首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously demonstrated that apoptosis induction is observed only in smooth chorion laeve trophoblast cells, and not in amnion epithelial cells of human fetal membrane tissues prepared at the term. Apoptosis induction was suppressed by the presence of an inhibitor specific for inducible nitric oxide synthase (iNOS), suggesting that intracellular oxidative stress plays a critical role in this process. In this study, we transfected the iNOS gene into primary cultured chorion and amnion cells to examine the direct contribution of iNOS gene expression to the apoptosis induction in these cells. We identified a significant increase in the levels of iNOS protein expression and nitrite accumulation in both chorion and amnion cells after the iNOS gene transfection. However, the induction of apoptosis was observed in an approximately 70% of chorion cells transfected with iNOS gene. Transfection of the iNOS gene into chorion cells resulted in the activation of p38 mitogen-activated protein kinase (MAPK) and downregulation of hemeoxygenase-1 protein expression, whereas no such events were observed in the transfected amnion cells. These results suggest that apoptosis induced in the chorion trophoblast cells by the iNOS gene expression is closely linked to a physiological consequence, such as the rupture of fetal membranes.  相似文献   

2.
Yuan B  Ohyama K  Bessho T  Uchide N  Toyoda H 《Life sciences》2008,82(11-12):623-630
We have previously demonstrated that induction of apoptosis was observed in the smooth chorion trophoblast cells of human fetal membranes prepared at term, and that apoptosis progressed rapidly during in vitro incubation of the tissues. Furthermore, we identified the contribution of ROS production system (e.g., oxidant enzymes, such as iNOS and Cox-2) to the apoptosis induction in the chorion cells, suggesting an important role of the two inducible enzymes in the induction process. In this study, we examined the role of ROS elimination system (e.g., antioxidant enzymes, such as glutathione peroxidase (GPx) and catalase) in the apoptosis induction of the chorion cells, since the apoptosis induction by oxidative stress is a result of imbalance between production and elimination of ROS. Treatment of chorion and amnion cells with mercaptosuccinic acid (MS, GPx inhibitor) and 3-amino-1,2,4-triazole (ATZ, catalase inhibitor) resulted in an inhibition of GPx and catalase activity, respectively. Furthermore, incubation with MS alone induced apoptosis in the chorion cells and apoptosis level was enhanced by the addition of ATZ, while ATZ alone hardly induced apoptosis in the chorion cells. However, none of these reagents induced apoptosis in the amnion cells. Moreover, an increase of the level of hemeoxygenase-1 gene expression was observed only in the amnion cells when both antioxidant enzyme activities were suppressed. Therefore, we concluded that GPx played a more critical role than catalase in the control of the apoptosis induction of the chorion cells, suggesting that the threshold levels of stress tolerance in the chorion cells are much lower than those in the amnion cells.  相似文献   

3.
Heme oxygenase-1 (HO-1), an inducible stress protein, has been implicated in cytoprotection against oxidative stress in vitro and in vivo. Estrogens also have antioxidant effects. This study investigated the time course of HO-1 and inducible nitric oxide synthase (iNOS) expression in the aortas of ovariectomized rats, and the regulatory relationship between the NO/NOS and the carbon monoxide/HO systems. HO-1 and iNOS protein expression was induced by ovariectomy (Ovx) and was extremely high 2-6 weeks after Ovx compared with the sham-operated group. Expression of the constitutive enzymes HO-2 and endothelial NOS did not differ significantly between sham-operated and Ovx rats. 17beta-Estradiol (E(2)) replacement reversed these changes in rats after Ovx. Long-term treatment with the antioxidant tempol significantly inhibited HO-1 and iNOS expression. The iNOS inhibitor aminoguanidine significantly suppressed the induction of HO-1. Oxidized glutathione in the hearts of Ovx rats increased gradually, with significant elevation at 3-6 weeks after Ovx compared with the sham-operated group, whereas plasma levels of NO metabolites were significantly reduced 4-6 weeks after Ovx. Treatment with the HO inhibitor zinc protoporphyrin IX blocked HO-1 induction, but significantly increased the plasma levels of NO metabolites. In conclusion, HO-1 is induced by oxidative stress resulting from E(2) depletion. The NO/iNOS system contributes to the induction of HO-1, which may subsequently suppress iNOS activity to modulate vasculoprotective effects after menopause.  相似文献   

