首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Entamoeba histolytica is the causative agent of dysentery and liver abscess and is prevalent in developing countries. Adhesion to the host is critical to infection and is mediated by amoebic surface receptors. One such receptor, the Gal/GalNAc lectin, binds to galactose or N-acetylgalactosamine residues on host components and consists of heavy (Hgl), light (Lgl) and intermediate (Igl) subunits. The mechanism by which the lectin assembles into a functional complex is not known. The parasite also relies on cholesterol-rich domains (lipid rafts) for adhesion. Therefore, it is conceivable that rafts regulate the assembly or function of the lectin. To test this, amoebae were loaded with cholesterol and lipid rafts were purified and characterised. Western blotting showed that cholesterol loading resulted in co-compartmentalisation of all three subunits in rafts. This co-compartmentalisation was accompanied by an increase in the ability of the amoebae to bind to host cells in a galactose-specific manner, suggesting that there is a correlation between location and function of the Gal/GalNAc lectin. Cholesterol loading did not increase the surface levels of the lectin subunits. Therefore, the cholesterol-induced increase in adhesion was not the result of externalisation of an internal pool of subunits. A mutant cell line that modestly responded to cholesterol with a slight increase in adhesion exhibited only a slight enrichment of Hgl and Lgl in rafts. This supports the connection between location and function of the Gal/GalNAc lectin. Actin can also influence the interaction of proteins with rafts. Therefore, the sub-membrane distribution of the lectin subunits was also assessed after treatment with an actin depolymerising agent, cytochalasin D. Cytochalasin D-treatment had no effect on the submembrane distribution of the subunits, suggesting that actin does not prevent the association of lectin subunits with rafts in this system. Together, these data provide insight into the molecular mechanisms regulating the location and function of this adhesin.  相似文献   

2.
Adherence and cytotoxicity of Entamoeba histolytica require the function of a heterodimeric galactose and N-acetylgalactosamine (Gal/GalNAc)-specific lectin. The lectin heavy subunit (Hgl) contains a carbohydrate recognition domain and mediates inside-out cell signaling via its cytoplasmic tail. The function of the lectin light subunit (Lgl) is unknown. The lectin has a unique mechanism of membrane association: Hgl is transmembrane but Lgl is glycosylphosphatidylinositol (GPI) anchored. The role of the GPI anchor signal sequence in heterodimer assembly was tested. Epitope-tagged Lgl with or without the GPI anchor addition signal was expressed in E. histolytica trophozoites. Tagged Lgl did not assemble with Hgl into a lectin heterodimer in the absence of the GPI addition signal. Consistent with previous results that only the Hgl subunit mediates adherence, the monomeric Lgl without the GPI anchor signal lacked Gal/GalNAc-binding activity.  相似文献   

3.
Adhesion is an important virulence function for Entamoeba histolytica, the causative agent of amoebic dysentery. Lipid rafts, cholesterol-rich domains, function in compartmentalization of cellular processes. In E. histolytica, rafts participate in parasite-host cell interactions; however, their role in parasite-host extracellular matrix (ECM) interactions has not been explored. Disruption of rafts with a cholesterol extracting agent, methyl-β-cyclodextrin (MβCD), resulted in inhibition of adhesion to collagen, and to a lesser extent, to fibronectin. Replenishment of cholesterol in MβCD-treated cells, using a lipoprotein-cholesterol concentrate, restored adhesion to collagen. Confocal microscopy revealed enrichment of rafts at parasite-ECM interfaces. A raft-resident adhesin, the galactose/N-acetylgalactosamine-inhibitable lectin, mediates interaction to host cells by binding to galactose or N-acetylgalactosamine moieties on host glycoproteins. In this study, galactose inhibited adhesion to collagen, but not to fibronectin. Together these data suggest that rafts participate in E. histolytica-ECM interactions and that raft-associated Gal/GalNAc lectin may serve as a collagen receptor.  相似文献   

4.
Contact-dependent killing and phagocytosis of target cells by Entamoeba histolytica trophozoites is mediated by the galactose (Gal) and N-acetyl-d-galactosamine (GalNAc)-inhibitable lectin. Previous work has suggested that this lectin functions as part of a signal transduction complex. To identify proteins that might be part of this complex, amebic trophozoites were bound to GalNAc-BSA-labeled magnetic beads and lysed. Bound proteins were eluted from the beads and analyzed by tandem mass spectrometry. Along with the Gal/GalNAc lectin subunits, several cytoskeletal proteins, potential signaling proteins, and a novel transmembrane protein, consistently purified with the GalNAc-BSA beads.  相似文献   

