myosin was detected, and they were oriented parallel to the direction of migration. Actin and myosin were also localized in fibers transverse to the direction of migration at the base of initial and established protrusions. Image analysis was used to quantify the orientation of actin fibers relative to the leading edge of motile cells. The combined use of VEC, multiple parameter immunofluorescence, and image analysis should have a major impact on defining complex relationships within cells.  相似文献   

3.
Myosin II light chains (MLC20) are phosphorylated by a Ca2+/calmodulin-activated kinase and dephosphorylated by a phosphatase that has been purified as a trimer containing the delta isoform of type 1 catalytic subunit (PP1C delta), a myosin-binding 130-kDa subunit (M130) and a 20-kDa subunit. The distribution of M130 and PP1C as well as myosin II was examined in smooth muscle cells and fibroblasts by immunofluorescence microscopy and immunoblotting after differential extraction. Myosin and M130 colocalized with actin stress fibers in permeabilized cells. However, in nonpermeabilized cells the staining for myosin and M130 was different, with myosin mostly at the periphery of the cell and the M130 appearing diffusely throughout the cytoplasm. Accordingly, most M130 was recovered in a soluble fraction during permeabilization of cells, but the conditions used affected the solubility of both M130 and myosin. The PP1C alpha isoform colocalized with M130 and also was in the nucleus, whereas the PP1C delta isoform was localized prominently in the nucleus and in focal adhesions. In migrating cells, M130 concentrated in the tailing edge and was depleted from the leading half of the cell, where double staining showed myosin II was present. Because the tailing edge of migrating cells is known to contain phosphorylated myosin, inhibition of myosin LC20 phosphatase, probably by phosphorylation of the M130 subunit, may be required for cell migration.  相似文献   

4.
Phosphorylation of the regulatory light chain by myosin light chain kinase (MLCK) regulates the motor activity of smooth muscle and nonmuscle myosin II. We have designed reagents to detect this phosphorylation event in living cells. A new fluorescent protein biosensor of myosin II regulatory light chain phosphorylation (FRLC-Rmyosin II) is described here. The biosensor depends upon energy transfer from fluorescein-labeled regulatory light chains to rhodamine-labeled essential and/or heavy chains. The energy transfer ratio increases by up to 26% when the regulatory light chain is phosphorylated by MLCK. The majority of the change in energy transfer is from regulatory light chain phosphorylation by MLCK (versus phosphorylation by protein kinase C). Folding/unfolding, filament assembly, and actin binding do not have a large effect on the energy transfer ratio. FRLC-Rmyosin II has been microinjected into living cells, where it incorporates into stress fibers and transverse fibers. Treatment of fibroblasts containing FRLC-Rmyosin II with the kinase inhibitor staurosporine produced a lower ratio of rhodamine/fluorescein emission, which corresponds to a lower level of myosin II regulatory light chain phosphorylation. Locomoting fibroblasts containing FRLC-Rmyosin II showed a gradient of myosin II phosphorylation that was lowest near the leading edge and highest in the tail region of these cells, which correlates with previously observed gradients of free calcium and calmodulin activation. Maximal myosin II motor force in the tail may contribute to help cells maintain their polarized shape, retract the tail as the cell moves forward, and deliver disassembled subunits to the leading edge for incorporation into new fibers.  相似文献   

5.
Myosin is involved in postmitotic cell spreading   总被引:17,自引:4,他引:13       下载免费PDF全文
We have investigated a role for myosin in postmitotic Potoroo tridactylis kidney (PtK2) cell spreading by inhibitor studies, time- lapse video microscopy, and immunofluorescence. We have also determined the spatial organization and polarity of actin filaments in postmitotic spreading cells. We show that butanedione monoxime (BDM), a known inhibitor of muscle myosin II, inhibits nonmuscle myosin II and myosin V adenosine triphosphatases. BDM reversibly inhibits PtK2 postmitotic cell spreading. Listeria motility is not affected by this drug. Electron microscopy studies show that some actin filaments in spreading edges are part of actin bundles that are also found in long, thin, structures that are connected to spreading edges and substrate (retraction fibers), and that 90% of this actin is oriented with barbed ends in the direction of spreading. The remaining actin in spreading edges has a more random orientation and spatial arrangement. Myosin II is associated with actin polymer in spreading cell edges, but not retraction fibers. Myosin II is excluded from lamellipodia that protrude from the cell edge at the end of spreading. We suggest that spreading involves myosin, possibly myosin II.  相似文献   