4.
During human pregnancy, placental trophoblasts differentiate and syncytialize into syncytiotrophoblasts that sustain progesterone production [1]. This process is accompanied by mitochondrial fragmentation and cristae remodeling [2], two facets of mitochondrial apoptosis, whose molecular mechanisms and functional consequences on steroidogenesis are unclear. Here we show that the mitochondria-shaping protein Optic atrophy 1 (Opa1) controls efficiency of steroidogenesis. During syncytialization of trophoblast BeWo cells, levels of the profission mitochondria-shaping protein Drp1 increase, and those of Opa1 and mitofusin (Mfn) decrease, leading to mitochondrial fragmentation and cristae remodeling. Manipulation of the levels of Opa1 reveal an inverse relationship with the efficiency of steroidogenesis in trophoblasts and in mouse embryonic fibroblasts where the mitochondrial steroidogenetic pathway has been engineered. In an in vitro assay, accumulation of cholesterol is facilitated in the inner membrane of isolated mitochondria lacking Opa1. Thus, Opa1-dependent inner membrane remodeling controls efficiency of steroidogenesis.  相似文献   

5.
6.
The mechanism of action of heme oxygenase-1 (HO-1) in mitochondrial oxidative stress (MOS)-mediated apoptotic tissue injury was investigated. MOS-mediated gastric mucosal apoptosis and injury were introduced in rat by indomethacin, a non-steroidal anti-inflammatory drug. Here, we report that HO-1 was not only induced but also translocated to mitochondria during gastric mucosal injury to favor repair mechanisms. Furthermore, mitochondrial translocation of HO-1 resulted in the prevention of MOS and mitochondrial pathology as evident from the restoration of the complex I-driven mitochondrial respiratory control ratio and transmembrane potential. Mitochondrial translocation of HO-1 also resulted in time-dependent inhibition of apoptosis. We searched for the plausible mechanisms responsible for HO-1 induction and mitochondrial localization. Free heme, the substrate for HO-1, was increased inside mitochondria during gastric injury, and mitochondrial entry of HO-1 decreased intramitochondrial free heme content, suggesting that a purpose of mitochondrial translocation of HO-1 is to detoxify accumulated heme. Heme may activate nuclear translocation of NF-E2-related factor 2 to induce HO-1 through reactive oxygen species generation. Electrophoretic mobility shift assay and chromatin immunoprecipitation studies indicated nuclear translocation of NF-E2-related factor 2 and its binding to HO-1 promoter to induce HO-1 expression during gastric injury. Inhibition of HO-1 by zinc protoporphyrin aggravated the mucosal injury and delayed healing. Zinc protoporphyrin further reduced the respiratory control ratio and transmembrane potential and enhanced MOS and apoptosis. In contrast, induction of HO-1 by cobalt protoporphyrin reduced MOS, corrected mitochondrial dysfunctions, and prevented apoptosis and gastric injury. Thus, induction and mitochondrial localization of HO-1 are a novel cytoprotective mechanism against MOS-mediated apoptotic tissue injury.  相似文献   