5.
Lectins from peanuts (PNA) and soy beans (SBA) bind terminal residues of galactose (Gal) and N-acetyl-galactosamine (GalNAc) respectively. Galactose oxidase oxidizes the hydroxyl group at C-6 of terminal Gal and GalNAc blocking the binding of PNA and SBA. Binding of these lectins to sugar residues is also severely limited by the existence of terminal residues of sialic acid. In the present study, lectin cytochemistry in combination with enzymatic treatments and quantitative analysis has been applied at light and electron microscopical levels to develop a simple methodology allowing the in situ discrimination between penultimate and terminal Gal/GalNAc residues. The areas selected for the demonstration of the method included rat zona pellucida and acrosomes of rat spermatids, which contain abundant glycoproteins with terminal Gal/GalNAc residues. Zona pellucida was labelled by LFA, PNA and SBA. After galactose oxidase treatment, terminal Gal/GalNAc residues are oxidized, and reactivity to PNA/SBA is abolished. The sequential application of galactose oxidase, neuraminidase and PNA/ SBA has the following effects: (i) oxidation of terminal Gal/GalNAc residues; (ii) elimination of terminal sialic acid residues rendering accessible to the lectins preterminal Gal/GalNAc residues; and (iii) binding of the lectins to the sugar residues. Acrosomes were reactive to PNA and SBA. No LFA reactivity was detected, thus indicating the absence of terminal sialic acid residues. Therefore, no labelling was observed after both galactose oxidase--PNA/SBA and galactose oxidase--neuraminidase--PNA/SBA sequences. In conclusion, the combined application of galactose oxidase, neuraminidase and PNA/SBA cytochemistry is a useful technique for the demonstration of penultimate carbohydrate residues with affinity for these lectins. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

6.
Entamoeba histolytica is an enteric parasite that can kill host cells via a contact-dependent mechanism. This killing involves the amoebic surface protein referred to as the Gal/GalNAc lectin. The Gal/GalNAc lectin binds galactose and N-acetylgalactosamine allowing the adherence of amoebas to host cells. Involvement of the lectin in the pathogenesis ofE. histolytica infection will be reviewed in this paper. The lectin has been shown to have very specific and substantial effects on adherence, cytotoxicity, and encystation. There is also possible involvement of the lectin in phagocytosis and caspase activation in host cells.  相似文献   

7.
Entamoeba histolytica is the protozoan parasite responsible for human amoebiasis. During invasive amoebiasis, migration is an essential process and it has previously been shown that the pro-inflammatory compound tumour necrosis factor (TNF) is produced and that it has a migratory effect on E. histolytica . This paper focuses on the analysis of parasite signalling and cytoskeleton changes leading to directional motility. TNF-induced signalling was PI3K-dependent and could lead to modifications in the polarization of certain cytoskeleton-related proteins. To analyse the effect of TNF signalling on gene expression, we used microarray analysis to screen for genes encoding proteins that were potentially important during chemotaxis towards TNF. Interestingly, we found that elements of the galactose/N-acetylgalactosamine lectin (Gal/GalNAc lectin) were upregulated during chemotaxis as well as genes encoding proteins involved in cytoskeleton dynamics. The α-actinin protein appeared to be an important candidate to link the Gal/GalNAc lectin to the cytoskeleton during chemotaxis signalling. Dominant negative parasites blocked for Gal/GalNAc lectin signalling were no longer able to chemotax towards TNF. These results have given us an insight on how E. histolytica changes its cytoskeleton dynamics during chemotaxis and revealed the capital role of PI3K and Gal/GalNAc lectin signalling in chemotaxis.  相似文献   

