首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The kinetics of active transport of an organic acid (fluorescein) through the membranes of the choroid plexus from the lateral ventricules of the brain of rabbit was studied both morphologically and functionally. It was shown that fluorescein is actively translocated through the apical and basal membrane of the epithelium and is accumulated in blood capillaries at a concentration exceeding one order of magnitude that in the incubation medium. The kinetic curves displaying saturation and the demonstration of inhibition by other acids shows that a specific carrier is involved in the transfer across the membrane. The active transport of fluorescein at 20°C was found to be sodium independent. Total exclusion of sodium from the incubation medium does not change the Michaelis constant (Km) and maximal velocity (V). The active transport depends on the operation of (Na+ + K+)-ATPase as energy source but obviously no specific complexes with the participation of sodium are involved.  相似文献   

2.
A A Nikiforov 《Tsitologiia》1985,27(7):834-837
Cadmium ions (10(-5)-10(-3) M) stimulate Na-dependent transport of a weak organic acid, fluorescein, into the proximal tubules of surviving frog kidney. Their stimulatory action ceases with increasing the duration of incubation to 45-60 minutes (stimulation does not disappear after introducing acetate into the incubating medium), in the presence of amiloride in the tubular lumen or in the absence of Na+ from the medium. The data obtained in the present work coincide with the previously reported evidence of the influence of Cd2+ on the Na-independent fluorescein transport into the proximal tubules of rat kidney. They are in good accordance with the suggestion that the effect of Cd2+ of the weak organic acid transport is mediated through an acceleration of the active reabsorption of Na+ with the accompanying activation of Na,K-ATPase.  相似文献   

3.
H Murer  U Hopfer    R Kinne 《The Biochemical journal》1976,154(3):597-604
Studies on proton and Na+ transport by isolated intestinal and renal brush-border-membrane vesicles were carried out to test for the presence of an Na+/H+-exchange system. Proton transport was evaluated as proton transfer from the intravesicular space to the incubation medium by monitoring pH changes in the membrane suspension induced by sudden addition of cations. Na+ transport was determined as Na+ uptake into the vesicles by filtration technique. A sudden addition of sodium salts (but not choline) to the membrane suspension provokes an acidification of the incubation medium which is abolished by the addition of 0.5% Triton X-100. Pretreatment of the membranes with Triton X-100 prevents the acidification. The acidification is also not observed if the [K+] and proton conductance of the membranes have been increased by the simultaneous addition of valinomycin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone to the K+-rich incubation medium. Either valinomycin or carbonyl cyanide p-trifluoromethoxyphenylhydrazone when added alone do not alter the response of the membranes to the addition of Na+. Na+ uptake by brush-border microvilli is enhanced in the presence of a proton gradient directed from the intravesicular space to the incubation medium. Under these conditions a transient accumulation of Na+ inside the vesicles is observed. It is concluded that intestinal and renal brush-border membranes contain a NA+/H+ antiport system which catalyses an electroneutral exchange of Na+ against protons and consequently can produce a proton gradient in the presence of a concentration difference for Na+. This system might be involved in the active proton secretion of the small intestine and the proximal tubule of the kidney.  相似文献   

4.
By direct microfluorimetry, the kinetic characteristics of active transport system for organic acid were studied. A removal of sodium from the incubation medium is shown to affect the affinity between a carrier and acids (KS), and the rate of translocation of the transporting complex (which includes a carrier and a substrate) across the plasma membrane. The data obtained are in good accordance with the concept of Na+-dependent transport.  相似文献   

5.
The influence of Cd++ (as well as of Hg++ and Cu++) on the uptake of an organic acid (fluorescein) in superficial proximal tubules of the surviving rat kidney was studied at 20 degrees C, when the active transport of fluorescein does not depend on the external Na. In contrast to mercury and copper, cadmium stimulated the uptake of fluorescein from the beginning of incubation. The minimal effective concentration of Cd++ was 5 X 10(-6)M, the relative effect of Cd++ on the uptake being the same within the concentration range from 5 X 10(-6) to 10(-3) M. A 60 minutes pre-incubation with Cd++ at 20 degrees C resulted in a significant increase in the stimulatory effect of acetate on the fluorescein transport. The stimulation of the fluorescein transport by cadmium was prevented by ouabain or by omissing Na from the incubating medium, although neither ouabain nor the absence of Na affected the transport of fluorescein under these conditions. It is supposed that the stimulation by Cd++ of the fluorescein transport may result from the activated oxidation of NAD-linked substrates due to acceleration of the active transepithelial transport of Na ions.  相似文献   

