共查询到20条相似文献,搜索用时 15 毫秒
1.
Richard Meyer 《Plasmid》2009,62(2):57-70
The IncQ plasmids have a broader host-range than any other known replicating element in bacteria. Studies on the replication and conjugative mobilization of these plasmids, which have mostly been focused on the nearly identical RSF1010 and R1162, are summarized with a view to understanding how this broad host-range is achieved. Several significant features of IncQ plasmids emerge from these studies: (1) initiation of replication, involving DnaA-independent activation of the origin and a dedicated primase, is strictly host-independent. (2) The plasmids can be conjugatively mobilized by a variety of different type IV transporters, including those engaged in the secretion of proteins involved in pathogenesis. (3) Stability is insured by a combination of high copy-number and modulated gene expression to reduce metabolic load. 相似文献
2.
The large Bacillus plasmid pTB19 contains two integrated rolling-circle plasmids carrying mobilization functions 总被引:3,自引:0,他引:3
Plasmid pTB19 is a 27-kb plasmid originating from a thermophilic Bacillus species. It was shown previously that pTB19 contains an integrated copy of the rolling-circle type plasmid pTB913. Here we describe the analysis of a 4324-bp region of pTB19 conferring resistance to tetracycline. The nucleotide sequence of this region revealed all the characteristics of a second plasmid replicating via the rolling-circle mechanism. This sequence contained (i) the tetracycline resistance marker of pTB19, which is highly similar to other tetL-genes of gram-positive bacteria; (ii) a hybrid mob gene, which bears relatedness to both the mob-genes of pUB110 and pTB913; (iii) a palU type minus origin identical to those of pUB110 and pTB913; and (iv) a plus origin of replication similar to that of pTB913. A repB-type replication initiation gene sequence identical to that of pTB913 was present, which lacked the middle part (492 bp), thus preventing autonomous replication of this region. The hybrid mob gene was functional in conjugative mobilization of plasmids between strains of Bacillus subtilis. 相似文献
3.
O V Lotareva V Z Nezametdinova E A Fedorina E U Poluéktova M A Titok A A Prozorov 《Genetika》2001,37(12):1598-1603
Conjugative properties of the strain Bacillus subtilis that carrying a large plasmid approximately 95 kb in size and isolated in Belarus from forest soil were described. The staphylococcal plasmid pUB110 that had previously been introduced into this strain was transferred to recipient cells of the Bacillus subtilis 168 strain with a frequency of approximately 10(-2). The transfer occurred with approximately the same frequency both upon donor and recipient cell contact on the surface of membranes and in a liquid medium. The latter fact makes this system suitable as a model for studying conjugal mobilization in bacilli. A large plasmid cannot be transferred to recipients. An optimal temperature for conjugation of donor and recipient cells was 37 degrees C, but conjugation also proceeded at lower temperatures, up to 21 degrees C. 相似文献
4.
Identification of the origin of transfer (oriT) and DNA relaxase required for conjugation of the integrative and conjugative element ICEBs1 of Bacillus subtilis
下载免费PDF全文

Integrative and conjugative elements (ICEs), also known as conjugative transposons, are mobile genetic elements that can transfer from one bacterial cell to another by conjugation. ICEBs1 is integrated into the trnS-leu2 gene of Bacillus subtilis and is regulated by the SOS response and the RapI-PhrI cell-cell peptide signaling system. When B. subtilis senses DNA damage or high concentrations of potential mating partners that lack the element, ICEBs1 excises from the chromosome and can transfer to recipients. Bacterial conjugation usually requires a DNA relaxase that nicks an origin of transfer (oriT) on the conjugative element and initiates the 5'-to-3' transfer of one strand of the element into recipient cells. The ICEBs1 ydcR (nicK) gene product is homologous to the pT181 family of plasmid DNA relaxases. We found that transfer of ICEBs1 requires nicK and identified a cis-acting oriT that is also required for transfer. Expression of nicK leads to nicking of ICEBs1 between a GC-rich inverted repeat in oriT, and NicK was the only ICEBs1 gene product needed for nicking. NicK likely mediates conjugation of ICEBs1 by nicking at oriT and facilitating the translocation of a single strand of ICEBs1 DNA through a transmembrane conjugation pore. 相似文献
5.