8.
Amoebiasis (a human intestinal infection affecting 50 million people every year) is caused by the protozoan parasite Entamoeba histolytica. To study the molecular mechanisms underlying human colon invasion by E. histolytica, we have set up an ex vivo human colon model to study the early steps in amoebiasis. Using scanning electron microscopy and histological analyses, we have established that E. histolytica caused the removal of the protective mucus coat during the first two hours of incubation, detached the enterocytes, and then penetrated into the lamina propria by following the crypts of Lieberkühn. Significant cell lysis (determined by the release of lactodehydrogenase) and inflammation (marked by the secretion of pro-inflammatory molecules such as interleukin 1 beta, interferon gamma, interleukin 6, interleukin 8 and tumour necrosis factor) were detected after four hours of incubation. Entamoeba dispar (a closely related non-pathogenic amoeba that also colonizes the human colon) was unable to invade colonic mucosa, lyse cells or induce an inflammatory response. We also examined the behaviour of trophozoites in which genes coding for known virulent factors (such as amoebapores, the Gal/GalNAc lectin and the cysteine protease 5 (CP-A5), which have major roles in cell death, adhesion (to target cells or mucus) and mucus degradation, respectively) were silenced, together with the corresponding tissue responses. Our data revealed that the signalling via the heavy chain Hgl2 or via the light chain Lgl1 of the Gal/GalNAc lectin is not essential to penetrate the human colonic mucosa. In addition, our study demonstrates that E. histolytica silenced for CP-A5 does not penetrate the colonic lamina propria and does not induce the host''s pro-inflammatory cytokine secretion.  相似文献   

9.
Wu AM  Wu JH  Herp A  Chow LP  Lin JY 《Life sciences》2001,69(17):2027-2038
To elucidate of the mechanism of intoxication, the affinity of a toxic lectin, abrin A, from the seeds of Abrus precatorius for mammalian carbohydrate ligands, was studied by enzyme linked lectinosorbent assay and by inhibition of abrin A-glycan interaction. From the results, it is concluded that: (1) abrin A reacted well with Gal beta1-->4GlcNAc (II), Gal alpha1-->4Gal (E), and Gal beta1-->3GalNAc (T) containing glycoproteins. But it reacted weakly with sialylated gps and human blood group A,B,H active glycoproteins (gps); (2) the combining site of abrin A lectin should be of a shallow groove type as this lectin is able to recognize from monosaccharides with specific configuration at C-3, C-4, and deoxy C-6 of the (D)Fuc pyranose ring to penta-saccharides and probably internal Gal alpha,beta-->; and (3) its binding affinity toward mammalian structural features can be ranked in decreasing order as follows: cluster forms of II, T, B/E (Gal alpha1-->3/4Gal) > monomeric T > monomeric II > monomeric B/E, Gal > GalNAc > monomeric I > Man and Glc (inactive). These active glycotopes can be used to explain the possible structural requirements for abrin A toxin attachment.  相似文献   

10.

Background

Entamoeba histolytica is an intestinal protozoan parasite that causes amoebiasis, including amebic dysentery and liver abscesses. E. histolytica invades host tissues by adhering onto cells and phagocytosing them depending on the adaptation and expression of pathogenic factors, including Gal/GalNAc lectin. We have previously reported that E. histolytica possesses multiple CXXC sequence motifs, with the intermediate subunit of Gal/GalNAc lectin (i.e., Igl) as a key factor affecting the amoeba''s pathogenicity. The present work showed the effect of immunization with recombinant Igl on amebic liver abscess formation and the corresponding immunological properties.

Methodology/Principal Findings

A prokaryotic expression system was used to prepare the full-length Igl and the N-terminal, middle, and C-terminal fragments (C-Igl) of Igl. Vaccine efficacy was assessed by challenging hamsters with an intrahepatic injection of E. histolytica trophozoites. Hamsters intramuscularly immunized with full-length Igl and C-Igl were found to be 92% and 96% immune to liver abscess formation, respectively. Immune-response evaluation revealed that C-Igl can generate significant humoral immune responses, with high levels of antibodies in sera from immunized hamsters inhibiting 80% of trophozoites adherence to mammalian cells and inducing 80% more complement-mediated lysis of trophozoites compared with the control. C-Igl was further assessed for its cellular response by cytokine-gene qPCR analysis. The productions of IL-4 (8.4-fold) and IL-10 (2-fold) in the spleen cells of immunized hamsters were enhanced after in vitro stimulation. IL-4 expression was also supported by increased programmed cell death 1 ligand 1 gene.

