首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Mixed isomers of conjugated linoleic acid (CLA) have been shown to have variable effects on bone formation and resorption in animals. The variable effects of CLA on bone physiology may be due to the different isomers present in common commercial preparations of CLA, and the effects of the predominant individual isomers (9cis,11trans and 10trans,12cis CLA) are not clear. The objective of this study was to determine the effects of individual and mixed isomers of CLA on mineralized bone nodule formation and alkaline phosphatase (ALP) activity in vitro using long-term cultures of SaOS-2 cells. Mineralized bone nodules were stained using the von Kossa method, and ALP activity in cell lysates was measured as a marker of early osteoblast differentiation. The 9cis,11trans isomer increased the number (~4- to 11-fold) and size (~2- to 5-fold) of mineralized bone nodules from 25 to 100 microM, but the 10trans,12cis isomer did not. The increase in mineralized bone nodule formation by 9cis,11trans CLA was accompanied by a variable increase in ALP activity. These results show that the 9cis,11trans isomer of CLA increases the formation of mineralized bone nodules using bone cells of human origin, and provide evidence for isomer-specific effects of CLA on bone health.  相似文献   

2.
Zinc is an important mineral that is required for normal bone development. However, the direct effects of zinc on the mineralization of bone cells of human origin are not clear. The objective of this study was to determine the effects of zinc on the differentiation of SaOS-2 human osteoblast-like cells and the formation of mineralized bone nodules. Cells were cultured for 8 d and then transferred to zinc-free medium and treated with varying concentrations (0–50 μM) of zinc. Alkaline phosphatase (ALP) activity was used as a measure of osteoblast differentiation, and bone nodules were detected by von Kossa staining. After 4, 6, and 8 d of treatment, zinc increased ALP activity at 1 and 10 μM, but decreased activity at 50 μM. After 9 d of treatment, zinc increased both the number and area of mineralized bone nodules at low concentrations (1 and 10 μM), but decreased both at higher concentrations (25 and 50 μM). These findings demonstrate that zinc has biphasic effects on the differentiation and mineralization of human osteoblast-like cells.  相似文献   

3.
Osteoblast differentiation, defined as the process whereby a relatively unspecialized cell acquires the specialized features of an osteoblast, is directly linked to multiple myeloma (MM) bone disease. Wnt and bone morphogenetic protein (BMP) are proved to be implicated in the pathological or defective osteoblast differentiation process. This study aims to test the involvement of Wnt, bone morphogenetic proteins (BMP) pathways, and empty spiracles homeobox 2 (EMX2) in osteoblast differentiation and MM development. Initially, differentially expressed genes in bone marrow mesenchymal stem cells (MSCs) from MM patients and healthy donors were identified using microarray-based gene expression profiling. The functional role of Wnt and BMP in MM was determined. Next, we focused on the co-operative effects of Wnt and BMP on calcium deposition, alkaline phosphatase (ALP) activity, the number of mineralized nodules, and osteocalcin (OCN) content in MSCs. The expression patterns of Wnt and BMP pathway–related genes, EMX2 and osteoblast differentiation-related factors were determined to assess their effects on osteoblast differentiation. Furthermore, regulation of Wnt and BMP in ectopic osteogenesis was also investigated in vivo. An integrated genomic screen suggested that Wnt and BMP regularly co-operate to regulate EMX2 and affect MM. EMX2 was downregulated in MSCs. The activated Wnt and BMP resulted in more calcium salt deposits, mineralized nodules, and a noted increased in ALP activity and OCN content by upregulating EMX2, leading to induced differentiation of MSCs into osteoblasts. Collectively, this study demonstrated that Wnt and BMP pathways could co-operatively stimulate differentiation of MSCs into osteoblasts and inhibit MM progression, representing potential targets for MM treatment.  相似文献   