7.
The human placenta is key to pregnancy outcome, and the elevated oxidative stress present in many complicated pregnancies contributes to placental dysfunction and suboptimal pregnancy outcomes. We tested the hypothesis that pomegranate juice, which is rich in polyphenolic antioxidants, limits placental trophoblast injury in vivo and in vitro. Pregnant women with singleton pregnancies were randomized at 35~38 wk gestation to 8 oz/day of pomegranate juice or apple juice (placebo) until the time of delivery. Placental tissues from 12 patients (4 in the pomegranate group and 8 in the control group) were collected for analysis of oxidative stress. The preliminary in vivo results were extended to oxidative stress and cell death assays in vitro. Placental explants and cultured primary human trophoblasts were exposed to pomegranate juice or glucose (control) under defined oxygen tensions and chemical stimuli. We found decreased oxidative stress in term human placentas from women who labored after prenatal ingestion of pomegranate juice compared with apple juice as control. Moreover, pomegranate juice reduced in vitro oxidative stress, apoptosis, and global cell death in term villous explants and primary trophoblast cultures exposed to hypoxia, the hypoxia mimetic cobalt chloride, and the kinase inhibitor staurosporine. Punicalagin, but not ellagic acid, both prominent polyphenols in pomegranate juice, reduced oxidative stress and stimulus-induced apoptosis in cultured syncytiotrophoblasts. We conclude that pomegranate juice reduces placental oxidative stress in vivo and in vitro while limiting stimulus-induced death of human trophoblasts in culture. The polyphenol punicalagin mimics this protective effect. We speculate that antenatal intake of pomegranate may limit placental injury and thereby may confer protection to the exposed fetus.  相似文献   

8.
Intrauterine bacterial infections are a well-established cause of pregnancy complications. One key observation in a number of abnormal pregnancies is that placental apoptosis is significantly elevated. First trimester trophoblast cells are known to express TLR1 and TLR2 and to undergo apoptosis following exposure to Gram-positive bacterial peptidoglycan (PDG). Thus, the objectives of this study were to determine whether PDG-induced pregnancy complications are associated with placental apoptosis and to characterize the cellular mechanisms involved. We have demonstrated, using an animal model, that delivery of PDG to pregnant mice early in gestation resulted in highly elevated placental apoptosis, evidenced by trophoblast M-30 and active caspase 3 immunostaining. Using an in vitro model of human first trimester trophoblasts, apoptosis induced by PDG was found to be mediated by both TLR1 and TLR2 and that this could be blocked by the presence of TLR6. Furthermore, in the presence of TLR6, exposure to PDG resulted in trophoblast NF-kappaB activation and triggered these cells to secrete IL-8 and IL-6. The findings of this study suggest that a Gram-positive bacterial infection, through TLR2 and TLR1, may directly promote the elevated trophoblast cell death and that this may be the underlying mechanism of pregnancy complications, such as preterm delivery. Furthermore, the expression of TLR6 may be a key factor in determining whether the response to PDG would be apoptosis or inflammation.  相似文献   

9.
We found that CKD712, an S enantiomer of YS49, strongly inhibited inducible nitric oxide synthase (iNOS) and NO induction but showed a weak inhibitory effect on cyclooxygenase-2 (COX-2) and PGE(2) induction in LPS-stimulated RAW 264.7 cells. We, therefore, investigated the molecular mechanism(s) responsible for this by using CKD712 in LPS-activated RAW264.7 cells. Treatment with either SP600125, a specific JNK inhibitor or TPCK, a NF-kappaB inhibitor, but neither ERK inhibitor PD98059 nor p38 inhibitor SB203580, significantly inhibited LPS-mediated iNOS and COX-2 induction. CKD712 inhibited NF-kappaB (p65) activity and translocation but failed to prevent JNK activation. However, AG490, a specific JAK-2/STAT-1 inhibitor, efficiently prevented LPS-mediated iNOS induction but not the induction of COX-2, and CKD712 completely blocked STAT-1 phosphorylation by LPS, suggesting that the NF-kappaB and JAK-2/STAT-1 pathways but not the JNK pathway are important for CKD712 action. Interestingly, CKD712 induced heme oxygenase 1 (HO-1) gene expression in LPS-treated cells. LPS-induced NF-kappaB and STAT-1 activation was partially prevented by HO-1 overexpression. Furthermore, HO-1 siRNA partly reversed not only the LPS-induced NF-kappaB activation and STAT-1 phosphorylation but also inhibition of these actions by CKD 712. Additionally, silencing HO-1 by siRNA prevented CKD712 from inhibiting iNOS expression but not COX-2. When examined plasma NO and PGE(2) levels and iNOS and COX-2 protein levels in lung tissues of mice injected with LPS (10 mg/kg), pretreatment with CKD712 greatly prevented NO and iNOS induction in a dose-dependent manner and slightly affected PGE(2) and COX-2 production as expected. Taken together, we conclude that inhibition of JAK-2/STAT-1 pathways by CKD 712 is critical for the differential inhibition of iNOS and COX-2 by LPS in vitro and in vivo where HO-1 induction also contributes to this by partially modulating JAK-2/STAT-1 pathways.  相似文献   

