首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Channelrhodopsins (ChR) are light-sensitive cation channels used in optogenetics, a technique that applies light to control cells (e.g., neurons) that have been modified genetically to express those channels. Although mutations are known to affect pore kinetics, little is known about how mutations induce changes at the molecular scale. To address this issue, we first measured channel opening and closing rates of a ChR chimera (C1C2) and selected variants (N297D, N297V, and V125L). Then, we used atomistic simulations to correlate those rates with changes in pore structure, hydration, and chemical interactions among key gating residues of C1C2 in both closed and open states. Overall, the experimental results show that C1C2 and its mutants do not behave like ChR2 or its analogous variants, except V125L, making C1C2 a unique channel. Our atomistic simulations confirmed that opening of the channel and initial hydration of the gating regions between helices I, II, III, and VII of the channel occurs with 1) the presence of 13-cis retinal; 2) deprotonation of a glutamic acid gating residue, E129; and 3) subsequent weakening of the central gate hydrogen bond between the same glutamic acid E129 and asparagine N297 in the central region of the pore. Also, an aspartate (D292) is the unambiguous primary proton acceptor for the retinal Schiff base in the hydrated channel.  相似文献   

2.
Channelrhodopsin-2 (ChR2) is a microbial-type rhodopsin found in the green algae Chlamydomonas reinhardtii. Under physiological conditions, ChR2 is an inwardly rectifying cation channel that permeates a wide range of mono- and divalent cations. Although this protein shares a high sequence homology with other microbial-type rhodopsins, which are ion pumps, ChR2 is an ion channel. A sequence alignment of ChR2 with bacteriorhodopsin, a proton pump, reveals that ChR2 lacks specific motifs and residues, such as serine and threonine, known to contribute to non-covalent interactions within transmembrane domains. We hypothesized that reintroduction of the eight transmembrane serine residues present in bacteriorhodopsin, but not in ChR2, will restrict the conformational flexibility and reduce the pore diameter of ChR2. In this work, eight single serine mutations were created at homologous positions in ChR2. Additionally, an endogenous transmembrane serine was replaced with alanine. We measured kinetics, changes in reversal potential, and permeability ratios in different alkali metal solutions using two-electrode voltage clamp. Applying excluded volume theory, we calculated the minimum pore diameter of ChR2 constructs. An analysis of the results from our experiments show that reintroducing serine residues into the transmembrane domain of ChR2 can restrict the minimum pore diameter through inter- and intrahelical hydrogen bonds while the removal of a transmembrane serine results in a larger pore diameter. Therefore, multiple positions along the intracellular side of the transmembrane domains contribute to the cation permeability of ChR2.  相似文献   

3.
Cytochrome c oxidase is the terminal electron acceptor in the respiratory chains of aerobic organisms and energetically couples the reduction of oxygen to water to proton pumping across the membrane. The mechanisms of proton uptake, gating, and pumping have yet to be completely elucidated at the molecular level for these enzymes. For Rhodobacter sphaeroides CytcO (cytochrome aa3), it appears as though the E286 side chain of subunit I is a branching point from which protons are shuttled either to the catalytic site for O2 reduction or to the acceptor site for pumped protons. Amide hydrogen-deuterium exchange mass spectrometry was used to investigate how mutation of this key branching residue to histidine (E286H) affects the structures and dynamics of four redox intermediate states. A functional characterization of this mutant reveals that E286H CytcO retains approximately 1% steady-state activity that is uncoupled from proton pumping and that proton transfer from H286 is significantly slowed. Backbone amide H-D exchange kinetics indicates that specific regions of CytcO, perturbed by the E286H mutation, are likely to be involved in proton gating and in the exit pathway for pumped protons. The results indicate that redox-dependent conformational changes around E286 are essential for internal proton transfer. E286H CytcO, however, is incapable of these specific conformational changes and therefore is insensitive to the redox state of the enzyme. These data support a model where the side chain conformation of E286 controls proton translocation in CytcO through its interactions with the proton gate, which directs the flow of protons either to the active site or to the exit pathway. In the E286H mutant, the proton gate does not function properly and the exit channel is unresponsive. These results provide new insight into the structure and mechanism of proton translocation by CytcO.  相似文献   