Conclusions/Significance

Immunobiochemical characterization strongly suggests the potential of recombinant Igl, especially the C-terminal fragment, as a vaccine candidate against amoebiasis. Moreover, protection through Th2-cell participation enabled effective humoral immunity against amebic liver abscesses.  相似文献   

11.
Mucin-specific lectin from Sambucus sieboldiana (SSA-M) reacts in Western blotting and ELISA with mucins from porcine stomach, bovine and ovine submaxillary glands, the human milk fat globule membrane, in vitro human ovarian, breast and colonic tumor cell lines, and mucins produced in vivo in the ascites of patients with endometrial and ovarian tumors, but not with fetal bovine fetuin or human transferrin. Sialidase treatment of these mucins led to an increase in the binding of SSA-M, suggesting that sialic acid is not part of the binding site for this lectin. Furthermore, sialic acid did not inhibit lectin binding. Treatment of asialomucin with O-glycanase decreased the binding of SSA-M, confirming the reactivity of the lectin with an O-linked carbohydrate. Treatment of mucins with trifluoromethanesulfonic acid, which removes all but core carbohydrate, led to an increase in the binding of SSA-M, suggesting that the lectin reacts with O-linked core glycans. Indeed, the increased reactivity after sialidase treatment of ovine submaxillary mucin suggests the lectin reacts with peptide-linked N-acetylgalactosamine (GalNAc), since more than 98% of the glycan chains attached to this mucin are sialylated GalNAc. The binding of SSA-M to sialidase-treated porcine mucin was inhibited strongly by GalNAc and disaccharides containing galactose (lactose, melibiose, and N-acetyllactosamine) but not by free galactose (Gal), suggesting that the glycan for optimum binding is Gal beta(1-3)GalNAc. This pattern of inhibition was different to other core glycan-reactive lectins tested, indicating that SSA-M is distinct, and should be of use in the isolation and characterisation of mucins and O-linked glycans.  相似文献   

12.
Yi  D; Lee  RT; Longo  P; Boger  ET; Lee  YC; Petri  WA  Jr; Schnaar  RL 《Glycobiology》1998,8(10):1037-1043
Both the Entamoeba histolytica lectin, a virulence factor for the causative agent of amebiasis, and the mammalian hepatic lectin bind to N-acetylgalactosamine (GalNAc) and galactose (Gal) nonreducing termini on oligosaccharides, with preference for GalNAc. Polyvalent GalNAc- derivatized neoglycoproteins have >1000-fold enhanced binding affinity for both lectins (Adler,P., Wood,S.J., Lee,Y.C., Lee,R.T., Petri,W.A.,Jr. and Schnaar,R.L.,1995, J. Biol. Chem ., 270, 5164-5171). Substructural specificity studies revealed that the 3-OH and 4-OH groups of GalNAc were required for binding to both lectins, whereas only the E.histolytica lectin required the 6-OH group. Whereas GalNAc binds with 4-fold lower affinity to the E.histolytica lectin than to the mammalian hepatic lectin, galactosamine and N-benzoyl galactosamine bind with higher affinity to the E. histolytica lectin. Therefore, a synthetic scheme for converting polyamine carriers to poly-N-acyl galactosamine derivatives (linked through the galactosamine primary amino group) was developed to test whether such ligands would bind the E.histolytica lectin with high specificity and high affinity. Contrary to expectations, polyvalent derivatives including GalN6lys5, GalN4desmosine, GalN4StarburstTMdendrimer, and GalN8StarburstTMdendrimer demonstrated highly enhanced binding to the mammalian hepatic lectin but little or no enhancement of binding to the E.histolytica lectin. We propose that the mammalian hepatic lectin binds with greatest affinity to GalNAc "miniclusters," which mimic branched termini of N-linked oligosaccharides, whereas the E.histolytica lectin binds most effectively to "maxiclusters," which may mimic more widely spaced GalNAc residues on intestinal mucins.   相似文献   

13.
Adherence ofEntamoeba histolytiea trophozoites to host cells is medicated by a galactose (Gal) andN-acetylgalactosamine (GalNAc)-specific surface lectin. The lectin is a heterodimeric protein composed of heavy (170kDa) and light (35-31 kDa) subunits linked by disulfide bonds. Polyclonal and monoclonal antibodies (mAb) raised against a light subunit-glutathione-S-transferase fusion protein were used to probe its structure and function. Four light subunit-specific mAb were produced which recognized distinct epitopes on five different light subunit isoforms. Immunoblots with these mAb demonstrated co-migration of light and heavy subunits when nonreduced trophozoite proteins were analysed by SDS-PAGE, indicating that the subunits do not exist free of the heterodimer in significant quantities. While anti-heavy subunit antibodies had previously been shown to alter adherence, anti-light subunit antibodies did not, suggesting that the heavy subunit contains the carbohydrate recognition domain.  相似文献   

