首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Finding habitat patches and directional connectivity   总被引:12,自引:0,他引:12  
For animal species inhabiting patchy environments, the search behavior of individuals and the distance from which they can detect suitable habitat (perceptual range) are key determinants of the functional connectivity of landscapes. We examined the movement behavior and perceptual range of adult cactus bugs ( Chelinidea vittiger ), which are habitat specialists that feed and reproduce on Opuntia cactus. Movement pathways of walking individuals released into unsuitable matrix habitat (30–3000 m from Opuntia ) were highly directional. These results supported predictions of optimal search behavior from published simulation models. A release experiment within natural patch networks indicated that the perceptual range of C. vittiger depended on size of the target patch, matrix structure, and direction of the target patch relative to prevailing winds. A strong effect of wind direction on orientation behavior (and presumed perceptual range) was evident in a release experiment using 'artificial' patches of potted Opuntia . In these two experiments, individuals released 50–100 cm from Opuntia patches were more likely to orientate toward patches located upwind than to those located crosswind or downwind. A reexamination of the pathways of individuals walking in the matrix also revealed a strong bias for movement upwind. Such upwind movement by individuals, both within and outside of patch networks, suggests that C. vittiger uses olfaction to navigate and it complicates our ability to interpret search behavior and to estimate perceptual range. Current techniques for assessing perceptual range have limitations for olfactory-based species. Furthermore, we need to broaden our view of perceptual range and of patch and landscape connectivity. Perceptual range may be anisotropic and connectivity may be directional. An organism-based approach to spatial ecology requires that we consider the dominant senses used by species when navigating around patchy landscapes.  相似文献   

2.
Humans have long marveled at the ability of animals to navigate swiftly, accurately, and across long distances. Many mechanisms have been proposed for how animals acquire, store, and retrace learned routes, yet many of these hypotheses appear incongruent with behavioral observations and the animals’ neural constraints. The “Navigation by Scene Familiarity Hypothesis” proposed originally for insect navigation offers an elegantly simple solution for retracing previously experienced routes without the need for complex neural architectures and memory retrieval mechanisms. This hypothesis proposes that an animal can return to a target location by simply moving toward the most familiar scene at any given point. Proof of concept simulations have used computer-generated ant’s-eye views of the world, but here we test the ability of scene familiarity algorithms to navigate training routes across satellite images extracted from Google Maps. We find that Google satellite images are so rich in visual information that familiarity algorithms can be used to retrace even tortuous routes with low-resolution sensors. We discuss the implications of these findings not only for animal navigation but also for the potential development of visual augmentation systems and robot guidance algorithms.  相似文献   

3.
While the mechanistic links between animal movement and population dynamics are ecologically obvious, it is much less clear when knowledge of animal movement is a prerequisite for understanding and predicting population dynamics. GPS and other technologies enable detailed tracking of animal location concurrently with acquisition of landscape data and information on individual physiology. These tools can be used to refine our understanding of the mechanistic links between behaviour and individual condition through ‘spatially informed’ movement models where time allocation to different behaviours affects individual survival and reproduction. For some species, socially informed models that address the movements and average fitness of differently sized groups and how they are affected by fission–fusion processes at relevant temporal scales are required. Furthermore, as most animals revisit some places and avoid others based on their previous experiences, we foresee the incorporation of long-term memory and intention in movement models. The way animals move has important consequences for the degree of mixing that we expect to find both within a population and between individuals of different species. The mixing rate dictates the level of detail required by models to capture the influence of heterogeneity and the dynamics of intra- and interspecific interaction.  相似文献   

4.
The magnetic sense and its use in long-distance navigation by animals   总被引:9,自引:0,他引:9  
True navigation by animals is likely to depend on events occurring in the individual cells that detect magnetic fields. Minimum thresholds of detection, perception and 'interpretation' of magnetic field stimuli must be met if animals are to use a magnetic sense to navigate. Recent technological advances in animal tracking devices now make it possible to test predictions from models of navigation based on the use of variations in magnetic intensity.  相似文献   