4.
Channelrhodopsin-2 (ChR2) is a microbial type rhodopsin and a light-gated cation channel that controls phototaxis in Chlamydomonas. We expressed ChR2 in COS-cells, purified it, and subsequently investigated this unusual photoreceptor by flash photolysis and UV-visible and Fourier transform infrared difference spectroscopy. Several transient photoproducts of the wild type ChR2 were identified, and their kinetics and molecular properties were compared with those of the ChR2 mutant E90Q. Based on the spectroscopic data we developed a model of the photocycle comprising six distinguishable intermediates. This photocycle shows similarities to the photocycle of the ChR2-related Channelrhodopsin of Volvox but also displays significant differences. We show that molecular changes include retinal isomerization, changes in hydrogen bonding of carboxylic acids, and large alterations of the protein backbone structure. These alterations are stronger than those observed in the photocycle of other microbial rhodopsins like bacteriorhodopsin and are related to those occurring in animal rhodopsins. UV-visible and Fourier transform infrared difference spectroscopy revealed two late intermediates with different time constants of tau = 6 and 40 s that exist during the recovery of the dark state. The carboxylic side chain of Glu(90) is involved in the slow transition. The molecular changes during the ChR2 photocycle are discussed with respect to other members of the rhodopsin family.  相似文献   

5.
Whereas electrogenic partial reactions of the Na,K-ATPase have been studied in depth, much less is known about the influence of the membrane potential on the electroneutrally operating gastric H,K-ATPase. In this work, we investigated site-specifically fluorescence-labeled H,K-ATPase expressed in Xenopus oocytes by voltage clamp fluorometry to monitor the voltage-dependent distribution between E(1)P and E(2)P states and measured Rb(+) uptake under various ionic and pH conditions. The steady-state E(1)P/E(2)P distribution, as indicated by the voltage-dependent fluorescence amplitudes and the Rb(+) uptake activity were highly sensitive to small changes in intracellular pH, whereas even large extracellular pH changes affected neither the E(1)P/E(2)P distribution nor transport activity. Notably, intracellular acidification by approximately 0.5 pH units shifted V(0.5), the voltage, at which the E(1)P/E(2)P ratio is 50∶50, by -100 mV. This was paralleled by an approximately two-fold acceleration of the forward rate constant of the E(1)P→E(2)P transition and a similar increase in the rate of steady-state cation transport. The temperature dependence of Rb(+) uptake yielded an activation energy of ~90 kJ/mol, suggesting that ion transport is rate-limited by a major conformational transition. The pronounced sensitivity towards intracellular pH suggests that proton uptake from the cytoplasmic side controls the level of phosphoenzyme entering the E(1)P→E(2)P conformational transition, thus limiting ion transport of the gastric H,K-ATPase. These findings highlight the significance of cellular mechanisms contributing to increased proton availability in the cytoplasm of gastric parietal cells. Furthermore, we show that extracellular Na(+) profoundly alters the voltage-dependent E(1)P/E(2)P distribution indicating that Na(+) ions can act as surrogates for protons regarding the E(2)P→E(1)P transition. The complexity of the intra- and extracellular cation effects can be rationalized by a kinetic model suggesting that cations reach the binding sites through a rather high-field intra- and a rather low-field extracellular access channel, with fractional electrical distances of ~0.5 and ~0.2, respectively.  相似文献   