14.
Thermodynamic analysis of carbohydrate binding by Artocarpus integrifolia (jackfruit) agglutinin (jacalin) shows that, among monosaccharides, Me alpha GalNAc (methyl-alpha-N-acetylgalactosamine) is the strongest binding ligand. Despite its strong affinity for Me alpha GalNAc and Me alpha Gal, the lectin binds very poorly when Gal and GalNAc are in alpha-linkage with other sugars such as in A- and B-blood-group trisaccharides, Gal alpha 1-3Gal and Gal alpha 1-4Gal. These binding properties are explained by considering the thermodynamic parameters in conjunction with the minimum energy conformations of these sugars. It binds to Gal beta 1-3GalNAc alpha Me with 2800-fold stronger affinity over Gal beta 1-3GalNAc beta Me. It does not bind to asialo-GM1 (monosialoganglioside) oligosaccharide. Moreover, it binds to Gal beta 1-3GalNAc alpha Ser, the authentic T (Thomsen-Friedenreich)-antigen, with about 2.5-fold greater affinity as compared with Gal beta 1-3GalNAc. Asialoglycophorin A was found to be about 169,333 times stronger an inhibitor than Gal beta 1-3GalNAc. The present study thus reveals the exquisite specificity of A. integrifolia lectin for the T-antigen. Appreciable binding of disaccharides Glc beta 1-3GalNAc and GlcNAc beta 1-3Gal and the very poor binding of beta-linked disaccharides, which instead of Gal and GalNAc contain other sugars at the reducing end, underscore the important contribution made by Gal and GalNAc at the reducing end for recognition by the lectin. The ligand-structure-dependent alterations of the c.d. spectrum in the tertiary structural region of the protein allows the placement of various sugar units in the combining region of the lectin. These studies suggest that the primary subsite (subsite A) can accommodate only Gal or GalNAc or alpha-linked Gal or GalNAc, whereas the secondary subsite (subsite B) can associate either with GalNAc beta Me or Gal beta Me. Considering these factors a likely arrangement for various disaccharides in the binding site of the lectin is proposed. Its exquisite specificity for the authentic T-antigen, Gal beta 1-3GalNAc alpha Ser, together with its virtual non-binding to A- and B-blood-group antigens, Gal beta 1-3GalNAc beta Me and asialo-GM1 should make A. integrifolia lectin a valuable probe for monitoring the expression of T-antigen on cell surfaces.  相似文献   

15.
Wu AM  Wu JH  Tsai MS  Hegde GV  Inamdar SR  Swamy BM  Herp A 《Life sciences》2001,69(17):2039-2050
In order to investigate the functional roles of a phytopathogenic fungal lectin (SRL) isolated from the bodies of Sclerotium rolfsii, the binding properties of SRL were studied by enzyme linked lectinosorbent assay and by inhibition of SRL-glycan interaction. Among glycoproteins (gp) tested for binding, SRL reacted strongly with GalNAc alpha1-->4Ser/Thr (Tn) and/or Gal beta1-->3GalNAc alpha1-->(T(alpha)) containing gps: human T(alpha) and Tn glycophorin, asialo salivary gps, and asialofetuin, but its reactivity toward sialylated glycoproteins was reduced significantly. Of the sugar ligands tested for inhibition of SRL-asialofetuin binding, Thomsen-Friedenreich residue (T(alpha)) was the best, being 22.4 and 2.24 x 10(3) more active than GalNAc and Gal beta1--> residues, respectively. Other ligands tested were inactive. When the glycans used as inhibitors, T(alpha), and/or Tn containing gps, especially asialo PSM, asialo BSM, asialo OSM, active antifreeze gp, asialo glycophorin and Tn-glycophorin were very active, and 1.0 x 10(4) times more potent than GalNAc. From these results, it is clear that the combining site of SRL should be of a cavity type and recognizes only Tn and T(alpha) residues of glycans; it is suggested that T(alpha) and Tn glycotopes, which are present only in abnormal carbohydrate sequences of higher orders of mammal, are the most likely sites for phytopathogenic fungal attachment as an initial step of infection. The affinity of SRL for ligands can be ranked in decreasing order as follows: multivalent T(alpha) and Tn > monomeric T(alpha) and Tn > GalNAc > II (Gal beta1-->4GlcNAc), L (Gal beta1-->4Glc), and Gal.  相似文献   