Melanie B. Berkmen Catherine A. Lee Emma-Kate Loveday Alan D. Grossman 《Journal of bacteriology》2010,192(1):38-45
ICEBs1 is an integrative and conjugative element found in the chromosome of Bacillus subtilis. ICEBs1 encodes functions needed for its excision and transfer to recipient cells. We found that the ICEBs1 gene conE (formerly yddE) is required for conjugation and that conjugative transfer of ICEBs1 requires a conserved ATPase motif of ConE. ConE belongs to the HerA/FtsK superfamily of ATPases, which includes the well-characterized proteins FtsK, SpoIIIE, VirB4, and VirD4. We found that a ConE-GFP (green fluorescent protein) fusion associated with the membrane predominantly at the cell poles in ICEBs1 donor cells. At least one ICEBs1 product likely interacts with ConE to target it to the membrane and cell poles, as ConE-GFP was dispersed throughout the cytoplasm in a strain lacking ICEBs1. We also visualized the subcellular location of ICEBs1. When integrated in the chromosome, ICEBs1 was located near midcell along the length of the cell, a position characteristic of that chromosomal region. Following excision, ICEBs1 was more frequently found near a cell pole. Excision of ICEBs1 also caused altered positioning of at least one component of the replisome. Taken together, our findings indicate that ConE is a critical component of the ICEBs1 conjugation machinery, that conjugative transfer of ICEBs1 from B. subtilis likely initiates at a donor cell pole, and that ICEBs1 affects the subcellular position of the replisome.Integrative and conjugative elements (also known as conjugative transposons) and conjugative plasmids are key elements in horizontal gene transfer and are capable of mediating their own transfer from donor to recipient cells. ICEBs1 is an integrative and conjugative element found in some Bacillus subtilis strains. Where found, ICEBs1 is integrated into the leucine tRNA gene trnS-leu2 (Fig. (Fig.1)1) (7, 14, 21).Open in a separate windowFIG. 1.Genetic map of ICEBs1. conE (formerly yddE), regulatory genes (gray arrows), and genes required for integration, excision, and nicking (hatched arrows) are indicated. The number of transmembrane (TM) segments for each protein predicted by cPSORTdb (46) is indicated below each gene. Other topology programs yield similar but not identical predictions.ICEBs1 gene expression, excision, and potential mating are induced by activation of RecA during the SOS response following DNA damage (7). In addition, ICEBs1 is induced by increased production or activation of the ICEBs1-encoded regulatory protein RapI. Production and activity of RapI are indicative of the presence of potential mating partners that do not contain a copy of ICEBs1 (7). Under inducing conditions, the ICEBs1 repressor ImmR (6) is inactivated by proteolytic cleavage mediated by the antirepressor and protease ImmA (12). Most ICEBs1 genes then become highly expressed (7). One of these genes (xis) encodes an excisionase, which in combination with the element''s integrase causes efficient excision and formation of a double-stranded circle (7, 38). The circular form is nicked at the origin of transfer, oriT, by a DNA relaxase, the product of nicK (39). Under appropriate conditions, ICEBs1 can then be transferred by mating into B. subtilis and other species, including the pathogens Listeria monocytogenes and Bacillus anthracis (7). Once transferred to a recipient, ICEBs1 can be stably integrated into the genome at its attachment site in trnS-leu2 by the ICEBs1-encoded integrase (38).In contrast to what is known about ICEBs1 genes and proteins involved in excision, integration, and gene regulation, less is known about the components that make up gram-positive organisms'' mating machinery, defined as the conjugation proteins involved in DNA transfer (18, 24). The well-characterized mating machinery of gram-negative organisms can serve as a preliminary model (15, 16, 37, 48). Gram-negative organisms'' mating machinery is a type IV secretion system composed of at least eight conserved proteins that span the cell envelope. For example, the conjugation apparatus of the Agrobacterium tumefaciens Ti plasmid (pTi) is composed of 11 proteins (VirB1 through VirB11), including the ATPase VirB4 (16). VirB4 family members interact with several components of their cognate secretion systems and may energize machine assembly and/or substrate transfer (16, 48). The secretion substrate is targeted to