6.
For studying the function of specific neurons in their native circuitry, it is desired to precisely control their activity. This often requires dissection to allow accurate electrical stimulation or neurotransmitter application , and it is thus inherently difficult in live animals, especially in small model organisms. Here, we employed channelrhodopsin-2 (ChR2), a directly light-gated cation channel from the green alga Chlamydomonas reinhardtii, in excitable cells of the nematode Caenorhabditis elegans, to trigger specific behaviors, simply by illumination. Channelrhodopsins are 7-transmembrane-helix proteins that resemble the light-driven proton pump bacteriorhodopsin , and they also utilize the chromophore all-trans retinal, but to open an intrinsic cation pore. In muscle cells, light-activated ChR2 evoked strong, simultaneous contractions, which were reduced in the background of mutated L-type, voltage-gated Ca2+-channels (VGCCs) and ryanodine receptors (RyRs). Electrophysiological analysis demonstrated rapid inward currents that persisted as long as the illumination. When ChR2 was expressed in mechanosensory neurons, light evoked withdrawal behaviors that are normally elicited by mechanical stimulation. Furthermore, ChR2 enabled activity of these neurons in mutants lacking the MEC-4/MEC-10 mechanosensory ion channel . Thus, specific neurons or muscles expressing ChR2 can be quickly and reversibly activated by light in live and behaving, as well as dissected, animals.  相似文献   

7.
Channelrhodopsin-2 (ChR2) is a light-gated cation channel widely used as a biotechnological tool to control membrane depolarization in various cell types and tissues. Although several ChR2 variants with modified properties have been generated, the structural determinants of the protein function are largely unresolved. We used bioinformatic modeling of the ChR2 structure to identify the putative cationic pathway within the channel, which is formed by a system of inner cavities that are uniquely present in this microbial rhodopsin. Site-directed mutagenesis combined with patch clamp analysis in HeLa cells was used to determine key residues involved in ChR2 conductance and selectivity. Among them, Gln-56 is important for ion conductance, whereas Ser-63, Thr-250, and Asn-258 are previously unrecognized residues involved in ion selectivity and photocurrent kinetics. This study widens the current structural information on ChR2 and can assist in the design of new improved variants for specific biological applications.  相似文献   

8.
Channelrhodopsin 2 (ChR2) is a microbial-type rhodopsin with a putative heptahelical structure that binds all-trans-retinal. Blue light illumination of ChR2 activates an intrinsic leak channel conductive for cations. Sequence comparison of ChR2 with the related ChR1 protein revealed a cluster of charged amino acids within the predicted transmembrane domain 2 (TM2), which includes glutamates E90, E97 and E101. Charge inversion substitutions of these residues significantly altered ChR2 function as revealed by two-electrode voltage-clamp recordings of light-induced currents from Xenopus laevis oocytes expressing the respective mutant proteins. Specifically, replacement of E90 by lysine or alanine resulted in differential effects on H+- and Na+-mediated currents. Our results are consistent with this glutamate side chain within the proposed TM2 contributing to ion flux through and the cation selectivity of ChR2.  相似文献   

9.
The sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) pumps Ca(2+) and countertransport protons. Proton pathways in the Ca(2+) bound and Ca(2+)-free states are suggested based on an analysis of crystal structures to which water molecules were added. The pathways are indicated by chains of water molecules that interact favorably with the protein. In the Ca(2+) bound state Ca(2)E1, one of the proposed Ca(2+) entry paths is suggested to operate additionally or alternatively as proton pathway. In analogs of the ADP-insensitive phosphoenzyme E2P and in the Ca(2+)-free state E2, the proton path leads between transmembrane helices M5 to M8 from the lumenal side of the protein to the Ca(2+) binding residues Glu-771, Asp-800 and Glu-908. The proton path is different from suggested Ca(2+) dissociation pathways. We suggest that separate proton and Ca(2+) pathways enable rapid (partial) neutralization of the empty cation binding sites. For this reason, transient protonation of empty cation binding sites and separate pathways for different ions are advantageous for P-type ATPases in general.  相似文献   

