首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of various structures by self-assembling single stranded DNA molecules is a widely used technology in the filed of DNA nanotechnology. Base sequences of single strands do predict the shape of the resulting nanostructure. Therefore, sequence design is crucial for the successful structure fabrication. This paper presents a sequence design algorithm based on mismatch minimization that can be applied to every desired DNA structure. With this algorithm, junctions, loops, single as well as double stranded regions, and very large structures up to several thousand base pairs can be handled. Thereby, the algorithm is fast for the most structures. Algorithm is Java-implemented. Its implementation is called Seed and is available publicly. As an example for a successful sequence generation, this paper presents the fabrication of DNA chain molecules consisting of double-crossover (DX) tiles as well.  相似文献   

2.
Abstract

Production of various structures by self-assembling single stranded DNA molecules is a widely used technology in the filed of DNA nanotechnology. Base sequences of single strands do predict the shape of the resulting nanostructure. Therefore, sequence design is crucial for the successful structure fabrication. This paper presents a sequence design algorithm based on mismatch minimization that can be applied to every desired DNA structure. With this algorithm, junctions, loops, single as well as double stranded regions, and very large structures up to several thousand base pairs can be handled. Thereby, the algorithm is fast for the most structures. Algorithm is Java-implemented. Its implementation is called Seed and is available publicly. As an example for a successful sequence generation, this paper presents the fabrication of DNA chain molecules consisting of double-crossover (DX) tiles as well.  相似文献   

3.
L W Coggins  M O'Prey  S Akhter 《Gene》1992,121(2):279-285
The human minisatellite arrays, 33.6 and 33.15, consist of tandem reiterations of a 37-nucleotide (nt) and a 16-nt repeat unit sequence, respectively, both of which contain a majority of purine bases on one strand. Knot-like tertiary structures, which mapped to the cloned arrays, were observed by electron microscopy (EM) in homoduplex molecules produced by denaturation and reannealing in vitro. They result from a primary hybridization between misaligned repeat units of the array, forming a slipped-strand structure with staggered single-stranded DNA loops, followed by a secondary hybridization between repeat units in the two loops. Depending on the relative alignment of the loops when they hybridize, a particular form of intrahelical pseudoknot is produced. Theta-shaped, figure-of-eight, and bow-shaped structures were the most common conformational isomers observed in homoduplexes flattened into two dimensions during EM preparation. At the site of a bow-shaped structure, a conformation-dependent bend of approximately 60 degrees between the flanking DNA segments is induced; the other conformations generally do not deflect the line of the main DNA axis. Paired loops, similar to the bow-shaped structure, were apically situated in some supercoiled plasmids containing the 33.6 array. Both plasmids formed intermolecular associations, consisting of two (or more) homoduplex molecules held together at or immediately adjacent to a nexus which mapped to the minisatellite sequences. These associations might arise either by interhelical hybridization between arrays or by knot-like structures interfering with branch migration of chi-form Holliday junctions.  相似文献   

4.
The human genome contains thousands of regions, including that of the telomere, that have the potential to form quadruplex structures. Many of these regions are potential targets for therapeutic intervention. There are many different folding patterns for quadruplex DNAs and the loops exhibit much more variation than do the quartets. The successful targeting of a particular quadruplex structure requires distinguishing that structure from all of the other quadruplex structures that may be present. A mix and measure fluorescent screening method has been developed, that utilizes multiple reporter molecules that bind to different features of quadruplex DNA. The reporter molecules are used in combination with DNAs that have a variety of quadruplex structures. The screening is based on observing the increase or decrease in the fluorescence of the reporter molecules. The selectivity of a set of test molecules has been determined by this approach.  相似文献   

5.
Heteroduplex DNA molecules of two bacteriophage mutants (lambda b2 and lambda i434ct68) were obtained by the method of molecular hybridization. These heteroduplexes possessed two types of loops formed as a result of: a) deletion in one of the DNA strands; and b) substitution of a DNA fragment for nonhomological one. The digestion of heteroduplexes with single-stranded specific nuclease SI from Aspergillus oryzae produced two fragments at 37 degrees C and three ones at 55 degrees C. The separation of fragments and determination of their molecular weight were carried out by means of electrophoresis in agarose. The molecular weights both measured and preliminarily calculated proved to be close. One of the fragments was identificated by its biological activity in CaCl2-dependent infectious system with helperphage.  相似文献   