6.
The active transport of organic anions through the plasma membrane of the proximal tubules of frog kidney was studied. For this purpose a marker anion, fluorescein, was used, its flow into the tubules registered by the increase of fluorescense. The kinetics of transport was measured as function of time, concentration of substrate, concentration of a competing acid (p-aminohippuric acid) and temperature. The process is inhibited by strophantin, a specific poison for (Na+ + K+)-dependent ATPase. These data show that fluorescein transport is effected with the participation of a charged carrier, probably by the downfield mechanism postulated by Mitchell. To confirm this mechanism, a passive flow of K+ was created inwards across the membrane of the proximal tubules by means of valinomycin. It led to the discharge of the membrane and to the inhibition of fluorescein transport. Anions are transported downfield across the membrane, probably in a state of complexes with two Na+ ions.A magnetic field of 10 000–28 000 oersted inhibits the fluorescein transport strongly. This can be regarded as a proof of the liquid-crystalline structure of biological membranes and demonstrates the importance of this structure for active transport.  相似文献   

7.
This investigation was principally undertaken to test the ionic gradient hypothesis as applied to active p-aminohippurate uptake in the rabbit kidney cortical slice preparation. Efflux of p-aminohippurate from the slice was shown to be independent of external Na+ concentration. Transferring slices from a low sodium preincubation to a high sodium incubation medium containing p-aminohippurate increased intracellular concentrations of both Na+ and K+, and p-aminohippurate accumulation occurred. Transferring slices from a low sodium preincubation to a high sodium incubation medium containing ouabain and p-aminohippurate resulted in a net increase in intracellular Na+ concentration but no p-aminohippurate accumulation occurred. Different combinations of preincubation and incubation media gave a high to low array of intracellular Na+ concentrations and these directly reflected their respective p-aminohippurate uptake. These results suggest that the Na+ gradient hypothesis does not adequately explain the transport of organic acids in rabbit kidney. These results also suggest that Na+ possibly has an intracellular role through its stimulation of (Na+ + K+)-ATPase channeled to energizing the p-aminohippurate accumulative mechanism.  相似文献   

8.
The arginine-ornithine periplasmic binding protein, an essential component of the arginine-ornithine transport system of Escherichia coli, was isolated in a phosphorylated form and in a non-phosphorylated form from the periplasmic fluid, after incubation of intact cells with (32P)orthophosphate under conditions similar to those used for arginine transport studies. The binding protein could also be labeled with 32Pi by incubation in vitro of the periplasmic fluid with [gamma-32P]ATP, or by incubation in vitro of the purified binding protein with radioactive ATP, Mg2+ and a phosphokinase enzyme released by osmotic-shock treatment. The two forms of the protein were separated by DEAE-Sephacel chromatography. By several different criteria, which included binding studies, analyses of the amino acid composition of the two forms of the protein, analysis by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and testing for other components of the periplasmic space with affinities for inorganic phosphate, it was concluded that the 32P-labeled protein corresponds to a phosphorylated form of the arginine-ornithine-binding protein. The phosphorylation reaction required Mg2+ and a phosphokinase from the periplasmic fluid. The dissociation constant of the phosphorylated protein for arginine was 5.0 microM (dissociation constant of the unmodified protein equals 0.1 microM), suggesting that the chemically modified protein is the active form of the molecule which releases the ligand for its translocation through the cytoplasmic membrane. The pH-stability profile of the phosphoprotein has a 'U'-shape characteristic of acyl phosphates. Reaction of the phosphorylated binding protein with hydroxylamine at pH 5.4, also released Pi from the phosphoprotein. These properties suggest that the phosphoryl group of the phosphoprotein is linked covalently to a carboxyl function of the protein. This information indicates that ATP is a direct energy donor for the active transport of arginine and ornithine in E. coli, and a step of phosphorylation of the arginine-ornithine-binding protein appears to be involved in the utilization of the phosphate bond energy by the arginine-ornithine transport system.  相似文献   

9.
Synaptosomes isolated from guinea pig cerebral cortex accumulate L-carnitine from the medium in an active process, dependent on the sodium gradient across the plasma membrane and on (Na+ + K+)-ATPase activity. L-Carnitine uptake is inhibited by oxidative phosphorylation uncouplers and by ouabain, a known inhibitor of (Na+ + K+)-ATPase. In addition, the omission of Na+ or its replacement by Li+ inhibited the transport, which was also competitively inhibited by gamma-aminobutyrate. The kinetics of carnitine uptake show that the overall process would consist of two components: a passive diffusion and a carrier-mediated transport which is saturated at 1-2 mM carnitine concentration.  相似文献   