10.
There is evidence that NO can regulate CO production, however less is known about CO regulation of NO synthesis. Our studies were undertaken to define how CO regulates iNOS in cultured hepatocytes. CO (250 ppm) exposure resulted in a significant decrease in iNOS protein, nitrite production, level of active iNOS dimer and cytosolic iNOS activity in cells stimulated with cytokines (IL-1β) or transfected with the human iNOS gene. However, IL-1β-stimulated iNOS mRNA expression was unaffected by CO. These effects of CO on iNOS protein levels were inhibited when CO was scavenged using hemoglobin. HO-1 induction with an adenoviral vector carrying HO-1 showed a decrease in total iNOS protein, nitrite production, and iNOS dimer level from cells stimulated by IL-1β. iNOS protein level was significantly higher in lung endothelial cells isolated from HO-1 knockout mice compared to wild type cultures stimulated with cytokines mixture. CO was found to increase p38 phosphorylation and p38 inhibition using SB203580 increased iNOS protein levels in response to IL-1β. Interestingly, proteasome inhibitors (MG132 and Lactacystin) and an autophagy inhibitor (3-methyladenine) reversed CO influence iNOS levels. Our results imply that CO exposure decreases NO production by suppressing dimer formation and increasing iNOS degradation through a process involving p38 activation.  相似文献   

11.
Perturbation of oxidant/antioxidant cellular balance, induced by cellular metabolism and by exogenous sources, causes deleterious effects to proteins, lipids, and nucleic acids, leading to a condition named "oxidative stress" that is involved in several diseases, such as cancer, ischemia-reperfusion injury, and neurodegenerative disorders. Among the exogenous agents, both H(2)O(2) and hyperthermia have been implicated in oxidative stress promotion linked with the activation of apoptotic or necrotic mechanisms of cell death. The goal of this work was to better understand the involvement of some stress-related proteins in adaptive responses mounted by human fibroblasts versus the oxidative stress differently induced by 42 degrees C hyperthermia or H(2)O(2.) The research was developed, switching off inducible nitric oxide synthase (iNOS) expression through antisense oligonucleotide transfection by studying the possible coregulation in the expression of HSP32 (also named HO-1), HSP70, and iNOS and their involvement in the induction of DNA damage. Several biochemical parameters, such as cell viability (MTT assay), cell membrane integrity (lactate dehydrogenase release), reactive oxygen species formation, glutathione levels, immunocytochemistry analysis of iNOS, HSP70, and HO-1 levels, genomic DNA fragmentation (HALO/COMET assay), and transmembrane mitochondrial potential (deltaPsi) were examined. Cells were collected immediately at the end of the stress-inducing treatment. The results, confirming the pleiotropic function of i-NOS, indicate that: (i). HO-1/HSP32, HSP70, and iNOS are finely tuned in their expression to contribute all together, in human fibroblasts, in ameliorating the resistance to oxidative stress damage; (ii). ROS exposure, at least in hyperthermia, in human fibroblasts contributes to growth arrest more than to apoptosis activation; and (iii). mitochondrial dysfunction, in presence of iNOS inhibition seems to be clearly involved in apoptotic cell death of human fibroblasts after H(2)O(2) treatment, but not after hyperthermia.  相似文献   