10.
In 2003, channelrhodopsin-2 (ChR2) from Chlamydomonas reinhardtii was discovered to be a light-gated cation channel, and since that time the channel became an excellent tool to control by light neuronal cells in culture as well as in living animals with high temporal and spatial resolution in a noninvasive manner. However, little is known about the spectral properties and their relation to the channel function. We have expressed ChR2 in the yeast Pichia pastoris and purified the protein. Flash-photolysis data were combined with patch-clamp studies to elucidate the photocycle. The protein absorbs maximally at ∼ 480 nm before light excitation and shows flash-induced absorbance changes with at least two different photointermediates. Four relaxation processes can be extracted from the time course that we have analysed in a linear model for the photocycle leading to the kinetic intermediates P1 to P4. A short-lived photointermediate at 400 nm, suggesting a deprotonation of the retinal Schiff base, is followed by a red-shifted (520 nm) species with a millisecond lifetime. The first three kinetic intermediates in the photocycle, P1 to P3, are described mainly by the red-shifted 520-nm species. The 400-nm species contributes to a smaller extent to P1 and P2. The fourth one, P4, is spectroscopically almost identical with the ground state and lasts into the seconds time region. We compared the spectroscopic data to current measurements under whole-cell patch-clamp conditions on HEK 293 cells. The lifetimes of the spectroscopically and electrophysiologically determined intermediates are in excellent agreement. The intermediates P2 and P3 (absorbing at 520 nm) are identified as the cation permeating states of the channel. Under stationary light, a modulation of the photocurrent by green light (540 nm) was observed. We conclude that the red-shifted spectral species represents the open channel state, and the thermal relaxation of this intermediate, the transition from P3 to P4, is coupled to channel closing.  相似文献   

11.
The photocycle kinetics of halorhodopsin from Natronobacterium pharaonis (pHR(575)) was analyzed at different temperatures and chloride concentrations as well as various halides. Over the whole range of modified parameters the kinetics can be adequately modeled with six apparent rate constants. Assuming a model in which the observed rates are assigned to irreversible transitions of a single relaxation chain, six kinetically distinguishable states (P(1-6)) are discernible that are formed from four chromophore states (spectral archetypes S(j): K(570), L(N)(520), O(600), pHR'(575)). Whereas P(1) coincides with K(570) (S(1)), both P(2) and P(3) have identical spectra resembling L(520) (S(2)), thus representing a true spectral silent transition between them. P(4) constitutes a fast temperature-dependent equilibrium between the chromophore states S(2) and S(3) (L(520) and O(600), respectively). The subsequent equilibrium (P(5)) of the same spectral archetypes is only moderately temperature dependent but shows sensitivity toward the type of anion and the chloride concentration. Therefore, S(2) and S(3) occurring in P(4) as well as in P(5) have to be distinguished and are assigned to L(520)<--> O(1)(600) and O(2)(600)<--> N(520) equilibrium, respectively. It is proposed that P(4) and P(5) represent the anion release and uptake steps. Based on the experimental data affinities of the halide binding sites are estimated.  相似文献   

12.
Cytochrome c oxidase couples reduction of dioxygen to water to translocation of protons over the inner mitochondrial or bacterial membrane. A likely proton acceptor for pumped protons is the Delta-propionate of heme a(3), which may receive the proton via water molecules from a conserved glutamic acid (E278 in subunit I of the Paracoccus denitrificans enzyme) and which receives a hydrogen bond from a conserved tryptophan, W164. Here, W164 was mutated to phenylalanine (W164F) to further explore the role of the heme a(3) Delta-propionate in proton translocation. FTIR spectroscopy showed changes in vibrations possibly attributable to heme propionates, and the midpoint redox potential of heme a(3) decreased by approximately 50 mV. The reaction of the oxidized W164F enzyme with hydrogen peroxide yielded substantial amounts of the intermediate F' even at high pH, which suggests that the mutation rearranges the local electric field in the binuclear center that controls the peroxide reaction. The steady-state proton translocation stoichiometry of the W164F enzyme dropped to approximately 0.5 H(+)/e(-) in cells and reconstituted proteoliposomes. Time-resolved electrometric measurements showed that when the fully reduced W164F enzyme reacted with O(2), the membrane potential generated in the fast phase of this reaction was far too small to account either for full proton pumping or uptake of a substrate proton from the inside of the proteoliposomes. Time-resolved optical spectroscopy showed that this fast electrometric phase occurred with kinetics corresponding to the transition from state A to P(R), whereas the subsequent transition to the F state was strongly delayed. This is due to a delay of reprotonation of E278 via the D-pathway, which was confirmed by observation of a slowed rate of Cu(A) oxidation and which explains the small amplitude of the fast charge transfer phase. Surprisingly, the W164F mutation thus mimics a weak block of the D-pathway, which is interpreted as an effect on the side chain isomerization of E278. The fast charge translocation may be due to transfer of a proton from E278 to a "pump site" above the heme groups and is likely to occur also in wild-type enzyme, though not distinguished earlier due to the high-amplitude membrane potential formation during the P(R)--> F transition.  相似文献   