10.
M Rossato  A Nogara  M Merico  A Ferlin  C Foresta 《Steroids》1999,64(1-2):168-175
Steroid hormones influence cell functions by binding to intracellular receptors and then acting within the nucleus. There is now evidence that steroids affect cell functions also via interaction with plasma membrane receptors in a number of different cell types. In this regard, progesterone appears to be one of the most active steroids. In this paper, we evaluate the effects of progesterone on rat Leydig cell functions, determining variations of ion homeostasis and testosterone production. This steroid was able to effect a depolarization of the plasma membrane that was due to an influx of sodium (Na+) from the external medium since it was absent when extracellular Na+ was iso-osmotically substituted with choline chloride or sucrose. The determination of intracellular sodium concentration ([Na+]i) with the Na+ -sensitive fluorescent dye sodium-benzofuran-isophtalate (SBFI) confirmed these observations. Progesterone did not modify Leydig cell intracellular calcium concentration ([Ca2+]i) at any dose tested. Furthermore, using a cell impermeant progesterone conjugate, we demonstrated that progesterone was able to stimulate Leydig cell steroidogenesis in a dose-dependent manner. The exclusion of calcium (Ca2+) from the extracellular medium did not modify the depolarizing action of progesterone and its steroidogenetic effect while in Na+ -free medium (sucrose supplemented) progesterone-stimulated effects were completely blunted. Finally, using fluorescence microscopy with a fluorescein isothiocyanate-coupled cell impermeant progesterone conjugate, we identified plasma membrane binding sites for progesterone in rat Leydig cells. These results suggest that rat Leydig cells possess progesterone receptors located on the plasma membrane, which when occupied achieves a plasma membrane depolarization, dependent on an influx of Na+ from the external medium, and the subsequent activation of steroidogenesis.  相似文献   

11.
With the aid of a direct microfluorimetric method a dependence of organic onion (fluorescein) transport into proximal tubules of surviving frog kidney on Na+-flow in the opposite direction was studied. It was shown that the complete removal of Na+ from the tubules lumen resulted in inhibition of fluorescein transport of about 30%. After a specific inhibitor of sodium channels, amiloride (10-3M) having been introduced into lumen of the tubules, the fluorescein transport was inhibited to the same extent. Amiloride affects only when Na+ is present in the tubular lumen. S present in the tubular lumen. Strophantin K (5 · 10?5 M), a specific inhibitor of (Na+, K+)-ATPase, reduced fluorescein transport about twice. Substances increasing the 3′,5′-AMP level in cells (theophylline, NaF) and exogenous 3′,5′-AMP inhibited fluorescein transport while substance that decreased the 3′,5′-AMP level intracellularly (carbachol) stimulated it. For realization of these effects Na+ should be present in proximal tubules lumen.Thus, the various effects on the Na+ flow from lumen of the tubules to medium at the level of both the basal and apical membranes alter the rate of organic acid active transport from medium to lumen as a result of changes in the maximum rate of transport (V) with unchanged Km. It is suggested that the system of Na+ extrusion from proximal tubules produces peritubular membrane-side (near the membrane) gradient of Na+ concentration which may be higher than the summary Na+ gradient between the medium and the cytoplasm. The magnitude of this gradient affects the maximal rate value of Na+-dependent organic acid transport. So, there is a double dependence of the active transport system on Na+, and the stages where Na+ is needed are: (1) the formation of a carrier-substrate-Na+ complex and (2) the production of substantial membrane-side Na+ gradient at the expense of Na+ extrusion from the tubules.  相似文献   

12.
S T Ajayi  B F Smith  W B LeFlore 《Cytobios》1985,44(175):19-24
Freshly shed gravid proglottids from a three-month-old infection of Hydatigera taeniaeformis collected from the faecal droppings of infected cats were used for this study. They were treated for transmission electron microscopy (TEM) followed by incubation using the lead precipitate method. Control sections were incubated in a substrate-free medium, a substrate medium containing 1.0 mM sodium fluoride (NaF) (an inhibitor), and the last sections were denatured at 90 degrees C for 1 min prior to incubation. Intensive alkaline phosphatase activity in the embryophoric blocks and the outer embryophoric membrane was revealed. The reaction products were also indicated in the oncospheral membrane. However, no enzyme activity was seen in any other part of the egg. The enzyme was also absent in the control sections. The presence of alkaline phosphatase activity in the outer embryophoric and oncospheral membranes suggested that this enzyme may be involved in carbohydrate metabolism and nutritional absorption, and also may play a role in the transport of nutrients and other substances from the adult to the developing embryo, respectively.  相似文献   