5.
Animal movement has been the focus on much theoretical and empirical work in ecology over the last 25 years. By studying the causes and consequences of individual movement, ecologists have gained greater insight into the behavior of individuals and the spatial dynamics of populations at increasingly higher levels of organization. In particular, ecologists have focused on the interaction between individuals and their environment in an effort to understand future impacts from habitat loss and climate change. Tools to examine this interaction have included: fractal analysis, first passage time, Lévy flights, multi‐behavioral analysis, hidden markov models, and state‐space models. Concurrent with the development of movement models has been an increase in the sophistication and availability of hierarchical bayesian models. In this review we bring these two threads together by using hierarchical structures as a framework for reviewing individual models. We synthesize emerging themes in movement ecology, and propose a new hierarchical model for animal movement that builds on these emerging themes. This model moves away from traditional random walks, and instead focuses inference on how moving animals with complex behavior interact with their landscape and make choices about its suitability.  相似文献   

6.
Many species of fish, bird, and insect form groups of individuals that move together, called schools, flocks, or swarms, of characteristic shape and speed. Here we study a model that traces movements of many individuals, in which each individual moves at a constant speed, and changes its movement angle in response to its neighbors within a radius of interaction. Outside of a short range of separation (or repulsion), each individual changes moving direction to achieve a similar moving direction as its neighbors (alignment) and to move toward them (cohesion). Between each pair of individuals within an interaction range, both alignment and cohesion are at work simultaneously (multiple forces model). This is different from many other models for animal group formation in which only one of the two forces is at work (single force model), different forces operating in different zones of between-individual distance. Depending on the relative strength of alignment and cohesion, our model produces groups of two distinct patterns: marches and circles. We showed the phase diagram of group patterns depending on the relative strength of alignment and cohesion. As the strength of alignment relative to cohesion increases, the shapes of groups change gradually in the following order: (1) circles, (2) mixture of circles and marches, (3) short marches, (4) long marches, (5) wide marches. We derived a formula for the spatial size of circles, which explains that the radius of circles does not change with the number of individuals, but it increases with moving speed and decreases with the sensitivity of moving direction to neighbors.  相似文献   

7.
Self-organised path formation in a swarm of robots   总被引:1,自引:0,他引:1  
In this paper, we study the problem of exploration and navigation in an unknown environment from an evolutionary swarm robotics perspective. In other words, we search for an efficient exploration and navigation strategy for a swarm of robots, which exploits cooperation and self-organisation to cope with the limited abilities of the individual robots. The task faced by the robots consists in the exploration of an unknown environment in order to find a path between two distant target areas. The collective strategy is synthesised through evolutionary robotics techniques, and is based on the emergence of a dynamic structure formed by the robots moving back and forth between the two target areas. Due to this structure, each robot is able to maintain the right heading and to efficiently navigate between the two areas. The evolved behaviour proved to be effective in finding the shortest path, adaptable to new environmental conditions, scalable to larger groups and larger environment size, and robust to individual failures.  相似文献   

8.
Body condition is an indicator of health, and it plays a key role in many vital processes for mammalian species. While evidence of individual body condition can be obtained, these observations provide just brief glimpses into the health state of the animal. An analytical framework is needed for understanding how health of animals changes over space and time.Through knowledge of individual health we can better understand the status of populations. This is particularly important in endangered species, where the consequences of disruption of critical biological functions can push groups of animals rapidly toward extinction. Here we built a state-space model that provides estimates of movement, health, and survival. We assimilated 30+ years of photographic evidence of body condition and three additional visual health parameters in individual North Atlantic right whales, together with survey data, to infer the true health status as it changes over space and time. We also included the effect of reproductive status and entanglement status on health. At the population level, we estimated differential movement patterns in males and females. At the individual level, we estimated the likely animal locations each month. We estimated the relationship between observed and latent health status. Observations of body condition, skin condition, cyamid infestation on the blowholes, and rake marks all provided measures of the true underlying health. The resulting time series of individual health highlight both normal variations in health status and how anthropogenic stressors can affect the health and, ultimately, the survival of individuals. This modeling approach provides information for monitoring of health in right whales, as well as a framework for integrating observational data at the level of individuals up through the health status of the population. This framework can be broadly applied to a variety of systems – terrestrial and marine – where sporadic observations of individuals exist.  相似文献   