4.
5.
It is well known that the extremely low-frequency electromagnetic field (EMF) can promote the healing of bone fractures, but its mechanism remains poorly understood. The purpose of this study was to examine the response of neonatal rat calvarial bone cells to the rectangular electromagnetic field (REMF), triangular electromagnetic field (TEMF), sinusoidal electromagnetic field (SEMF), and pulsed electromagnetic field (PEMF). The stimulatory effects of EMF were evaluated by the proliferation (methyltetrazolium colorimetric assay), differentiation (alkaline phosphatase (ALP) activity), and mineralization (area of mineralized nodules of the cells). REMF treatment of osteoblasts increased cellular proliferation and decreased ALP activity (p < 0.05). TEMF had an accelerative effect on the cellular mineralized nodules (p < 0.05). SEMF treatment of osteoblasts decreased the cellular proliferation, increased ALP activity, and suppressed mineralized nodules formation (p < 0.05). PEMF promoted the proliferation of osteoblasts, inhibited their differentiation, and increased the mineralized nodules formation (p < 0.05). Moreover, the effects of PEMF on osteoblasts were concerned with the extracellular calcium, P2 receptor on the membrane, and PLC pathway, but the response of osteoblasts on SEMF was only related to PLC pathway. The results suggested that the waveforms of EMF were the crucial parameters to induce the response of osteoblasts.  相似文献   

6.
Bone remodeling relies on a dynamic balance between bone formation and resorption, mediated by osteoblasts and osteoclasts, respectively. Under certain stimuli, osteoprogenitor cells may differentiate into premature osteoblasts and further into mature osteoblasts. This process is marked by increased alkaline phosphatase (ALP) activity and mineralized nodule formation. In this study, we induced osteoblast differentiation in mouse osteoprogenitor MC3T3-E1 cells and divided the process into three stages. In the first stage (day 3), the MC3T3-E1 cell under osteoblast differentiation did not express ALP or deposit a mineralized nodule. In the second stage, the MC3T3-E1 cell expressed ALP but did not form a mineralized nodule. In the third stage, the MC3T3-E1 cell had ALP activity and formed mineralized nodules. In the present study, we focused on morphological and proteomic changes of MC3T3-E1 cells in the early stage of osteoblast differentiation — a period when premature osteoblasts transform into mature osteoblasts. We found that mean cell area and mean stress fiber density were increased in this stage due to enhanced cell spreading and decreased cell proliferation. We further analyzed the proteins in the signaling pathway of regulation of the cytoskeleton using a proteomic approach and found upregulation of IQGAP1, gelsolin, moesin, radixin, and Cfl1. After analyzing the focal adhesion signaling pathway, we found the upregulation of FLNA, LAMA1, LAMA5, COL1A1, COL3A1, COL4A6, and COL5A2 as well as the downregulation of COL4A1, COL4A2, and COL4A4. In conclusion, the signaling pathway of regulation of the cytoskeleton and focal adhesion play critical roles in regulating cell spreading and actin skeleton formation in the early stage of osteoblast differentiation.  相似文献   

7.
8.
9.
Adipose tissue is an attractive source of mesenchymal stem cells (at-MSCs), but their low osteogenic potential limits their use in bone regeneration. Adipose tissue plays a role in pro-inflammatory diseases by releasing cytokines with a catabolic effect on bone, such as tumor necrosis factor-alpha (TNF-α). Thus, we hypothesized that endogenous TNF-α could have a negative effect on at-MSC differentiation into osteoblasts. Short interfering RNAs (siRNAs) targeting TNF-α receptors (siR1, siR2, and si1R/R2) were transfected into at-MSCs, and cell differentiation was assessed by measuring the expression of bone markers, ALP activity, and mineralized matrix. Scrambled was used as Control. Knockout at-MSCs (KOR1/R2) was injected in mice calvaria defects, and bone formation was evaluated by microtomography and histological analysis. Data were compared by Kruskal–Wallis or analysis of variance (5%). The expression of bone markers confirmed that at-MSCs differentiate less than bone marrow MSCs. In silenced cells, the expression of Alp, Runx2, and Opn was generally higher compared to Control. ALP, RUNX2, and OPN were expressed at elevated levels in silenced groups, most notably at-MSCs-siR1/R2. ALP was detected at high levels in at-MSCs-siR1/R2 and in-MSCs-siR1, followed by an increase in mineralized nodules in at-MSCs-siR1/R2. As the morphometric parameters increased, the groups treated with KOR1/R2 exhibited slight bone formation near the edges of the defects. Endogenous TNF-α inhibits osteoblast differentiation and activity in at-MSCs, and its disruption increases bone formation. While opening a path of investigation, that may lead to the development of new treatments for bone regeneration using at-MSC-based therapies.  相似文献   