the conjugation machinery by a coupling protein. Coupling proteins, such as VirD4 of pTi, interact with a protein attached to the end of the DNA substrate and couple the substrate to other components of the conjugation machinery. Coupling proteins might also energize the translocation of DNA through the machinery. Both VirB4 and VirD4 belong to the large HerA/FtsK superfamily of ATPases (29). Two other characterized members of this superfamily are the chromosome-partitioning proteins FtsK and SpoIIIE (29), which are ATP-dependent DNA pumps (reviewed in reference 2).Some of the proteins encoded by the conjugative elements of gram-positive organisms are homologous to components of the conjugation machinery from gram-negative organisms (1, 9, 14, 29), indicating that some aspects of conjugative DNA transfer may be similar in gram-positive and gram-negative organisms. For example, ConE (formerly YddE) of ICEBs1 has sequence similarities to VirB4 (29). YdcQ may be the ICEBs1-encoded coupling protein, as it is phylogenetically related to other coupling proteins (29, 44). Despite some similarities, the cell envelopes and many of the genes encoding the conjugation machinery are different between gram-positive and gram-negative organisms, indicating that there are likely to be significant structural and mechanistic differences as well.To begin to define the conjugation machinery of ICEBs1 and to understand spatial aspects of conjugation, we examined the function and subcellular location of ConE of ICEBs1. Our results indicate that ConE is likely a crucial ATPase component of the ICEBs1 conjugation machinery. We found that ConE and excised ICEBs1 DNA were located at or near the cell poles. We propose that the conjugation machinery is likely located at the cell poles and that mating might occur from a donor cell pole. 相似文献
6.
7.
Two new transposon delivery vector systems utilizing Mariner and mini-Tn10 transposons have been developed for in vivo insertional mutagenesis in Bacillus anthracis and other compatible Gram-positive species. The utility of both systems was directly demonstrated through the mutagenesis of a widely used B. anthracis strain. 相似文献
8.
The pUB110 and pE194 plasmid cointegrates have been isolated and examined in rec+ and recE4 strains of Bacillus subtilis. Cointegrates were shown to be formed by recombination at the specific site present on both parental plasmids as a short region of homology designated RSA. The RSA consists of 63 nucleotides in pE194 and 49 in pUB110; the length of its fully conserved core segment is 10 nucleotides. All cointegrates examined were formed by single crossover event taking place within the core segment, and as a result they have identical nucleotide sequences of recombination junctions. No conversion of mismatched base pairs to nucleotide sequences originally belonging to one of the parental plasmids was found. Though the action of RecE gene did not affect the frequency of cointegrate formation, it was reduced in rec149 host by one order of magnitude. Cointegrates retained their stability during transformation. 相似文献
9.
The DNA replication machinery, various regions of the chromosome, and some plasmids occupy characteristic subcellular positions in bacterial cells. We visualized the location of a multicopy plasmid, pHP13, in living cells of Bacillus subtilis using an array of lac operators and LacI-green fluorescent protein (GFP). In the majority of cells, plasmids appeared to be highly mobile and randomly distributed. In a small fraction of cells, there appeared to be clusters of plasmids located predominantly at or near a cell pole. We also monitored the effects of the presence of multicopy plasmids on the position of DNA polymerase using a fusion of a subunit of DNA polymerase to GFP. Many of the plasmid-containing cells had extra foci of the replisome, and these were often found at uncharacteristic locations in the cell. Some of the replisome foci were dynamic and highly mobile, similar to what was observed for the plasmid. In contrast, replisome foci in plasmid-free cells were relatively stationary. Our results indicate that in B. subtilis, plasmid-associated replisomes are recruited to the subcellular position of the plasmid. Extending this notion to the chromosome, we postulated that the subcellular position of the chromosomally associated replisome is established by the subcellular location of oriC at the time of initiation of replication. 相似文献
10.