13.
Proton entry into anaerobic Escherichia coli in response to the addition of HCl was measured by monitoring pH changes in the external solution. Preincubation of cells in a Na+ -free medium containing melibiose or methyl-alpha-galactoside (alpha MG) stimulated the rate of H+ entry in response to the acid pulse. This melibiose- or alpha MG-dependent proton pathway appeared to be identical to the melibiose carrier, since the channel was only observed in melibiose-induced cells. Furthermore, this membrane pathway for protons showed the same temperature sensitivity as the melibiose carrier (active at 30 degrees but inactive at 37 degrees). These observations are consistent with the idea that the melibiose transport system provides a pathway for protons in the presence of appropriate substrates, but that the pathway is closed to protons in the absence of the sugar. Such observations indicate that there is an obligatory coupling between H+ flux and melibiose or alpha MG flux through the carrier when Na+ is omitted from the incubation medium.  相似文献   

14.
The role of the rat liver plasma membrane in the regulation of uptake and subsequent deiodination of thyroxine (T4) or the biologically active thyroid hormone 3,3',5-triiodothyronine (T3) was investigated. Here we report on the production of monoclonal antibodies raised against rat hepatocytes. Two antibodies were selected. Antibody ER-22 did bind to a Mr 52,000 membrane protein and inhibited the 1- and 5-min uptake of both T4 and T3 by primary cultured rat hepatocytes in a dose-dependent fashion. As the uptake of T4 and T3 depends on the presence of a sodium gradient over the plasma membrane, the inhibitory potency of ER-22 on the Na+,K+-ATPase activity was investigated. No inhibition of the uptake of 86Rb+ could be determined, indicating that antibody ER-22 is not directed against the Na+,K+-ATPase but probably the carrier protein itself. Clearance of T3 from the medium and concomitant iodide production by cultured rat hepatocytes during a 20-h incubation in the presence of ER-22 were both inhibited by 50% with respect to a control incubation in the absence of monoclonal antibody, pointing to the importance of carrier-mediated transport in cellular uptake and metabolism of T3. A second monoclonal antibody did bind to two other plasma membrane proteins but did not inhibit transport of thyroid hormone.  相似文献   

15.
Characteristics of membrane transport losses during reticulocyte maturation   总被引:1,自引:0,他引:1  
The decline in activity of distinct membrane transport systems was followed during in vitro maturation of sheep reticulocytes, namely the sodium pump (measured as specific ouabain binding sites), Na+-glycine cotransport, and the nucleoside transporter (measured as specific nitrobenzylthioinosine binding sites). Certain features of this maturation-associated decline in membrane transport are clarified. Thus, the apparent retardation of loss by metabolic (ATP) depletion, reported previously for the sodium pump and Na+-glycine cotransport, is applicable also to the decline in nucleoside transport. The absolute losses, as well as relative effects of ATP depletion, are different for the three distinct systems. Inhibitors of membrane recycling and (or) intracellular processing, such as chloroquine, as well as ATP depletion, prevent not only the loss but also cause a transient increase in nucleoside transport sites apparent at the surface. Proteolytic processing, at least in the case of the nucleoside transporter, is probably also involved since leupeptin retards the loss in binding sites. Protection against the decline in transporters can also be affected by specific ligands as evidenced in ouabain protection of sodium pump sites. The results provide evidence that membrane transporter recycling is a fundamental process underlying the energy-dependent, maturation-associated loss in membrane transport functions.  相似文献   

16.
The effect of the fraction (1-10 kDa) obtained from the brain of cold-adapted animal (Yakut horse) on Ca2+ transport in sarcolemma vesicles of cardiomyocytes was investigated. It was shown that during insertion of Yakut horse brain fraction into incubation medium at the concentration from 10(-9) M to 3.10(-5) M at Ca2+ transport substrate concentration from 0.1 mM to 1.0 mM, the rate of Ca2+ passive penetration into vesicles slightly increased and at Ca2+ transport substrate concentration 3 mM, which is physiologic, a decrease of rate values was established for all concentrations of the fraction (1-10 kDa) of Yakut horse. While studying the kinetics of an active Ca2+ transport for all investigated concentrations of the fraction (1-10 kDa) of Yakut horse brain from 10(-9) M to 3.10(-5) M at Ca2+ concentration in incubation medium from 10(-7) to 3.10(-6) M, calcium accumulation rates by vesicles exceeded control values. So we can suppose that application of brain fraction (1-10 kDa) of genotypically cold-adapted animal, results in a decrease of intracellular Ca2+ concentration.  相似文献   