10.
11.
12.
13.
We describe effects of strontium ranelate treatment on intact mineralized nodules produced in osteoblast cell cultures. We analyzed the matrix directly at the cell culture surfaces following treatment with 0.05 and 0.5 mM Sr2+. This method allowed for data to be obtained from intact nodules, rather than from extracted samples. The bone-like nature of the matrix was evaluated by using attenuated total reflection Fourier transform infrared spectroscopy and the incorporation of Sr into the nodules was investigated by using both energy dispersive X-ray spectroscopy and synchrotron radiation micro X-ray fluorescence. We observed typical mineralized nodules in all of the cell cultures. However, the formation of these nodules was markedly increased in cultures treated with 0.5 mM Sr2+. In all of the cultures, the nature of the intact matrix was similar to that described in native bone tissue, being comprised of a poorly crystalline CO3 2?-containing apatite and a collagenous matrix. This indicated that treatment had no deleterious effects on the matrix. Moreover, the nodules presented Ca and P as the main chemical components, confirming their bone-like mineralized nature. The incorporation of Sr into the nodules was clearly observed in the treated cultures, with their relative Sr content [Sr/(Ca+Sr) ratio] being markedly increased in a dose-dependent manner. Thus, strontium ranelate promoted an increase in the formation of mineralized nodules in osteoblast cell cultures while preserving the bone-like nature of the matrix at the tissue level. We further demonstrated that Sr was incorporated into the intact nodules formed during treatment.  相似文献   

14.
Fetal rat calvaria cells plated at very low density generate discrete colonies, some of which are bone colonies (nodules) from individual osteoprogenitors that divide and differentiate. We have analyzed the relationship between cell proliferation and acquisition of tissue-specific differentiation markers in bone colonies followed individually from the original single cell to the fully mineralized state. The size distribution of fully formed nodules is unimodal, suggesting that the coupling between proliferation and differentiation of osteoprogenitor cells is governed by a stochastic element, but distributed around an optimum, corresponding to the peak colony size/division potential. Kinetic analysis of colony growth showed that osteoprogenitors undergo 9-10 population doublings before the appearance of the first morphologically differentiated osteoblasts in the developing colony. Double immunolabeling showed that these proliferating cells express a gradient of bone markers, from proliferative alkaline phosphatase-negative cells at the periphery of colonies, to postmitotic, osteocalcin-producing osteoblasts at the centers. An inverse relationship exists between cell division and expression of osteocalcin, the latter being restricted to late-stage, BrdU-negative osteoblasts, while the expression of all other markers is acquired before the cessation of proliferation, but not concomitantly. Bone sialoprotein expression is biphasic, detectable in some of the early, alkaline phosphatase-negative cells, and again later in both late preosteoblast (BrdU-positive) and osteoblast (BrdU-negative, osteocalcin-positive) cells. In late-stage, heavily mineralized nodules, staining for osteocalcin and bone sialoprotein is not detectable in the oldest/most mature cells. Our observations support the view that the bone nodule "tissue-like" structure, originating from a single osteoprogenitor and finally encompassing mineralized matrix production, recapitulates successive stages of the osteoblast differentiation pathway, in a proliferation/maturation sequence. Understanding the complexity of the proliferation/differentiation kinetics that occurs within bone nodules will aid in the qualitative and/or quantitative interpretation of tissue-specific marker expression during osteoblastic differentiation.  相似文献   