6.
Amoeba proteus, the highly motile free-living unicellular organism, has been widely used as a model to study cell motility. However, molecular mechanisms underlying its unique locomotion and intracellular actin-based-only trafficking remain poorly understood. A search for myosin motors responsible for vesicular transport in these giant cells resulted in detection of 130-kDa protein interacting with several polyclonal antibodies against different tail regions of human and chicken myosin VI. This protein was binding to actin in the ATP-dependent manner, and immunoprecipitated with anti-myosin VI antibodies. In order to characterize its possible functions in vivo, its cellular distribution and colocalization with actin filaments and dynamin II during migration and pinocytosis were examined. In migrating amoebae, myosin VI immunoanalog localized to vesicular structures, particularly within the perinuclear and sub-plasma membrane areas, and colocalized with dynamin II immunoanalog and actin filaments. The colocalization was even more evident in pinocytotic cells as proteins concentrated within pinocytotic pseudopodia. Moreover, dynamin II and myosin VI immunoanalogs cosedimented with actin filaments, and were found on the same isolated vesicles. Blocking endogenous myosin VI immunoanalog with anti-myosin VI antibodies inhibited the rate of pseudopodia protrusion (about 19% decrease) and uroidal retraction (about 28% decrease) but did not affect cell morphology and the manner of cell migration. Treatment with anti-human dynamin II antibodies led to changes in directionality of amebae migration and affected the rate of only uroidal translocation (about 30% inhibition). These results indicate that myosin VI immunoanalog is expressed in protist Amoeba proteus and may be involved in vesicle translocation and cell locomotion.  相似文献   

7.
Nonmuscle myosin IIA and IIB distribute preferentially toward opposite ends of migrating endothelial cells. To understand the mechanism and function of this behavior, myosin II was examined in cells treated with the motor inhibitor, blebbistatin. Blebbistatin at > or = 30 microM inhibited anterior redistribution of myosin IIA, with 100 microM blebbistatin causing posterior accumulation. Posterior accumulation of myosin IIB was unaffected. Time-lapse cinemicrography showed myosin IIA entering lamellipodia shortly after their formation, but failing to move into lamellipodia in blebbistatin. Thus, myosin II requires motor activity to move forward onto F-actin in protrusions. However, this movement is inhibited by myosin filament assembly, because whole myosin was delayed relative to a tailless fragment. Inhibiting myosin's forward movement reduced coupling between protrusive activity and translocation of the cell body: In untreated cells, body movement followed advancing lamellipodia, whereas blebbistatin-treated cells extended protrusions without displacement of the body or with a longer delay before movement. Anterior cytoplasm of blebbistatin-treated cells contained disorganized bundles of parallel microfilaments, but anterior F-actin bundles in untreated cells were mostly oriented perpendicular to movement. Myosin II may ordinarily move anteriorly on actin filaments and pull crossed filaments into antiparallel bundles, with the resulting realignment pulling the cell body forward.  相似文献   

8.
In migrating fibroblasts, rearward movement of the nucleus orients the centrosome toward the leading edge. Nuclear movement results from coupling rearward-moving, dorsal actin cables to the nucleus by linear arrays of nesprin-2G and SUN2, termed transmembrane actin-associated nuclear (TAN) lines. A-type lamins anchor TAN lines, prompting us to test whether emerin, a nuclear membrane protein that interacts with lamins and TAN line proteins, contributes to nuclear movement. In fibroblasts depleted of emerin, nuclei moved nondirectionally or completely failed to move. Consistent with these nuclear movement defects, dorsal actin cable flow was nondirectional in cells lacking emerin. TAN lines formed normally in cells lacking emerin and were coordinated with the erratic nuclear movements, although in 20% of the cases, TAN lines slipped over immobile nuclei. Myosin II drives actin flow, and depletion of myosin IIB, but not myosin IIA, showed similar nondirectional nuclear movement and actin flow as in emerin-depleted cells. Myosin IIB specifically coimmunoprecipitated with emerin, and emerin depletion prevented myosin IIB localization near nuclei. These results show that emerin functions with myosin IIB to polarize actin flow and nuclear movement in fibroblasts, suggesting a novel function for the nuclear envelope in organizing directional actin flow and cytoplasmic polarity.  相似文献   

