首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-cost of oligonucleotides is one of the major problems to low-cost gene synthesis. Although DNA oligonucleotides from cleavable DNA microchips has been adopted for the low-cost gene synthesis, construction of DNA molecules larger than 1 kb has been largely hampered due to the difficulties of DNA assembly associated with the negligible quantity of chip oligonucleotides. Here we report a hierarchical method for the synthesis of large genes using oligonucleotides from programmable DNA microchips. Using this hierarchical method, we successfully synthesized 1056 bp Dpo4 and 2325 bp Pfu DNA polymerase genes as models. This hierarchical strategy can be further expanded for the syntheses of multiple large genes in a scalable manner.  相似文献   

2.
Maintenance of replication fork stability is of utmost importance for dividing cells to preserve viability and prevent disease. The processes involved not only ensure faithful genome duplication in the face of endogenous and exogenous DNA damage but also prevent genomic instability, a recognized causative factor in tumor development. Here, we describe a simple and cost-effective fluorescence microscopy-based method to visualize DNA replication in the avian B-cell line DT40. This cell line provides a powerful tool to investigate protein function in vivo by reverse genetics in vertebrate cells(1). DNA fiber fluorography in DT40 cells lacking a specific gene allows one to elucidate the function of this gene product in DNA replication and genome stability. Traditional methods to analyze replication fork dynamics in vertebrate cells rely on measuring the overall rate of DNA synthesis in a population of pulse-labeled cells. This is a quantitative approach and does not allow for qualitative analysis of parameters that influence DNA synthesis. In contrast, the rate of movement of active forks can be followed directly when using the DNA fiber technique(2-4). In this approach, nascent DNA is labeled in vivo by incorporation of halogenated nucleotides (Fig 1A). Subsequently, individual fibers are stretched onto a microscope slide, and the labeled DNA replication tracts are stained with specific antibodies and visualized by fluorescence microscopy (Fig 1B). Initiation of replication as well as fork directionality is determined by the consecutive use of two differently modified analogues. Furthermore, the dual-labeling approach allows for quantitative analysis of parameters that influence DNA synthesis during the S-phase, i.e. replication structures such as ongoing and stalled forks, replication origin density as well as fork terminations. Finally, the experimental procedure can be accomplished within a day, and requires only general laboratory equipment and a fluorescence microscope.  相似文献   

3.
For protein chip construction, protein immobilization on the surface of the glass slide is essential. It was previously reported that glass slides are embedded with chemicals that contain primary amines and aldehydes for protein immobilization. We fabricated a plasma-polymerized ethylenediamine (PPEDA)-coated slide that exposed primary amines. For the plasma polymer deposition on the glass slide, the inductively coupled plasma (ICP) power was found to be a critical factor in sustaining a high density of amine on the surface of the PPEDA films. We prepared PPEDA-coated slides at three different ICP powers (3, 30, or 70 W). In the slide that was prepared at a low ICP power (3 W), we detected a high density of primary amine. Therefore, the fluorescein isothiocyanate-conjugated immunoglobulin G (IgG) was highly immobilized to the PPEDA-coated slide that was prepared at the low ICP power. For protein immobilization, 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) was used as a cross-linker. The immobilization of the protein to the PPEDA-coated slide was carried out by consecutive incubations with 1 mg/ml EDC for 5 min and 0.1 mg/ml IgG for 1 h. This efficiently produced the functionally active protein-immobilized slide. Therefore, this work shows that the plasma technique can be applied to produce a high-quality glass surface for the immobilization of proteins and other materials.  相似文献   