13.
Hauser K  Barth A 《Biophysical journal》2007,93(9):3259-3270
Protonation of acidic residues in the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA 1a) was studied by multiconformation continuum electrostatic calculations in the Ca(2+)-bound state Ca(2)E1, in the Ca(2+)-free state E2(TG) with bound thapsigargin, and in the E2P (ADP-insensitive phosphoenzyme) analog state with MgF(4)(2-) E2(TG+MgF(4)(2-)). Around physiological pH, all acidic Ca(2+) ligands (Glu(309), Glu(771), Asp(800), and Glu(908)) were unprotonated in Ca(2)E1; in E2(TG) and E2(TG+MgF(4)(2-)) Glu(771), Asp(800), and Glu(908) were protonated. Glu(771) and Glu(908) had calculated pK(a) values larger than 14 in E2(TG) and E2(TG+MgF(4)(2-)), whereas Asp(800) titrated with calculated pK(a) values near 7.5. Glu(309) had very different pK(a) values in the Ca(2+)-free states: 8.4 in E2(TG+MgF(4)(2-)) and 4.7 in E2(TG) because of a different local backbone conformation. This indicates that Glu(309) can switch between a high and a low pK(a) mode, depending on the local backbone conformation. Protonated Glu(309) occupied predominantly two main, very differently orientated side-chain conformations in E2(TG+MgF(4)(2-)): one oriented inward toward the other Ca(2+) ligands and one oriented outward toward a protein channel that seems to be in contact with the cytoplasm. Upon deprotonation, Glu(309) adopted completely the outwardly orientated side-chain conformation. The contact of Glu(309) with the cytoplasm in E2(TG+MgF(4)(2-)) makes this residue unlikely to bind lumenal protons. Instead it might serve as a proton shuttle between Ca(2+)-binding site I and the cytoplasm. Glu(771), Asp(800), and Glu(908) are proposed to take part in proton countertransport.  相似文献   

14.
Acid-sensing ion channels (ASICs) are a group of trimeric cation permeable channels gated by extracellular protons that are mainly expressed in the nervous system. Despite the structural information available for ASIC1, there is limited understanding of the molecular mechanism that allows these channels to sense and respond to drops in extracellular pH. In this report, we employed the substituted cysteine accessibility method and site-directed mutagenesis to examine the mechanism of activation of ASIC1a by extracellular protons. We found that the modification of E238C and D345C channels by MTSET reduced proton apparent affinity for activation. Furthermore, the introduction of positively charged residues at position 345 rendered shifted biphasic proton activation curves. Likewise, channels bearing mutations at positions 79 and 416 in the palm domain of the channel showed reduced proton apparent affinity and biphasic proton activation curves. Of significance, the effect of the mutations at positions 79 and 345 on channel activation was additive. E79K-D345K required a change to a pH lower than 2 for maximal activation. In summary, this study provides direct evidence for the presence of two distinct proton coordination sites in the extracellular region of ASIC1a, which jointly facilitate pore opening in response to extracellular acidification.  相似文献   