9.
Myosin II motor proteins play important roles in cell migration. Although myosin II filament assembly plays a key role in the stabilization of focal contacts at the leading edge of migrating cells, the mechanisms and signaling pathways regulating the localized assembly of lamellipodial myosin II filaments are poorly understood. We performed a proteomic analysis of myosin heavy chain (MHC) phosphorylation sites in MDA-MB 231 breast cancer cells to identify MHC phosphorylation sites that are activated during integrin engagement and lamellar extension on fibronectin. Fibronectin-activated MHC phosphorylation was identified on novel and previously recognized consensus sites for phosphorylation by protein kinase C and casein kinase II (CK-II). S1943, a CK-II consensus site, was highly phosphorylated in response to matrix engagement, and phosphoantibody staining revealed phosphorylation on myosin II assembled into leading-edge lamellae. Surprisingly, neither pharmacological reduction nor small inhibitory RNA reduction in CK-II activity reduced this stimulated S1943 phosphorylation. Our data demonstrate that S1943 phosphorylation is upregulated during lamellar protrusion, and that CK-II does not appear to be the kinase responsible for this matrix-induced phosphorylation event.  相似文献   

10.
The mechanism of cytokinesis has been difficult to define because of the short duration and the temporal-spatial dynamics involved in the formation, activation, force production, and disappearance of the cleavage furrow. We have investigated the structural and chemical dynamics of myosin II in living Swiss 3T3 cells from prometaphase through the separation and migration of daughter cells. The structural and chemical dynamics of myosin II have been defined using the semiautomated, multimode light microscope, together with a fluorescent analogue of myosin II and a fluorescent biosensor of myosin II regulatory light chain (RLC) phosphorylation at serine 19. The correlation of image data from live cells using different modes of light microscopy allowed interpretations not possible from single-mode investigations. Myosin II transported toward the equatorial plane from adjacent regions, forming three-dimensional fibers that spanned the volume of the equator during anaphase and telophase. A global phosphorylation of myosin II at serine 19 of the RLC was initiated at anaphase when cortical myosin II transport started. The phosphorylation of myosin II remained high near the equatorial plane through telophase and into cytokinesis, whereas the phosphorylation of myosin II at serine 19 of the RLC decreased at the poles. The timing and pattern of phosphorylation was the same as the shortening of myosin II-based fibers in the cleavage furrow. Myosin II-based fibers shortened and transported out of the cleavage furrow into the tails of the two daughter cells late in cytokinesis. The patterns of myosin II transport, phosphorylation, and shortening of fibers in the migrating daughter cells were similar to that previously defined for cells migrating in a wound in vitro. The temporal-spatial patterns and dynamics of myosin II transport, phosphorylation at serine 19 of the RLC, and the shortening and disappearance of myosin II-based fibers support the proposal that a combination of the cortical flow hypothesis and the solation-contraction coupling hypothesis explain key aspects of cytokinesis and polarized cell locomotion.  相似文献   