Some features of integration of temperature-sensitive pE194, pGG10 and pGG20 plasmids into the Bacillus subtilis chromosome were studied. Several auxotrophic mutations were obtained using insertion of these plasmids into the chromosome. The sites of plasmids for illegitimate recombination were determined. It was shown that the integration into the Bac. subtilis chromosome is characteristic not only for the plasmid pE194 but is the property of Staphylococcus aureus plasmid pC194 and Escherichia coli pBR322 plasmid. The influence of different Bac. subtilis rec mutations on the frequency of integration was studied. 相似文献
11.
Cloning and characterization of two plasmids from Bacillus thuringiensis in Bacillus subtilis 总被引:8,自引:0,他引:8
Bacillus thuringiensis subspecies israliensis plasmids pTX14-1 and pTX14-3 were cloned and analyzed by Southern blot hybridization for their replication mechanism in Bacillus subtilis. The cloning of pTX14-1 into the replicon deficient vector pBOE335 showed the usual characteristics of single-stranded DNA plasmids, i.e., it generated circular single-stranded DNA and high molecular weight (HMW) multimers. The other plasmid, pTX14-3, behaved differently; it generated neither single-stranded DNA nor HMW multimers. Treatment with rifampicin did not result in the accumulation of single-stranded DNA. However, deletion of an EcoRI-PstI fragment resulted in the accumulation of both single-stranded DNA and HMW multimers. From various deletion derivatives, we have mapped the minus origin and the locus responsible for suppression of HMW multimer formation. Full activity of the minus origin and of the locus suppressing HMW formation was only observed on the native replicon, indicating a coupling to the plus strand synthesis. 相似文献
12.
A large plasmid 35.5 kb in size was found in the soil Bacillus subtilis strain. This plasmids was shown to be capable of conjugal mobilization of small plasmids. 相似文献
13.
Fragments from the Bacillus bacteriophage φ105 have been cloned in recE+ and recE? bacteria lysogenic and nonlysogenic for the phage. Recombination between homologous DNA in the plasmid and the prophage occurs only in the rec+ strain at a low frequency of around 4%. After prolonged cultivation with selective pressure on the antibiotic resistance gene of the vector, the bacteria contained only plasmids with various deletions. This process is recE independent and occurs irrespective of whether base pair homology exists between chromosomal and plasmid DNA. The rate of spontaneous curing of the plasmid decreases in parallel to the appearance of deletions, presumably due to higher stability of the small plasmids. 相似文献
14.
To identify novel targets for metabolic engineering of riboflavin production, we generated about 10,000 random, transposon-tagged mutants of an industrial, riboflavin-producing strain of Bacillus subtilis. Process-relevant screening conditions were established by developing a 96-deep-well plate method with raffinose as the carbon source, which mimics, to some extent, carbon limitation in fed batch cultures. Screening in raffinose and complex LB medium identified more efficiently riboflavin overproducing and underproducing mutants, respectively. As expected for a "loss of function" analysis, most identified mutants were underproducers. Insertion mutants in two genes with yet unknown function, however, were found to attain significantly improved riboflavin titers and yields. These genes and possibly further ones that are related to them are promising candidates for metabolic engineering. While causal links to riboflavin production were not obvious for most underproducers, we demonstrated for the gluconeogenic glyceraldehyde-3-phosphate dehydrogenase GapB how a novel, non-obvious metabolic engineering strategy can be derived from such underproduction mutations. Specifically, we improved riboflavin production on various substrates significantly by deregulating expression of the gluconeogenic genes gapB and pckA through knockout of their genetic repressor CcpN. This improvement was also verified under the more process-relevant conditions of a glucose-limited fed-batch culture. 相似文献
15.