12.
Very few types of normal cells fail entirely to express class I human leukocyte antigens (HLA), and many of those cells (sperm, fetal amnion epithelial cells, and fetal trophoblasts) are related to the process of reproduction. Susceptibility of sperm to modulation of class I antigens has not been examined, but it has recently been demonstrated that amnion cells respond to exposure to IFN-gamma with readily detectable levels of class I antigens. In addition, one of two trophoblast cell lines (BeWo) has been shown to exhibit enhanced expression of class I HLA in response to IFN-gamma. Expression by a second trophoblast cell line (Jar) was not inducible. Findings in the present study included demonstration of IFN-gamma-enhanced class I-specific mRNA synthesis in JEG-3 cells, which are derived from BeWo, and failure of synthesis by Jar cells. Those results eliminated trivial explanations for the preceding findings and confirmed the responsiveness of some but not all cells of trophoblast origin to IFN-gamma. When successful modulating conditions for amnion and malignant trophoblast cells were applied to normal tissues, third trimester term chorionic cytotrophoblasts and first trimester villous syncytial and cytotrophoblasts failed to exhibit class I HLA. Neither malignant nor normal trophoblasts expressed class II HLA under any condition of testing. Failure of induction of HLA expression by normal trophoblasts could not be attributed to either loss of viability by tissue explants or failure of modulating reagents to reach the trophoblasts. The results demonstrate that regulation of expression of histocompatibility antigens by major populations of normal trophoblasts and one of two choriocarcinoma cell lines differs markedly from that of other fetal and adult cells. Uncommon regulatory mechanisms may be essential to maintenance of the trophoblast as an immunologically inert barrier between the mother and her antigenically disparate fetus.  相似文献   

13.
Preeclampsia (PE), a common disorder of pregnancy, is characterized by insufficient trophoblast migration and inadequate vascular remodelling, such that promotion of trophoblast proliferation might ameliorate PE. In the current study, we sought to study the underlying mechanism of extracellular vesicle (EV)-derived microRNA-18 (miR-18b) in PE. Human umbilical cord mesenchymal stem cells (HUCMSCs) isolated from placental tissues were verified through osteogenic, adipogenic and chondrogenic differentiation assays. Bioinformatics analyses and dual-luciferase reporter gene assay were adopted to confirm the targeting relationship between miR-18b and Notch2. The functional roles of EV-derived miR-18b and Notch2 in trophoblasts were determined using loss- and gain-of-function experiments, and trophoblast proliferation and migration were assayed using CCK-8 and Transwell tests. In vivo experiments were conducted to determine the effect of EV-derived miR-18b, Notch2 and TIM3/mTORC1 in a rat model of PE, with monitoring of blood pressure and urine proteinuria. TUNEL staining was conducted to observe the cell apoptosis of placental tissues of PE rats. We found down-regulated miR-18b expression, and elevated Notch2, TIM3 and mTORC1 levels in the placental tissues of PE patients compared with normal placenta. miR-18b was delivered to trophoblasts and targeted Notch2 and negatively its expression, whereas Notch2 positively mediated the expression of TIM3/mTORC1. EV-derived miR-18b or Notch2 down-regulation enhanced trophoblast proliferation and migration in vitro and decreased blood pressure and 24 hours urinary protein in PE rats by deactivating the TIM3/mTORC1 axis in vivo. In summary, EV-derived miR-18b promoted trophoblast proliferation and migration via down-regulation of Notch2-dependent TIM3/mTORC1.  相似文献   

14.
15.
There is a strong association between infection and prematurity; however, the underlying mechanisms remain largely unknown. Nod1 and Nod2 are intracellular pattern recognition receptors that are activated by bacterial peptides and mediate innate immunity. We previously demonstrated that human first-trimester trophoblasts express Nod1 and Nod2, which trigger inflammation upon stimulation. This study sought to determine the expression and function of Nod1 and Nod2 in third-trimester trophoblasts, and to characterize the in vivo effects of Nod1 activation on pregnancy outcome. Human term placental tissues and isolated term trophoblast expressed Nod1, but not Nod2. Activation of Nod1 by its agonist, bacterial γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP), in term trophoblast cultures induced a proinflammatory cytokine profile, characterized by elevated levels of secreted IL-6, GRO-α, and MCP-1, when compared with the control. However, these cytokines were not upregulated in response to Nod2 stimulation with bacterial MDP. Administration of high-dose bacterial iE-DAP to pregnant C57BL/6J mice on embryonic day 14.5 triggered preterm delivery within 24 h. iE-DAP at a lower dose that did not induce prematurity, reduced fetal weight, altered the cytokine profile at the maternal-fetal interface, and induced fetal inflammation. Thus, functional Nod1 is expressed by trophoblast cells across gestation and may have a role in mediating infection-associated inflammation and prematurity. This study demonstrates that pattern recognition receptors, other than the TLRs, may be implicated or involved in infection-associated preterm labor.  相似文献   