15.
Platelet-derived growth factor (PDGF) stimulates chemotaxis and proliferation of osteoblasts, and induces bone formation in vivo. To determine how PDGF might regulate these cells, the effect of PDGF on long-term mineralizing cultures of fetal rat osteoblastic cells was examined. Although PDGF increased cell proliferation in these cultures, continuous treatment with PDGF caused a dose-dependent decrease in mineralized nodule formation. When cells were treated with multiple, brief (1 day) exposures to PDGF at the osteoblast differentiation stage, there was a significant 50% increase in mineralized nodule area. Based on modulation of alkaline phosphatase activity it appears that longer-term exposure to PDGF reduces mineralized nodule formation largely by inhibiting differentiated osteoblast function, while short-term exposure enhances proliferation without inhibiting the differentiated phenotype. Thus, the ultimate affect of PDGF on bone formation is likely to reflect two processes: a positive effect through enhancing cell number or a negative effect by inhibiting differentiated function. The inhibitory effect of PDGF on formation of a mineralized matrix is unlikely to be simply a result of enhanced proliferation of “fibroblastic” cells since cultures treated with PDGF for 3 days and then transferred to new plastic dishes exhibited a 70% increase in mineralized nodule area compared to controls. These results would predict that multiple, brief exposures to PDGF would enhance bone formation in vivo, while prolonged exposure to PDGF, which is likely to occur in chronic inflammation, would inhibit differentiated osteoblast function and limit bone regeneration. J. Cell. Biochem. 69:169–180, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
We investigated the effect of hypoxia on rat osteoblast function in long-term primary cultures. Reduction of pO2 from 20% to 5% and 2% decreased formation of mineralized bone nodules 1.7-fold and 11-fold, respectively. When pO2 was reduced further to 0.2%, bone nodule formation was almost abolished. The inhibitory effect of hypoxia on bone formation was partly due to decreased osteoblast proliferation, as measured by 3H-thymidine incorporation. Hypoxia also sharply reduced osteoblast alkaline phosphatase (ALP) activity and expression of mRNAs for ALP and osteocalcin, suggesting inhibition of differentiation to the osteogenic phenotype. Hypoxia did not increase the apoptosis of osteoblasts but induced a reversible state of quiescence. Transmission electron microscopy revealed that collagen fibrils deposited by osteoblasts cultured in 2% O2 were less organized and much less abundant than in 20% O2 cultures. Furthermore, collagen produced by hypoxic osteoblasts contained a lower percentage of hydroxylysine residues and exhibited an increased sensitivity to pepsin degradation. These data demonstrate the absolute oxygen requirement of osteoblasts for successful bone formation and emphasize the importance of the vasculature in maintaining bone health. We recently showed that hypoxia also acts in a reciprocal manner as a powerful stimulator of osteoclast formation. Considered together, our results help to explain the bone loss that occurs at the sites of fracture, tumors, inflammation and infection, and in individuals with vascular disease or anemia.  相似文献   

17.
Recently, various physiological effects of the tea polyphenol catechin for alleviating diseases such as cancer, arteriosclerosis, hyperlipidaemia and osteoporosis have been reported. However, the physiological effect of catechin on bone metabolism remains unclear. We examined the physiological effect of EGCG [(?)‐epigallocatechin‐3‐gallate], which is the main component of green tea catechin, on osteoblast development using the precursor cell line of osteoblasts, MC3T3‐E1, and co‐culture of the osteoblasts from mouse newborn calvaria and mouse bone marrow cells. Although EGCG did not affect the viability and proliferation of MC3T3‐E1 cells, EGCG inhibited the osteoblast differentiation. Furthermore, EGCG did not affect the mineralization of differentiated MC3T3‐E1 cells, and reduced osteoclast formation in co‐culture. These results suggest that EGCG can effectively suppress bone resorption, and can be used as an effective medicine in the treatment of the symptoms of osteoporosis.  相似文献   

18.
Compactin enhances osteogenesis in murine embryonic stem cells   总被引:12,自引:0,他引:12  
Embryonic stem (ES) cells have the capacity to differentiate into various cell types in vitro. In this study, we show that retinoic acid is important for the commitment of ES cells into osteoblasts. Culturing retinoic acid treated ES cells in the presence of the osteogenic supplements ascorbic acid and beta-glycerophosphate resulted in the expression of several osteoblast marker genes, osteocalcin, alkaline phosphatase, and osteopontin. However, there was only a slight amount of mineralized matrix secretion. Addition of bone morphogenic protein-2 or compactin, a drug of the statin family of HMG-CoA reductase inhibitors, resulted in a greatly enhanced formation of bone nodules. Compactin did not modify the expression of osteogenic markers, but at the late stage of differentiation promoted an increase in BMP-2 expression. These results establish ES-cell derived osteogenesis as an effective model system to study the molecular mechanisms by which the statin compactin promotes osteoblastic differentiation and bone nodule formation.  相似文献   