11.
Myosin is a functional protein associated with cellular movement, cell division, muscle contraction and other functions. Members of the myosin super-family are distinguished from the myosin heavy chains that play crucial roles in cellular processes. Although there are many studies of myosin heavy chains in this family, there are fewer on non-muscle myosin heavy chains than of muscle myosin heavy chains. Myosin is classified as type I (myosin I) or type II (myosin II). Myosin I, called unconventional myosin or mini-myosin, has one head, while myosin II, called conventional myosin, has two heads. We transfected myosin heavy polypeptide 9 (MYH9) into HeLa cells as a fusion protein with enhanced green fluorescent protein (EGFP) and analyzed the localization and distribution of MYH9 in parallel with those of actin and tubulin. The results indicate that MYH9 colocalizes with actin stress fibers. Since it has recently been shown by genetic analysis that autosomal dominant giant platelet syndromes are MYH9-related disorders, our development of transfected EGFP-MYH9 might be useful for predicting the associations between the function of actin polymerization, the MYH9 motor domain, and these disorders.  相似文献   

12.
Myosin V plays an important role in membrane trafficking events. Its implication in the transport of pigment granules in melanocytes and synaptic vesicles in neurons is now well established. However, less is known about its function(s) in other cell types. Finding a common function is complicated by the diversity of myosin V expression in different tissues and organisms and by its association with different subcellular compartments. Here we show that myosin V is present in a variety of cells. Within the same cell type under different physiological conditions, we observed two main cellular locations for myosin V that were dependent on the dynamics of the plasma membrane: in cells with highly dynamic membranes, myosin V was specifically concentrated at the leading edge in membrane ruffles, whereas in cells with less dynamic membranes, myosin V was enriched around the microtubule-organizing center. The presence of myosin V in the leading ruffling edge of the cell was induced by growth factor stimulation and was dependent on the presence of a functional motor domain. Moreover, myosin V localization at the microtubule-organizing center was dependent on the integrity of the microtubules. In polarized epithelial cells (WIF-B), where the microtubule-organizing region is close to the actin-rich apical surface, one single pool of myosin V, sensitive to the integrity of both microtubules and actin filaments, was observed.  相似文献   

13.
Myosin II plays important roles in many contractile-like cell functions, including cell migration, adhesion, and retraction. Myosin II is activated by regulatory light chain (RLC) phosphorylation whereas RLC dephosphorylation by myosin light chain phosphatase containing a myosin phosphatase targeting subunit (MYPT1) leads to myosin inactivation. HeLa cells contain MYPT1 in addition to a newly identified human variant 2 containing an internal deletion. RLC dephosphorylation, cell migration, and adhesion were inhibited when either or both MYPT1 isoforms were knocked down by RNA interference. RLC was highly phosphorylated (60%) when both isoforms were suppressed by siRNA treatment relative to control cells (10%) with serum-starvation and ROCK inhibition. Prominent stress fibers and focal adhesions were associated with the enhanced RLC phosphorylation. The reintroduction of MYPT1 or variant 2 in siRNA-treated cells decreased stress fibers and focal adhesions. MYPT1 knockdown also led to an increase of F-actin relative to G-actin in HeLa cells. The myosin inhibitor blebbistatin did not inhibit this effect, indicating MYPT1 likely affects actin assembly independent of RLC phosphorylation. Proper expression of MYPT1 or variant 2 is critical for RLC phosphorylation and actin assembly, thus maintaining normal cellular functions by simultaneously controlling cytoskeletal architecture and actomyosin activation.  相似文献   

14.
The Arp2/3 complex and filamin A (FLNa) branch actin filaments. To define the role of these actin-binding proteins in cellular actin architecture, we compared the morphology of FLNa-deficient human melanoma (M2) cells and three stable derivatives of these cells expressing normal FLNa concentrations. All the cell lines contain similar amounts of the Arp2/3 complex. Serum addition causes serum-starved M2 cells to extend flat protrusions transiently; thereafter, the protrusions turn into spherical blebs and the cells do not crawl. The short-lived lamellae of M2 cells contain a dense mat of long actin filaments in contrast to a more three-dimensional orthogonal network of shorter actin filaments in lamellae of identically treated FLNa-expressing cells capable of translational locomotion. FLNa-specific antibodies localize throughout the leading lamellae of these cells at junctions between orthogonally intersecting actin filaments. Arp2/3 complex-specific antibodies stain diffusely and label a few, although not the same, actin filament overlap sites as FLNa antibody. We conclude that FLNa is essential in cells that express it for stabilizing orthogonal actin networks suitable for locomotion. Contrary to some proposals, Arp2/3 complex-mediated branching of actin alone is insufficient for establishing an orthogonal actin organization or maintaining mechanical stability at the leading edge.  相似文献   