16.
Heme oxygenases (HOs), essential enzymes for heme metabolism, play an important role in the defense against oxidative stress. In this study, we evaluated the expression and functional significance of HO-1 and HO-2 in the ventilatory muscles of normal rats and rats injected with bacterial lipopolysaccharide (LPS). Both HO-1 and HO-2 proteins were detected inside ventilatory and limb muscle fibers of normal rats. Diaphragmatic HO-1 and HO-2 expressions rose significantly within 1 and 12 h of LPS injection, respectively. Inhibition of the activity of inducible nitric oxide synthase (iNOS) in rats and absence of this isoform in iNOS(-/-) mice did alter sepsis-induced regulation of muscle HOs. Systemic inhibition of HO activity with chromium mesoporphyrin IX enhanced muscle protein oxidation and hydroxynonenal formation in both normal and septic rats. Moreover, in vitro diaphragmatic force generation declined substantially in response to HO inhibition both in normal and septic rats. We conclude that both HO-1 and HO-2 proteins play an important role in the regulation of muscle contractility and in the defense against sepsis-induced oxidative stress.  相似文献   

17.
Depression is one of the most common neuropsychiatric disorders that is characterized by low mood, lack of motivation, slow thinking, and recurrent suicidal thoughts. The mechanism of action of palmatine in depression has been rarely reported and remains unclear. The present study examined the neuroprotective effects of palmatine on lipopolysaccharide (LPS)-induced oxidative stress, apoptosis, and depression-like behavior. In this study, cell apoptosis was evaluated by CCK-8, flow cytometry, and Hoechst 33258 staining in LPS-induced HT-22 cells. Meanwhile, reactive oxygen species (ROS) and mitochondrial membrane potential were detected in vitro. In vivo, we investigated depressive-like behaviors in mice by an open field test (OFT) and elevated plus-maze test (EPM). Additionally, the levels of superoxide dismutases (SOD), TNF-α, IL-1β, and IL-6 were detected by enzyme-linked immunosorbent assay. The hematoxylin-eosin staining and TUNEL staining were used to evaluate the pathology of the hippocampus. The expression of Nrf2/HO-1 and BAX/Bcl-2 pathways in the hippocampus were assessed by Western blot analysis. Palmatine could significantly reduce apoptosis and ROS levels, and improve mitochondrial damage. Moreover, palmatine significantly improves movement time and central square crossing time in OFT, and improves open arms and movement time in EMP. And the levels of SOD, TNF-α, IL-1β, and IL-6 were significantly decreased after palmatine treatment. More importantly, palmatine improved neuronal apoptosis in the hippocampus, and depression through BAX/Bcl-2 and Nrf2/HO-1 signaling pathways. We provide evidence that palmatine further alleviates the depressive-like behavior of LPS-induced by improving apoptosis and oxidative stress.  相似文献   