15.
Yu Y  Chen Z  Li WG  Cao H  Feng EG  Yu F  Liu H  Jiang H  Xu TL 《Neuron》2010,68(1):61-72
Acid-sensing ion channels (ASICs) have long been considered as extracellular proton (H(+))-gated cation channels, and peripheral ASIC3 channels seem to be a natural sensor of acidic pain. Here, we report the identification of a nonproton sensor on ASIC3. We show first that 2-guanidine-4-methylquinazoline (GMQ) causes persistent ASIC3 channel activation at the normal pH. Using GMQ as a probe and combining mutagenesis and covalent modification analysis, we then uncovered a ligand sensor lined by residues around E423 and E79 of the extracellular "palm" domain of the ASIC3 channel that is crucial for activation by nonproton activators. Furthermore, we show that GMQ activates sensory neurons and causes pain-related behaviors in an ASIC3-dependent manner, indicating the functional significance of ASIC activation by nonproton ligands. Thus, natural ligands beyond protons may activate ASICs under physiological and pathological conditions through the nonproton ligand sensor, serving for channel activation independent of abrupt and marked acidosis.  相似文献   

16.
Channelrhodopsin (ChR) is a light-gated cation channel that responds to blue light. Since ChR can be readily expressed in specific neurons to precisely control their activities by light, it has become a powerful tool in neuroscience. Although the recently solved crystal structure of a chimeric ChR, C1C2, provided the structural basis for ChR, our understanding of the molecular mechanism of ChR still remains limited. Here we performed electrophysiological analyses and all-atom molecular dynamics (MD) simulations, to investigate the importance of the intracellular and central constrictions of the ion conducting pore observed in the crystal structure of C1C2. Our electrophysiological analysis revealed that two glutamate residues, Glu122 and Glu129, in the intracellular and central constrictions, respectively, should be deprotonated in the photocycle. The simulation results suggested that the deprotonation of Glu129 in the central constriction leads to ion leakage in the ground state, and implied that the protonation of Glu129 is important for preventing ion leakage in the ground state. Moreover, we modeled the 13-cis retinal bound; i.e., activated C1C2, and performed MD simulations to investigate the conformational changes in the early stage of the photocycle. Our simulations suggested that retinal photoisomerization induces the conformational change toward channel opening, including the movements of TM6, TM7 and TM2. These insights into the dynamics of the ground states and the early photocycle stages enhance our understanding of the channel function of ChR.  相似文献   

17.
Channelrhodopsin-2 (ChR2) from the green alga Chlamydomonas reinhardtii functions as a light-gated cation channel that has been developed as an optogenetic tool to stimulate specific nerve cells in animals and control their behavior by illumination. The molecular mechanism of ChR2 has been extensively studied by a variety of spectroscopic methods, including light-induced difference Fourier transform infrared (FTIR) spectroscopy, which is sensitive to structural changes in the protein upon light activation. An atomic structure of channelrhodopsin was recently determined by x-ray crystallography using a chimera of channelrhodopsin-1 (ChR1) and ChR2. Electrophysiological studies have shown that ChR1/ChR2 chimeras are less desensitized upon continuous illumination than native ChR2, implying that there are some structural differences between ChR2 and chimeras. In this study, we applied light-induced difference FTIR spectroscopy to ChR2 and ChR1/ChR2 chimeras to determine the molecular basis underlying these functional differences. Upon continuous illumination, ChR1/ChR2 chimeras exhibited structural changes distinct from those in ChR2. In particular, the protonation state of a glutamate residue, Glu-129 (Glu-90 in ChR2 numbering), in the ChR chimeras is not changed as dramatically as in ChR2. Moreover, using mutants stabilizing particular photointermediates as well as time-resolved measurements, we identified some differences between the major photointermediates of ChR2 and ChR1/ChR2 chimeras. Taken together, our data indicate that the gating and desensitizing processes in ChR1/ChR2 chimeras are different from those in ChR2 and that these differences should be considered in the rational design of new optogenetic tools based on channelrhodopsins.  相似文献   