15.
Myosin VI is involved in membrane traffic and dynamics and is the only myosin known to move towards the minus end of actin filaments. Splice variants of myosin VI with a large insert in the tail domain were specifically expressed in polarized cells containing microvilli. In these polarized cells, endogenous myosin VI containing the large insert was concentrated at the apical domain co-localizing with clathrin- coated pits/vesicles. Using full-length myosin VI and deletion mutants tagged with green fluorescent protein (GFP) we have shown that myosin VI associates and co-localizes with clathrin-coated pits/vesicles by its C-terminal tail. Myosin VI, precipitated from whole cytosol, was present in a protein complex containing adaptor protein (AP)-2 and clathrin, and enriched in purified clathrin-coated vesicles. Over-expression of the tail domain of myosin VI containing the large insert in fibroblasts reduced transferrin uptake in transiently and stably transfected cells by >50%. Myosin VI is the first motor protein to be identified associated with clathrin-coated pits/vesicles and shown to modulate clathrin-mediated endocytosis.  相似文献   

16.
Cells employ protrusive leading edges to navigate and promote their migration in diverse physiological environments. Classical models of leading-edge protrusion rely on a treadmilling dendritic actin network that undergoes continuous assembly nucleated by the Arp2/3 complex, forming ruffling lamellipodia. Recent work demonstrated, however, that, in the absence of the Arp2/3 complex, fibroblast cells adopt a leading edge with filopodia-like protrusions (FLPs) and maintain an ability to move, albeit with altered responses to different environmental signals. We show that formin-family actin nucleators are required for the extension of FLPs but are insufficient to produce a continuous leading edge in fibroblasts lacking Arp2/3 complex. Myosin II is concentrated in arc-like regions of the leading edge in between FLPs, and its activity is required for coordinated advancement of these regions with formin-generated FLPs. We propose that actomyosin contraction acting against membrane tension advances the web of arcs between FLPs. Predictions of this model are verified experimentally. The dependence of myosin II in leading-edge advancement helps explain the previously reported defect in directional movement in the Arpc3-null fibroblasts. We provide further evidence that this defect is cell autonomous during chemotaxis.  相似文献   

17.
The balance of actin filament polymerization and depolymerization maintains a steady state network treadmill in neuronal growth cones essential for motility and guidance. Here we have investigated the connection between depolymerization and treadmilling dynamics. We show that polymerization-competent barbed ends are concentrated at the leading edge and depolymerization is distributed throughout the peripheral domain. We found a high-to-low G-actin gradient between peripheral and central domains. Inhibiting turnover with jasplakinolide collapsed this gradient and lowered leading edge barbed end density. Ultrastructural analysis showed dramatic reduction of leading edge actin filament density and filament accumulation in central regions. Live cell imaging revealed that the leading edge retracted even as retrograde actin flow rate decreased exponentially. Inhibition of myosin II activity before jasplakinolide treatment lowered baseline retrograde flow rates and prevented leading edge retraction. Myosin II activity preferentially affected filopodial bundle disassembly distinct from the global effects of jasplakinolide on network turnover. We propose that growth cone retraction following turnover inhibition resulted from the persistence of myosin II contractility even as leading edge assembly rates decreased. The buildup of actin filaments in central regions combined with monomer depletion and reduced polymerization from barbed ends suggests a mechanism for the observed exponential decay in actin retrograde flow. Our results show that growth cone motility is critically dependent on continuous disassembly of the peripheral actin network.  相似文献   