18.
Spiral artery remodeling at the maternal–fetal interface is crucial for successful pregnancy and requires the interaction between the first trimester trophoblast and the endothelial cells of the maternal vessels. However, the precise mechanism of this dialog has yet to be determined. The current study investigated whether lysophosphatidic acid (LPA) modulates trophoblast–endothelial crosstalk in vitro. HTR-8/SVneo trophoblast cell line (H8) was seeded on top of Geltrex, incubated with LPA or LPA + NS-398 (selective cyclooxygenase-2 inhibitor), LPA + 1400W (selective inducible nitric oxide synthase inhibitor) or LPA + IL-6 neutralizing antibody and assayed for tube formation to model the acquisition of trophoblast endovascular phenotype. The supernatants were collected and used as conditioned media (CM). To test trophoblast–endothelial crosstalk, the endothelial cell line EA.hy926 was incubated with trophoblast CM. The CM from LPA-induced tubulogenesis stimulated endothelial cells migration and did not modify the apoptosis. Soluble factors derived from cyclooxygenase-2 and IL-6 pathways were involved in H8–EA.hy926 interaction under the LPA effect. Moreover, LPA increased the levels of IL-6 mRNA by cyclooxygenase-2 pathway in H8 cells. Collectively, LPA promotes trophoblast–endothelial crosstalk in vitro and induces the release of trophoblast soluble factors that stimulate endothelial cells migration without changes in apoptosis. The evidence presented here provides new insights about an active role of LPA as a lipid mediator regulating vascular remodeling at the maternal–fetal interface.  相似文献   

19.
Chorioamnionitis is a common cause of premature birth and is associated with significant morbidity and mortality in the mother and infant. Preterm birth shares similarities with rejection of the fetal allograft, which is characterized by increased apoptosis of placental trophoblasts. We hypothesized that there is increased trophoblast apoptosis in chorioamnionitis and that this increased apoptosis is mediated by the Fas ligand (FasL)/Fas pathway. To test our hypothesis, we examined placental villous tissues from patients with chorioamnionitis and used the TUNEL assay to demonstrate enhanced trophoblast apoptosis in patients with chorioamnionitis. When the same samples were stained for Fas, there was increased trophoblast Fas expression in patients with chorioamnionitis. To define the mechanisms responsible for this increase in trophoblast apoptosis, we cultured villous explants from uncomplicated term placentas with proinflammatory cytokines and demonstrated a marked increase in trophoblast apoptosis. By blocking FasL, we reduced tumor necrosis factor alpha-induced and interferon gamma-induced apoptosis. These data suggest that chorioamnionitis is associated with increased trophoblast apoptosis and enhanced trophoblast Fas expression. As a complement to our in vivo study, we demonstrated that cytokine-induced trophoblast apoptosis is mediated in part by the FasL/Fas pathway, suggesting that cytokines promote sensitivity to Fas-mediated apoptosis. These mechanisms may be important in perpetuating inflammation in the placental microenvironment and may contribute to the pathogenesis of chorioamnionitis.  相似文献   

20.
Mammalian Ste20-like protein kinase 3 (Mst3) is a key player in inducing apoptosis in a variety of cell types and has recently been shown to participate in the signaling pathway of hypoxia-induced apoptosis of human trophoblast cell line 3A-sub-E (3A). It is believed that oxidative stress may occur during hypoxia and induce the expression of Mst3 in 3A cells via the activation of c-Jun N-terminal protein kinase 1 (JNK1). This hypothesis was demonstrated by the suppressive effect of dl-α-lipoic acid, a reactive oxygen species scavenger, in hypoxia-induced responses of 3A cells such as Mst3 expression, nitrotyrosine formation, JNK1 activation and apoptosis. Similar results were also observed in trophoblasts of human placental explants in both immunohistochemical studies and immunoblot analyses. These suggested that the activation of Mst3 might trigger the apoptotic process in trophoblasts by activating caspase 3 and possibly other apoptotic pathways. The role of nitric oxide synthase (NOS) and NADPH oxidase (NOX) in hypoxia-induced Mst3 up-regulation was also demonstrated by the inhibitory effect of N(G)-nitro-l-arginine and apocynin, which inhibits NOS and NOX, respectively. Oxidative stress was postulated to be induced by NOS and NOX in 3A cells during hypoxia. In conclusion, hypoxia induces oxidative stress in human trophoblasts by activating NOS and NOX. Subsequently, Mst3 is up-regulated and plays an important role in hypoxia-induced apoptosis of human trophoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号