9.
Mobile robots and animals alike must effectively navigate their environments in order to achieve their goals. For animals goal-directed navigation facilitates finding food, seeking shelter or migration; similarly robots perform goal-directed navigation to find a charging station, get out of the rain or guide a person to a destination. This similarity in tasks extends to the environment as well; increasingly, mobile robots are operating in the same underwater, ground and aerial environments that animals do. Yet despite these similarities, goal-directed navigation research in robotics and biology has proceeded largely in parallel, linked only by a small amount of interdisciplinary research spanning both areas. Most state-of-the-art robotic navigation systems employ a range of sensors, world representations and navigation algorithms that seem far removed from what we know of how animals navigate; their navigation systems are shaped by key principles of navigation in ‘real-world’ environments including dealing with uncertainty in sensing, landmark observation and world modelling. By contrast, biomimetic animal navigation models produce plausible animal navigation behaviour in a range of laboratory experimental navigation paradigms, typically without addressing many of these robotic navigation principles. In this paper, we attempt to link robotics and biology by reviewing the current state of the art in conventional and biomimetic goal-directed navigation models, focusing on the key principles of goal-oriented robotic navigation and the extent to which these principles have been adapted by biomimetic navigation models and why.  相似文献   

10.
Roshier DA  Doerr VA  Doerr ED 《Oecologia》2008,156(2):465-477
Most ecological and evolutionary processes are thought to critically depend on dispersal and individual movement but there is little empirical information on the movement strategies used by animals to find resources. In particular, it is unclear whether behavioural variation exists at all scales, or whether behavioural decisions are primarily made at small spatial scales and thus broad-scale patterns of movement simply reflect underlying resource distributions. We evaluated animal movement responses to variable resource distributions using the grey teal (Anas gracilis) in agricultural and desert landscapes in Australia as a model system. Birds in the two landscapes differed in the fractal dimension of their movement paths, with teal in the desert landscape moving less tortuously overall than their counterparts in the agricultural landscape. However, the most striking result was the high levels of individual variability in movement strategies, with different animals exhibiting different responses to the same resources. Teal in the agricultural basin moved with both high and low tortuosity, while teal in the desert basin primarily moved using low levels of tortuosity. These results call into question the idea that broad-scale movement patterns simply reflect underlying resource distributions, and suggest that movement responses in some animals may be behaviourally complex regardless of the spatial scale over which movement occurs.  相似文献   

11.
1.?Understanding the effects of environmental factors on animal distributions is a central issue in ecology. However, movement rules inferred from distribution patterns do not reveal the processes through which animal distribution is realized. 2.?We investigated individual movement rules using a process-based approach. In experiments, coastal fish larvae (red drum, Sciaenops ocellatus) were matched with an intraspecific competitor of different sizes, and time series of habitat transition of individuals were fitted with a continuous-time Markov chain model to evaluate the effects of the presence of a competitor, behavioural interactions and habitat quality on the likelihoods of habitat transition. 3.?The process-based approach revealed that these factors did not simply act as a 'slope' between habitats that makes it easier to go in one direction and more difficult to return. Rather, these factors modify the movement rules differently depending on the directions of the movement. 4.?Individuals were less likely to enter a better habitat in the presence of a larger conspecific, more likely to shift to a poorer habitat when they received aggressive behaviour and more likely to stay in a better habitat in the presence of food. However, no effect was found on the transition intensity for moving in the opposite direction. 5.?The process-based approach to evaluating movement rules of animals allowed us to see the contrasting directional effects of different factors on the underlying movement rules used by animals, as opposed to pattern-based fitting of observed distributions. Consideration of these rules would improve the existing habitat-choice models.  相似文献   

12.
Animal movement strategies including migration, dispersal, nomadism, and residency are shaped by broad‐scale spatial‐temporal structuring of the environment, including factors such as the degrees of spatial variation, seasonality and inter‐annual predictability. Animal movement strategies, in turn, interact with the characteristics of individuals and the local distribution of resources to determine local patterns of resource selection with complex and poorly understood implications for animal fitness. Here we present a multi‐scale investigation of animal movement strategies and resource selection. We consider the degree to which spatial variation, seasonality, and inter‐annual predictability in resources drive migration patterns among different taxa and how movement strategies in turn shape local resource selection patterns. We focus on adult Galapagos giant tortoises Chelonoidis spp. as a model system since they display many movement strategies and evolved in the absence of predators of adults. Specifically, our analysis is based on 63 individuals among four taxa tracked on three islands over six years and almost 106 tortoise re‐locations. Tortoises displayed a continuum of movement strategies from migration to sedentarism that were linked to the spatio‐temporal scale and predictability of resource distributions. Movement strategies shaped patterns of resource selection. Specifically, migratory individuals displayed stronger selection toward areas where resources were more predictable among years than did non‐migratory individuals, which indicates a selective advantage for migrants in seasonally structured, more predictable environments. Our analytical framework combines large‐scale predictions for movement strategies, based on environmental structuring, with finer‐scale analysis of space‐use. Integrating different organizational levels of analysis provides a deeper understanding of the eco‐evolutionary dynamics at play in the emergence and maintenance of migration and the critical role of resource predictability. Our results highlight that assessing the potential benefits of differential behavioral responses first requires an understanding of the interactions among movement strategies, resource selection and individual characteristics.  相似文献   