16.
2-Dansylamino-2-deoxy-D-galactose (GalNDns) is a useful fluorescent probe to study the interaction of non-fluorescent sugars with the B4 lectin from Vicia villosa seeds (VVLB4). Binding of the lectin to GalNDns leads to a 5.2-fold increase in Dansyl fluorescence with a concomitant 10 nm blue shift in its emission maximum. The strong binding of GalNDns (Ka = 7.33 x 10(4) M-1 at 20 degrees C) is due to a favourable entropic contribution to the association process. Among the other sugars studied, GalNAc alpha 1-O-Ser followed by Me alpha GalNAc are the best ligands. 2-Deoxygalactose, galactosamine and galactose are 2013, 469 and 130 times weaker ligands, respectively, as compared to GalNAc, whereas GalNDns is about 2.44 times more potent than GalNAc, indicating that substitutions at the C-2 position of GalNAc have a considerable influence on the binding affinities. Equatorial orientation of the hydroxyl group at C-3 and axial orientation at C-4 as in galactose are important for the interaction with VVLB4. The C-6 hydroxyl group is not indispensable. The binding site of the lectin is directed exclusively towards monosaccharides alone. Interestingly enough, despite its preference for Me alpha GalNAc over Me beta GalNAc, in oligosaccharides, the lectin prefers terminal beta-linked GalNAc as compared to the alpha-linked one.  相似文献   

17.
The human pathogenic protozoan Entamoeba histolytica is a motile cell polarized into a front pseudopod and a rear uroid. The amoebic Gal/GalNAc surface lectin is a major adhesion molecule composed of an immunodominant 170-kDa heavy subunit, mostly extracellular except for a short cytoplasmic tail, and of an extracellular light subunit. The binding of multivalent ligands triggers lectin capping and recruitment to the uroid. The properties of the Gal/GalNAc lectin and its role in amoeba adhesion and uroid polarization are reviewed in the context of the molecular mechanisms underlying cell polarization and locomotion.  相似文献   

18.
19.
Crude extracts from Salvia sclarea seeds were known to contain a lectin which specifically agglutinates Tn erythrocytes (Bird, G. W. G., and Wingham, G. (1974) Vox Sang. 26, 163-166). We have purified the lectin to homogeneity by ion-exchange chromatography and affinity chromatography. The agglutinin was found to be a glycoprotein of Mr = 50,000, composed of two identical subunits of Mr = 35,000 linked together by disulfide bonds. The purified lectin agglutinates specifically Tn erythrocytes and, at higher concentrations, also Cad erythrocytes. Native A, B, or O red blood cells are not agglutinated by the lectin and, even after treatment with sialidase or papain, these cells are not recognized. Tn red cells present 1.45 X 10(6) accessible sites to the lectin which binds to these erythrocytes with an association constant of 1.8 X 10(6) M-1. On Cad red cells, 1.73 X 10(6) sites are accessible to the lectin which binds with an association constant of 1.0 X 10(6) M-1. The carbohydrate specificity of the S. sclarea lectin has been determined in detail, using well defined monosaccharide, oligosaccharide, and glycopeptide structures. The lectin was found to be specific for terminal N-acetylgalactosamine (GalNAc) residues. It binds preferentially alpha GalNAc determinants either linked to Ser or Thr (as in Tn structures) or linked in 1-3 to a beta GalNAc or to an unsubstituted beta Gal. Although more weakly, the lectin binds beta GalNAc residues linked in 1-4 to a beta Gal (as in Cad structures). It does not recognize beta GalNAc determinants linked in 1-3 to a Gal (as in globoside) or the alpha GalNAc residues of blood group A structures.  相似文献   

20.
Amoebiasis is responsible for 50000-100000 deaths annually. Invasive amoebic disease begins with the attachment of Entamoeba histolytica trophozoites to colonic mucin, a process mediated by the amoebic Gal/GalNAc lectin. The non-pathogenic counterpart, E. dispar, is morphologically identical but genetically distinct. Investigations comparing the Gal/GalNac lectin from these two organisms are under way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号