19.
Bone morphogenetic proteins (BMPs) are a group of cytokines that are characterized by their ability to stimulate osteoblast differentiation and bone formation. However, the influence of BMPs on osteoblastic cells at different stages of differentiation is not known. Since bone matrix proteins are differentially regulated during bone formation we have studied the effects of recombinant human osteogenic protein-1 (rhOP-1; BMP-7) on the expression of these proteins by fetal rat calvarial cells (FRCCs) at discrete stages of osteoblast differentiation. Continuous administration of rhOP-1 to FRCCs, beginning at confluence (day 7), produced a dose-dependent increase in the number, size and mineralization of bone-like nodules formed in the presence of vitamin C and β-glycerophosphate. Within 9 h of administration, rhOP-1 stimulated a 3-fold increase in OPN mRNA which was reflected in a comparable increase in the low phosphorylated, 55 kDa form of osteopontin. In contrast, changes in type I collagen, alkaline phosphatase and bone sialoprotein mRNAs followed the differentiation of preosteoblastic cells, and were increased 2-, 4- and 5-fold, respectively, after 8 days (day 15). When administered at intermediate stages of osteoblast differentiation (days 12, 15 and 18) BSP remained refractory to rhOP-1 whereas the ALP was increased almost 2-fold, independent of the constitutive levels of mRNA expression. To determine the effects on osteoblasts, FRCCs were first grown to the bone nodule-forming stage (day 21) before rhOP-1 was administered. Only modest, transient increases in the expression of ALP and OPN mRNAs were evident whereas OC expression was increased more than 3-fold. In contrast, collagen type I and BSP mRNA levels were not changed significantly. These results suggest that rhOP-1 increases bone formation by promoting osteoblastic differentiation, as indicated by the increased number of bone forming colonies and by increasing the number of osteoblastic cells in the colonies, but not by increasing matrix production by individual osteoblasts. It is also evident that the regulation of bone matrix proteins by rhOP-1 is dependent upon the differentiated state of the cell. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Hypocalcemia and hypophosphatemia are common complications after parathyroidectomy (PTX). Sudden removal of high circulating levels of parathyroid hormone (PTH) causes decreased osteoclastic resorption resulting in a decreased bone remodeling space. These phenomena are likely due to an increased influx of calcium and phosphorus into bone. However, there are currently no data to support this hypothesis. In this study, we found that PTX significantly reduced levels of PTH, calcium and phosphate. Compared with preoperative levels, after 1 year, postoperative PTH, calcium and phosphate levels were 295.6 ± 173.7 pg/mL (P < 0.05), 86.62 ± 15.98 mg/dL (P < 0.05) and 5.56 ± 2.03 mg/dL (P < 0.05), respectively. We investigated continuous bovine PTH administration as well as withdrawal of bovine PTH stimulation in the mouse osteoblast precursor cell line MC3T3-E1. MC3T3-E1 cells were cultured with continuous bovine PTH treatment for 20 days or with transient bovine PTH treatment for 10 days. High doses of continuous bovine PTH exposure strongly reduced cell proliferation, alkaline phosphatase activity and the number of mineralized calcium nodules. However, withdrawal of bovine PTH (100 ng/mL) significantly increased the number of mineralized calcium nodules and caused a rapid decline in calcium and phosphorus content of culture medium. In conclusion, continuous exposure to bovine PTH inhibited osteoblast differentiation and reduced the formation of mineralized nodules. However, this inhibition was removed and mineralized nodule formation resumed with withdrawal of bovine PTH. According to the results of our clinical examinations and in vitro experiments, we hypothesize that the sudden removal of high levels of PTH may cause an increased influx of calcium and phosphorus into bone after PTX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号