13.
One of the most difficult sensorimotor behaviors exhibited by flying animals is the ability to track another flying animal based on its sound emissions. From insects to mammals, animals display this ability in order to localize and track conspecifics, mate or prey. The pursuing individual must overcome multiple non-trivial challenges including the detection of the sounds emitted by the target, matching the input received by its (mostly) two sensors, localizing the direction of the sound target in real time and then pursuing it. All this has to be done rapidly as the target is constantly moving. In this project, we set to mimic this ability using a physical bio-mimetic autonomous drone. We equipped a miniature commercial drone with our in-house 2D sound localization electronic circuit which uses two microphones (mimicking biological ears) to localize sound signals in real-time and steer the drone in the horizontal plane accordingly. We focus on bat signals because bats are known to eavesdrop on conspecifics and follow them, but our approach could be generalized to other biological signals and other man-made signals. Using two different experiments, we show that our fully autonomous aviator can track the position of a moving sound emitting target and pursue it in real-time. Building an actual robotic-agent, forced us to deal with real-life difficulties which also challenge animals. We thus discuss the similarities and differences between our and the biological approach.  相似文献   

14.
State-space models of individual animal movement   总被引:4,自引:0,他引:4  
Detailed observation of the movement of individual animals offers the potential to understand spatial population processes as the ultimate consequence of individual behaviour, physiological constraints and fine-scale environmental influences. However, movement data from individuals are intrinsically stochastic and often subject to severe observation error. Linking such complex data to dynamical models of movement is a major challenge for animal ecology. Here, we review a statistical approach, state-space modelling, which involves changing how we analyse movement data and draw inferences about the behaviours that shape it. The statistical robustness and predictive ability of state-space models make them the most promising avenue towards a new type of movement ecology that fuses insights from the study of animal behaviour, biogeography and spatial population dynamics.  相似文献   

15.
During everyday life we move around busy environments and encounter a range of obstacles, such as a narrow aperture forcing us to rotate our shoulders in order to pass through. In typically developing individuals the decision to rotate the shoulders is body scaled and this movement adaptation is temporally and spatially tailored to the size of the aperture. This is done effortlessly although it actually involves many complex skills. For individuals with Developmental Coordination Disorder (DCD) moving in a busy environment and negotiating obstacles presents a real challenge which can negatively impact on safety and participation in motor activities in everyday life. However, we have a limited understanding of the nature of the difficulties encountered. Therefore, this current study considered how adults with DCD make action judgements and movement adaptations while navigating apertures. Fifteen adults with DCD and 15 typically developing (TD) controls passed through a series of aperture sizes which were scaled to body size (0.9-2.1 times shoulder width). Spatial and temporal characteristics of movement were collected over the approach phase and while crossing the aperture. The decision to rotate the shoulders was not scaled in the same way for the two groups, with the adults with DCD showing a greater propensity to turn for larger apertures compared to the TD adults when body size alone was accounted for. However, when accounting for degree of lateral trunk movement and variability on the approach, we no longer saw differences between the two groups. In terms of the movement adaptations, the adults with DCD approached an aperture differently when a shoulder rotation was required and then adapted their movement sooner compared to their typical peers. These results point towards an adaptive strategy in adults with DCD which allows them to account for their movement difficulties and avoid collision.  相似文献   

16.
HIV undergoes rapid genetic variation; this variation is caused primarily by the enormous number of viruses produced daily in an infected individual. Because of this variation, HIV presents a moving target for drug and vaccine development. The variation within individuals has led to the generation of diverse HIV-1 subtypes, which further complicates the development of effective drugs and vaccines. In general, it is more difficult to hit a moving target than a stationary target. Two broad strategies for hitting a moving target (in this case, HIV replication) are to understand the movement and to aim at the portions that move the least. In the case of anti-HIV drug development, the first option can be addressed by understanding the mechanism(s) of drug resistance and developing drugs that effectively inhibit mutant viruses. The second can be addressed by designing drugs that interact with portions of the viral machinery that are evolutionarily conserved, such as enzyme active sites.  相似文献   