Bacteriocin and antibiotic resistance plasmids in Bacillus cereus and Bacillus subtilis. 总被引:21,自引:23,他引:21
下载免费PDF全文

A number of plasmids have been isolated as covalently closed circular DNAs from strains of Bacillus cereus and B. subtilis. From 12 out of 15 strains of B. cereus, plasmids could be isolated. Most of the B. cereus strains contained two or more plasmids. Their molecular weights ranged from 1.6 X 10(6) to 105 X 10(6). Bacteriocin production could be attributed to a 45 X 10(6)-dalton plasmid (pBC7) from B. cereus DSM 336, and tetracycline resistance to a 2.8 X 10(6) plasmid (pBC16) from B. cereus GP7. Two streptomycin-resistant strains of B. subtilis harbored plasmids of 5.2 X 10(6) and 9 X 10(6), respectively, which were, however, not correlated with the antibiotic resistance. The plasmid carrying resistance to tetracycline, pBC16, which was originally isolated from B. cereus, could be subsequently transformed in B. subtilis, where it is stably maintained. 相似文献
16.
Transformation of microorganisms by plasmid introduction is one of the central techniques in modern biotechnology. However, applicable transformation methods for simultaneous introduction of multiple plasmids are still limiting. Here, we reported a liposome-mediated method that efficiently introduces multiple plasmids into B. subtilis. In this method, liposomes containing three kinds of plasmids were mixed with B. subtilis protoplasts in the presence of 36% polyethylene glycol (PEG), and the resultant protoplasts were grown in cell wall-regeneration media. We found that the rates of introduction of multiple plasmids were significantly increased in the presence of liposomes. We also found that an intact liposome structure was not required for introduction, and the presence of phosphatidylglycerol (PG) was important for efficient introduction of multiple plasmids. Therefore, the liposome- or liposome fragment-mediated transformation method reported here can advance studies utilizing multiple plasmids. 相似文献
17.
18.
Broad host range conjugating transposon Tn916 has been introduced into the extreme thermophile Thermus by transposon transformation and transposition into the Bacillus subtilis chromosome followed by broth mating with Thermus aquaticus ATCC27634. Tetracycline resistant Thermus transconjugants were obtained at a frequency of 1.4 X 10(-7) per donor and 1.2 X 10(-7) per recipient. Transposon transfer from Thermus to Bacillus subtilis was also demonstrated in similar broth matings. Transfer characteristics were consistent with the conjugation mechanism described for Tn916 in mesophiles. 相似文献
19.
In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon 总被引:1,自引:0,他引:1
This report describes the construction and characterization of a mariner-based transposon system designed to be used in Bacillus subtilis, but potentially applicable to other gram-positive bacteria. Two pUC19-derived plasmids were created that contain the mariner-Himar1 transposase gene, modified for expression in B. subtilis, under the control of either sigmaA- or sigmaB-dependent promoters. Both plasmids also contain a transposable element (TnYLB-1) consisting of a Kan r cassette bracketed by the Himar1-recognized inverse terminal repeats, as well as the temperature-sensitive replicon and Erm r gene of pE194ts. TnYLB-1 transposes into the B. subtilis chromosome with high frequency (10(-2)) from either plasmid. Southern hybridization analyses of 15 transposants and sequence analyses of the insertion sites of 10 of these are consistent with random transposition, requiring only a "TA" dinucleotide as the essential target in the recipient DNA. Two hundred transposants screened for sporulation proficiency and auxotrophy yielded five Spo- clones, three with insertions in known sporulation genes (kinA, spoVT, and yqfD) and two in genes (ybaN and yubB) with unknown functions. Two auxotrophic mutants were identified among the 200 transposants, one with an insertion in lysA and another in a gene (yjzB) whose function is unknown. 相似文献