6.
《Gene》1997,191(1):69-79
We have constructed a human genomic bacterial artificial chromosome (BAC) library using high molecular weight DNA from a pre-pro-B cell line, FLEB14-14, with a normal male diploid karyotype. This BAC library consists of 96 000 clones with an average DNA insert size of 110 kb, covering the human genome approximately 3 times. The library can be screened by three different methods. (1) Probe hybridization to 31 high-density replica (HDR) filters: each filter contains 3072 BAC clones which were gridded in a 6×6 pattern. (2) Probe hybridization to two Southern blot filters to which 31 HindIII digests of the pooled 3072 BAC clones were loaded. This identifies a particular HDR filter for which further probe hybridization is performed to identify a particular clone(s). (3) Two-step polymerase chain reaction (PCR). First, PCR is applied to DNA samples prepared from ten superpools of 9600 BAC clones each to identify a particular superpool and the second PCR is applied to 40 unique DNA samples prepared from the four-dimensionally assigned BAC clones of the particular superpool. We present typical examples of the library screening using these three methods. The two-step PCR screening is particularly powerful since it allows us to isolate a desired BAC clone(s) within a day or so. The theoretical consideration of the advantage of this method is presented. Furthermore, we have adapted Vectorette method to our BAC library for the isolation of terminal sequences of the BAC DNA insert to facilitate contig formation by BAC walking.  相似文献   

7.
The biophysics of nucleic acid hybridization and strand displacement have been used for the rational design of a number of nanoscale structures and functions. Recently, molecular amplification methods have been developed in the form of non-covalent DNA catalytic reactions, in which single-stranded DNA (ssDNA) molecules catalyze the release of ssDNA product molecules from multi-stranded complexes. Here, we characterize the robustness and specificity of one such strand displacement-based catalytic reaction. We show that the designed reaction is simultaneously sensitive to sequence mutations in the catalyst and robust to a variety of impurities and molecular noise. These properties facilitate the incorporation of strand displacement-based DNA components in synthetic chemical and biological reaction networks.  相似文献   

8.
9.
10.
DNA-bending flexibility is central for its many biological functions. A new bending restraining method for use in molecular mechanics calculations and molecular dynamics simulations was developed. It is based on an average screw rotation axis definition for DNA segments and allows inducing continuous and smooth bending deformations of a DNA oligonucleotide. In addition to controlling the magnitude of induced bending it is also possible to control the bending direction so that the calculation of a complete (2-dimensional) directional DNA-bending map is now possible. The method was applied to several DNA oligonucleotides including A(adenine)-tract containing sequences known to form stable bent structures and to DNA containing mismatches or an abasic site. In case of G:A and C:C mismatches a greater variety of conformations bent in various directions compared to regular B-DNA was found. For comparison, a molecular dynamics implementation of the approach was also applied to calculate the free energy change associated with bending of A-tract containing DNA, including deformations significantly beyond the optimal curvature. Good agreement with available experimental data was obtained offering an atomic level explanation for stable bending of A-tract containing DNA molecules. The DNA-bending persistence length estimated from the explicit solvent simulations is also in good agreement with experiment whereas the adiabatic mapping calculations with a GB solvent model predict a bending rigidity roughly two times larger.  相似文献   

11.
The analysis of ancient or processed DNA samples is often a great challenge, because traditional Polymerase Chain Reaction – based amplification is impeded by DNA damage. Blocking lesions such as abasic sites are known to block the bypass of DNA polymerases, thus stopping primer elongation. In the present work, we applied the SERRS-hybridization assay, a fully non-enzymatic method, to the detection of DNA refractory to PCR amplification. This method combines specific hybridization with detection by Surface Enhanced Resonant Raman Scattering (SERRS). It allows the detection of a series of double-stranded DNA molecules containing a varying number of abasic sites on both strands, when PCR failed to detect the most degraded sequences. Our SERRS approach can quickly detect DNA molecules without any need for DNA repair. This assay could be applied as a pre-requisite analysis prior to enzymatic reparation or amplification. A whole new set of samples, both forensic and archaeological, could then deliver information that was not yet available due to a high degree of DNA damage.  相似文献   

12.
We proposed to use a novel stepwise sequence-constructive SELEX method to develop DNA aptamers that can recognize Globo H which is a tumor-associated carbohydrate antigen. A combinatorial synthetic library that consisted of DNA molecules with randomized regions of 15-bases was used as the starting library for the first SELEX procedure. The input DNA library for the second round of SELEX consisted of the extension of the 5′ and 3′-ends with 7-bases that were randomized from four selected aptamers. The third round of SELEX was performed following the same procedures as described for the second round of SELEX. The experimental results indicate that the binding affinity of DNA aptamers to Globo H was enhanced when using the sequence-constructive SELEX approach. The selectivity of the DNA aptamers for related disaccharides, mannose derivatives, and Globo H analogs demonstrated the ability of the DNA aptamers to discriminate the presence of various glycans with different structures.  相似文献   

13.
A DNA fiber-based fluorescence in situ hybridization (fiber-FISH) technique was developed to analyze the structure and organization of a large number of intact chloroplast DNA (cpDNA) molecules from Arabidopsis, tobacco, and pea. Using this cytogenomic approach, we determined that 25 to 45% of the cpDNA within developing leaf tissue consists of circular molecules. Both linear and circular DNA fibers with one to four copies of the chloroplast genome were present, with monomers being the predominant structure. Arabidopsis and tobacco chloroplasts contained previously unidentified multimers (>900 kb) consisting of six to 10 genome equivalents. We further discovered rearranged cpDNA molecules of incomplete genome equivalents, confirmed by both differential hybridizations and size estimations. The unique cpDNA organization and novel structures revealed in this study demonstrate that higher plant cpDNA is more structurally plastic than previous sequence and electrophoretic analyses have suggested. Additionally, we demonstrate how the fiber-FISH-based cytogenomic approach allows for powerful analysis of very rare events that cannot be detected by traditional techniques such as DNA gel blot hybridization or polymerase chain reaction.  相似文献   