18.
Myosin Va, an actin-based motor protein that transports intracellular cargos, can bundle actin in vitro. Whether myosin Va regulates cellular actin dynamics or cell migration remains unclear. To address this, we compared Chinese Hamster Ovary (CHO) cells that stably express GFP fused to either full length mouse myosin Va (GFP-M5) or heavy meromyosin Va (GFP-M5Delta). GFP-M5 and GFP-M5Delta co-immunoprecipitate with CHO myosin Va and serve as overexpression of wild-type and dominant negative mutants of myosin Va. Compared to non-expressing control cells, GFP-M5-overexpressing cells have peripheral endocytic vesicles, spread slowly after plating, as well as produce robust interior actin stress fibers, myosin II bundles, and focal adhesions. However, these cells display normal cell migration and lamellipodial dynamics. In contrast, GFP-M5Delta-expressing cells have perinuclear endocytic vesicles, produce thin interior actin and myosin bundles and contain no interior focal adhesions. In addition, these cells spread rapidly, migrate slowly and display reduced lamellipodial dynamics. Similarly, neurite outgrowth is compromised in neurons cultured from transgenic Drosophila that express M5Delta-dsRed and in neurons cultured from Drosophila that produce a tailless version of endogenous myosin V. Together, these data suggest that myosin Va overexpression induces actin bundles in vivo whereas the tailless version fails to bundle actin and disrupts cell motility.  相似文献   

19.
In migrating fibroblasts actomyosin II bundles are graded polarity (GP) bundles, a distinct organization to stress fibers. GP bundles are important for powering cell migration, yet have an unknown mechanism of formation. Electron microscopy and the fate of photobleached marks show actin filaments undergoing retrograde flow in filopodia, and the lamellipodium are structurally and dynamically linked with stationary GP bundles within the lamella. An individual filopodium initially protrudes, but then becomes separated from the tip of the lamellipodium and seeds the formation of a new GP bundle within the lamella. In individual live cells expressing both GFP-myosin II and RFP-actin, myosin II puncta localize to the base of an individual filopodium an average 28 s before the filopodium seeds the formation of a new GP bundle. Associated myosin II is stationary with respect to the substratum in new GP bundles. Inhibition of myosin II motor activity in live cells blocks appearance of new GP bundles in the lamella, without inhibition of cell protrusion in the same timescale. We conclude retrograde F-actin flow and myosin II activity within the leading cell edge delivers F-actin to the lamella to seed the formation of new GP bundles.  相似文献   

20.
Plasma membrane association of Acanthamoeba myosin I   总被引:19,自引:15,他引:4       下载免费PDF全文
《The Journal of cell biology》1989,109(4):1519-1528
Myosin I accounted for approximately 2% of the protein of highly purified plasma membranes, which represents about a tenfold enrichment over its concentration in the total cell homogenate. This localization is consistent with immunofluorescence analysis of cells that shows myosin I at or near the plasma membrane as well as diffusely distributed in the cytoplasm with no apparent association with cytoplasmic organelles or vesicles identifiable at the level of light microscopy. Myosin II was not detected in the purified plasma membrane fraction. Although actin was present in about a tenfold molar excess relative to myosin I, several lines of evidence suggest that the principal linkage of myosin I with the plasma membrane is not through F- actin: (a) KI extracted much more actin than myosin I from the plasma membrane fraction; (b) higher ionic strength was required to solubilize the membrane-bound myosin I than to dissociate a complex of purified myosin I and F-actin; and (c) added purified myosin I bound to KI- extracted plasma membranes in a saturable manner with maximum binding four- to fivefold greater than the actin content and with much greater affinity than for pure F-actin (apparent KD of 30-50 nM vs. 10-40 microM in 0.1 M KCl plus 2 mM MgATP). Thus, neither the MgATP-sensitive actin-binding site in the NH2-terminal end of the myosin I heavy chain nor the MgATP-insensitive actin-binding site in the COOH-terminal end of the heavy chain appeared to be the principal mechanism of binding of myosin I to plasma membranes through F-actin. Furthermore, the MgATP- sensitive actin-binding site of membrane-bound myosin I was still available to bind added F-actin. However, the MgATP-insensitive actin- binding site appeared to be unable to bind added F-actin, suggesting that the membrane-binding site is near enough to this site to block sterically its interaction with actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号