17.
动物个性研究进展   总被引:2,自引:1,他引:1  
"个性"是指不同时空条件下动物种群个体间行为的稳定差异。大量的理论和实验性研究表明,个性差异在动物界普遍存在,其是种群多度和分布、物种共存及群落构建的重要驱动因子。介绍了动物个性的概念、分类及衡量指标,将前人测量个性类型的方法加以总结;随后介绍了动物个性的生态学意义,尤其是个性对动物生活史策略、种群分布与多度、群落结构和动态、生态系统功能和过程以及疾病与信息传播等的影响。在此基础上,进一步分析了在人类活动增加等全球变化背景下,动物个性如何调控动物个体行为、种群和群落动态对这些环境变化的响应。阐述了动物个性的形成与维持机制,并对未来的研究方向进行了展望。  相似文献   

18.
The hypothesis of the selfish herd has been highly influential to our understanding of animal aggregation. Various movement strategies have been proposed by which individuals might aggregate to form a selfish herd as a defence against predation, but although the spatial benefits of these strategies have been extensively studied, little attention has been paid to the importance of predator attacks that occur while the aggregation is forming. We investigate the success of mutant aggregation strategies invading populations of individuals using alternative strategies and find that the invasion dynamics depend critically on the time scale of movement. If predation occurs early in the movement sequence, simpler strategies are likely to prevail. If predators attack later, more complex strategies invade. If there is variation in the timing of predator attacks (through variation within or between individual predators), we hypothesize that groups will consist of a mixture of strategies, dependent upon the distribution of predator attack times. Thus, behavioural diversity can evolve and be maintained in populations of animals experiencing a diverse range of predators differing solely in their attack behaviour. This has implications for our understanding of predator–prey dynamics, as the timing of predator attacks will exert selection pressure on prey behavioural responses, to which predators must respond.  相似文献   

19.
Estimating migration parameters of individuals and populations is vital for their conservation and management. Studies on animal movements and migration often depend upon location data from tracked animals and it is important that such data are appropriately analyzed for reliable estimates of migration and effective management of moving animals. The Net Squared Displacement (NSD) approach for modelling animal movement is being increasingly used as it can objectively quantify migration characteristics and separate different types of movements from migration. However, the ability of NSD to properly classify the movement patterns of individuals has been criticized and issues related to study design arise with respect to starting locations of the data/animals, data sampling regime and extent of movement of species. We address the issues raised over NSD using tracking data from 319 moose (Alces alces) in Sweden. Moose is an ideal species to test this approach, as it can be sedentary, nomadic, dispersing or migratory and individuals vary in their extent, timing and duration of migration. We propose a two-step process of using the NSD approach by first classifying movement modes using mean squared displacement (MSD) instead of NSD and then estimating the extent, duration and timing of migration using NSD. We show that the NSD approach is robust to the choice of starting dates except when the start date occurs during the migratory phase. We also show that the starting location of the animal has a marginal influence on the correct quantification of migration characteristics. The number of locations per day (1–48) did not significantly affect the performance of non-linear mixed effects models, which correctly distinguished migration from other movement types, however, high-resolution data had a significant negative influence on estimates for the timing of migrations. The extent of movement, however, had an effect on the classification of movements, and individuals undertaking short- distance migrations can be misclassified as other movements such as sedentary or nomadic. Our study raises important considerations for designing, analysing and interpreting movement ecology studies, and how these should be determined by the biology of the species and the ecological and conservation questions in focus.  相似文献   

20.
《Anthrozo?s》2013,26(2):115-134
Abstract

The presence of animals has been associated with decreased physiological responses to stressors. Not all individuals respond equally to the presence of friendly animals. The current study was designed to examine whether attitudes toward animals are related to individuals' physiological responses when an animal is present. The relationship of individuals' perceptions of animals to their blood pressure and heart rate responses during verbalization in the presence of a dog were examined among urban college students (n=218). Lockwood's projective Animal Thematic Apperception Test (ATAT) was used to assess subjects' attitudes toward animals and people in scenes containing animals and identical scenes without animals. The significant period by perception interactions in analyses of variance with repeated measures revealed that cardiovascular responses to verbalization with an animal present were significantly lower for individuals who perceived scenes with animals more positively than for individuals who perceived scenes with animals present less positively. Cardiovascular responses when the dog was present were not related to perceptions of scenes without animals present. The differences in cardiovascular responses depended upon the scenes used. This study supports the view that how people perceive animals moderates their physiological responses to stressors when an animal is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号