14.
Due to the exceptional molecular recognition properties of nucleic acids, the computational design of DNA sequence motifs is of paramount interest for a wide variety of applications, ranging from DNA-based nanotechnology and DNA computing to the broad field of DNA microarray technologies. These applications rely on the specificity of Watson-Crick base-pairing, and thus, are highly sensitive to non-specific interactions and the formation of any undesired secondary structures, which contradict an efficient intermolecular hybridization. Here we report on the in silico design and in vitro evaluation of single-stranded DNA (ssDNA) carrier strands for the directional DNA-based positioning of streptavidin (STV) conjugates covalently tagged with short ssDNA oligonucleotides. Each such carrier strand consists of four hybridization sites complementary to the conjugate DNA strands. The high and homogeneous hybridization efficiency measured in vitro by microarray hybridization assays confirms the quality of our in silico sequence design method. Hybridization efficiency of DNA-STV-conjugates depends on the position of the hybridization site in the carrier sequence, where the positions nearest to and farthest from the microarray surface proved to be most favorable.  相似文献   

15.
16.
17.
Here we describe a computational approach for the high-throughput sequence mapping of combinatorial libraries obtained by DNA shuffling. Original algorithms and their software implementation were developed for the automated and reliable analysis of hybridization data of differentially labeled oligonucleotide probes with PCR products spotted on DNA microarrays. This novel approach allows a context-dependent sequence attribution tolerant to fluctuations in experimental conditions and is well adapted to hybridization signals of variable qualities resulting from high-throughput PCR amplification from colonies. In addition, the analysis permits the calculation of sequence signatures that are characteristic of combinatorial library structure, defects, and diversity. The approach is of interest for the characterization and the equalization (library reduction to nonredundant structures) of combinatorial libraries involved in directed evolution and could be extrapolated to high-throughput polymorphism analysis.  相似文献   

18.
This paper develops mathematical methods for describing and analyzing RNA secondary structures. It was motivated by the need to develop rigorous yet efficient methods to treat transitions from one secondary structure to another, which we propose here may occur as motions of loops within RNAs having appropriate sequences. In this approach a molecular sequence is described as a vector of the appropriate length. The concept of symmetries between nucleic acid sequences is developed, and the 48 possible different types of symmetries are described. Each secondary structure possible for a particular nucleotide sequence determines a symmetric, signed permutation matrix. The collection of all possible secondary structures is comprised of all matrices of this type whose left multiplication with the sequence vector leaves that vector unchanged. A transition between two secondary structures is given by the product of the two corresponding structure matrices. This formalism provides an efficient method for describing nucleic acid sequences that allows questions relating to secondary structures and transitions to be addressed using the powerful methods of abstract algebra. In particular, it facilitates the determination of possible secondary structures, including those containing pseudoknots. Although this paper concentrates on RNA structure, this formalism also can be applied to DNA.  相似文献   

19.
Abstract

This paper develops mathematical methods for describing and analyzing RNA secondary structures. It was motivated by the need to develop rigorous yet efficient methods to treat transitions from one secondary structure to another, which we propose here may occur as motions of loops within RNAs having appropriate sequences. In this approach a molecular sequence is described as a vector of the appropriate length. The concept of symmetries between nucleic acid sequences is developed, and the 48 possible different types of symmetries are described. Each secondary structure possible for a particular nucleotide sequence determines a symmetric, signed permutation matrix. The collection of all possible secondary structures is comprised of all matrices of this type whose left multiplication with the sequence vector leaves that vector unchanged. A transition between two secondary structures is given by the product of the two corresponding structure matrices. This formalism provides an efficient method for describing nucleic acid sequences that allows questions relating to secondary structures and transitions to be addressed using the powerful methods of abstract algebra. In particular, it facilitates the determination of possible secondary structures, including those containing pseudoknots. Although this paper concentrates on RNA structure, this formalism also can be applied to DNA  相似文献   

20.
N Cu?ado  J Barrios  J L Santos 《Génome》2000,43(6):945-948
A method of preparing two-dimensional surface spreads of plant synaptonemal complexes (SCs) associated with fluorescence in situ hybridization (FISH) has been applied to analyze the location and organization of five different highly repeated DNA sequences in rye. Our observations indicate that, depending on the type of sequence, the chromatin displays different types of organization. Telomeric sequences were seen tightly associated with the SC while other repetitive DNA sequences were found to form loops that are associated with SCs only at their bases. On the contrary, the FISH signal of a centromeric satellite had a granular appearance, reflecting that the hybridization occurs only with parts of the chromatin loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号