18.
Eeva-Liisa Karjalainen  Andreas Barth 《BBA》2007,1767(11):1310-1318
The sarcoplasmic reticulum Ca2+-ATPase (SERCA1a) pumps Ca2+ and countertransport protons. Proton pathways in the Ca2+ bound and Ca2+-free states are suggested based on an analysis of crystal structures to which water molecules were added. The pathways are indicated by chains of water molecules that interact favorably with the protein. In the Ca2+ bound state Ca2E1, one of the proposed Ca2+ entry paths is suggested to operate additionally or alternatively as proton pathway. In analogs of the ADP-insensitive phosphoenzyme E2P and in the Ca2+-free state E2, the proton path leads between transmembrane helices M5 to M8 from the lumenal side of the protein to the Ca2+ binding residues Glu-771, Asp-800 and Glu-908. The proton path is different from suggested Ca2+ dissociation pathways. We suggest that separate proton and Ca2+ pathways enable rapid (partial) neutralization of the empty cation binding sites. For this reason, transient protonation of empty cation binding sites and separate pathways for different ions are advantageous for P-type ATPases in general.  相似文献   

19.
Channelrhodopsins, such as the algal phototaxis receptor Platymonas subcordiformis channelrhodopsin-2 (PsChR2), are light-gated cation channels used as optogenetic tools for photocontrol of membrane potential in living cells. Channelrhodopsin (ChR)-mediated photocurrent responses are complex and poorly understood, exhibiting alterations in peak current amplitude, extents and kinetics of inactivation, and kinetics of the recovery of the prestimulus dark current that are sensitive to duration and frequency of photostimuli. From the analysis of time-resolved optical absorption data, presented in the accompanying article, we derived a two-cycle model that describes the photocycles of PsChR2. Here, we applied the model to evaluate the transient currents produced by PsChR2 expressed in HEK293 cells under both fast laser excitation and step-like continuous illumination. Interpretation of the photocurrents in terms of the photocycle kinetics indicates that the O states in both cycles are responsible for the channel current and fit the current transients under the different illumination regimes. The peak and plateau currents in response to a single light step, a train of light pulses, and a light step superimposed on a continuous light background observed for ChR2 proteins are explained in terms of contributions from the two parallel photocycles. The analysis shows that the peak current desensitization and recovery phenomena are inherent properties of the photocycles. The light dependence of desensitization is reproduced and explained by the time evolution of the concentration transients in response to step-like illumination. Our data show that photocycle kinetic parameters are sufficient to explain the complex dependence of photocurrent responses to photostimuli.  相似文献   

20.
Rhodopsin photosensors of phototactic algae act as light-gated cation channels when expressed in animal cells. These proteins (channelrhodopsins) are extensively used for millisecond scale photocontrol of cellular functions (optogenetics). We report characterization of PsChR, one of the phototaxis receptors in the alga Platymonas (Tetraselmis) subcordiformis. PsChR exhibited ∼3-fold higher unitary conductance and greater relative permeability for Na+ ions, as compared with the most frequently used channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Photocurrents generated by PsChR in HEK293 cells showed lesser inactivation and faster peak recovery than those by CrChR2. Their maximal spectral sensitivity was at 445 nm, making PsChR the most blue-shifted channelrhodopsin so far identified. The λmax of detergent-purified PsChR was 437 nm at neutral pH and exhibited red shifts (pKa values at 6.6 and 3.8) upon acidification. The purified pigment undergoes a photocycle with a prominent red-shifted intermediate whose formation and decay kinetics match the kinetics of channel opening and closing. The rise and decay of an M-like intermediate prior to formation of this putative conductive state were faster than in CrChR2. PsChR mediated sufficient light-induced membrane depolarization in cultured hippocampal neurons to trigger reliable repetitive spiking at the upper threshold frequency of the neurons. At low frequencies spiking probability decreases less with PsChR than with CrChR2 because of the faster recovery of the former. Its blue-shifted absorption enables optogenetics at wavelengths even below 400 nm. A combination of characteristics makes PsChR important for further research on structure-function relationships in ChRs and potentially useful for optogenetics, especially for combinatorial applications when short wavelength excitation is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号