17.
Conductive transport of chloride ion is important in controlling ion and fluid secretion by exocrine tissues. The current study was directed at identifying proteins in the intestinal brush-border membrane that may be involved with conductive chloride transport. Reaction of total brush-border membrane protein with phenyl-isothiocyanate inhibited conductive chloride transport into brush-border membrane vesicles. The conductive transport process was protected from this inhibition by including the ligands Cl- and alpha-phenylcinnamate in the reaction mixture. Brush-border membrane protein protected by this procedure and labeled with fluorescein had an apparent molecular mass in the region of 130 and 23 kDa on separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phosphorylation of brush-border membrane protein with [gamma-32P] ATP and endogenous protein kinase under conditions causing activation of chloride conductance in membrane vesicles caused the transfer of 32P to several proteins, including ones in the same molecular size range (130 and 23 kDa) as those identified by the fluorescein labeling procedure. Conductive chloride transport in porcine intestinal brush-border vesicles may occur via proteins identified by this differential labeling procedure.  相似文献   

18.
19.
The effect of monovalent cations on proline transport in whole cells of Escherichia coli K-12 has been examined. Lithium ion added to the uptake medium stimulated proline transport severalfold and K+ and Na+ were slightly effective, whereas Rb+, Cs+, and NH4+ were completely without effect. The stimulatory effect of Li+ on proline transport was not due to an increase in osmolarity of the uptake medium, and d 5 mM p-chloromercuribenzene sulfonic acid completely blocked this effect of Li+ without having any effect on the basal rate of proline transport. The Arrhenius plots for Li+-stimulated transport showed a clear transition point at 35 degrees C in addition to 20 degrees C which was also detectable in the basal transport. Lithium ion stimulated proline transport synergistically in the presence of glucose and succinate as a carbon source. The addition of 2.5 mM KCN or 0.5 mM arsenate did not inhibit this synergistic effect, although the presence of these inhibitors inhibited completely the stimulation of proline transport induced by the addition of carbon source. Carbonylcyanide m-chlorophenylhydrazone and 2,4-dinitrophenol blocked both the basal and Li+-stimulated proline transport. When membrane potential of E. coli cells was measured by the dibenzyldimethylammonium uptake method, the incubation of Li+ with the cells did not affect the preexisting membrane potential. These results suggest that Li+ stimulates proline transport by intact cells of E. coli in a manner somewhat affecting membrane component(s) different from the transport carrier of proline. It is uncertain whether the effect of Li+ is directly involved in the mechanisms of energy coupling of proline transport.  相似文献   

20.
We have measured the movement of newly synthesized phosphatidylethanolamine (PE) molecules from sites of intracellular synthesis to the plasma membrane in cultured V79 Chinese hamster fibroblasts. Plasma membrane PE was distinguished from intracellular PE by its derivatization with an amino-reactive reagent, trinitrobenzene sulfonic acid, under nonpermeating conditions. Within minutes after the addition of radiolabeled precursors of PE to the culture medium, radiolabeled PE appeared at the plasma membrane. The fraction of radiolabeled PE molecules appearing at the plasma membrane increased rapidly over a 2-h period and then increased very slowly for several days to a constant specific radioactivity. By measuring the release of radiolabeled secretory proteins, we determined that the transport of newly synthesized proteins to the cell surface occurred more slowly than the transport of PE. Preincubation of cells with either cytochalasin B, cytochalasin D, colchicine, oncobendazole, sodium azide, 2-deoxyglucose, dinitrophenol, p-trifluoromethoxyphenylhydrazone, or monensin did not block the transport of de novo synthesized PE; however, incubation of cells in culture medium at 2 degrees C effectively halted the appearance of new PE molecules at the plasma membrane. When cells which had been incubated at 2 degrees C were warmed, PE molecules from intracellular PE pools once again began to appear at the plasma membrane. These results suggest that the rapid transport of newly synthesized PE molecules to the plasma membrane occurs by a mechanism independent of that used for the transport of newly synthesized proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号