4.
Oligonucleotide microchips are manufactured by immobilizing presynthesized oligonucleotides within 0.1 x 0.1 x 0.02 mm or 1 x 1 x 0.02 mm polyacrylamide gel pads arranged on the surface of a microscope slide. The gel pads are separated from each other by hydrophobic glass spacers and serve as a kind of 'microtest tube' of 200 pl or 20 nl volume, respectively. Fractionation of single-stranded DNAs is carried out by their hybridization with chip pads containing immobilized 10mers. DNA extracted separately from each pad is transferred onto a sequencing chip and analyzed thereon. The chip, containing a set of 10mers, was enzymatically phosphorylated, then hybridized with DNA and ligated in a site-directed manner with a contiguously stacked 5mer. Several cycles of successive hybridization-ligation of the chip-bound 10mers with different contiguously stacked 5mers and hybridized with DNA were carried out to sequence DNA containing tetranucleotide repeats. Combined use of these techniques show significant promise for sequence comparison of homologous regions in different genomes and for sequence analysis of comparatively long DNA fragments or DNA containing internal repeats.  相似文献   

5.
Chromatin replication,reconstitution and assembly   总被引:5,自引:0,他引:5  
Many previously held concepts about the replication of chromatin have recently been revised, or seriously challenged. For instance, within the last two years, evidence has accumulated to indicate that newly synthesized DNA is not the sole site of deposition of newly synthesized histones, and that histones are not only made, but are assembled into chromatin in the absence of DNA synthesis. Furthermore, segregation of parental histones to daughter DNA duplexes may be bidirectional, rather than the previously accepted unidirectional mechanism. The storage of histones prior to assembly apparently involves histone pairs rather than octamers, and similarly, histones associate with DNA in (apparent) pairs, rather than as pre-assembled octameric units. It is currently questioned whether or not nucleoplasmin is involved in either histone storage or nucleosome assembly. The onset of histone synthesis has recently been found to occur in late G1 rather than in S, and thus is independent of DNA synthesis; however, the cessation of histone synthesis is linked to that of DNA. Thus, there emerges from this newly accumulated data the conclusion that chromatin biosynthesis is not as straightforward as was believed just a few years ago. As we review the evidence on each of these subjects, we attempt to point out directions for future experimentation.  相似文献   

6.
Abstract

The accuracy of comparative genomic hybridization (CGH) analysis is affected by hybridization efficiency. We describe here a simple method for enhancing hybridization efficiency. The hybridization procedure is essentially the same as that of conventional methods. Hybridization solution containing denatured DNA probe mixture was applied to a metaphase chromosome slide or DNA chip slide and covered with a coverslip. In the new method, however, the slide was inverted by turning the coverslip downward prior to hybridization. We termed this method the inverted slide method. To estimate the efficiency of the new method, metaphase chromosome slides and DNA chip slides were treated by both the conventional and inverted slide methods and incubated in a moist chamber at 37°C for 12, 24, 48, and 72 h. Hybridization signals were approximately 1.5 to 2 times brighter on the slides using the inverted slide method than those using the conventional method after 48 and 72 h of incubation. Furthermore, topographical differences in fluorescence intensity were smaller in slides using the inverted-slide method than in those prepared by the conventional method. The inverted slide method is methodologically very simple and improves the resolution of CGH.  相似文献   

7.
Plants have mechanisms for repairing and tolerating detrimental effects by various DNA damaging agents. A tolerance pathway that has been predicted to be present in higher plants is translesion synthesis (TLS), which is catalyzed by polymerases. In Arabidopsis (Arabidopsis thaliana), however, the only gene known to be involved in TLS is the Arabidopsis homolog of REV3, AtREV3, which is a putative catalytic subunit of Arabidopsis DNA polymerase zeta. A disrupted mutant of AtREV3, rev3, was previously found to be highly sensitive to ultraviolet-B (UV-B) and various DNA damaging agents. REV1 and REV7 are thought to be components of translesion synthesis in plants. In this study, we identified the Arabidopsis homologs of REV1 and REV7 (AtREV1 and AtREV7). Several mutants carrying disrupted AtREV1 and AtREV7 genes were isolated from Arabidopsis T-DNA-inserted lines. An AtREV1-disrupted mutant, rev1, was found to be moderately sensitive to UV-B and DNA cross-linkers. A rev1rev3 double mutant, like rev3, showed high sensitivity to UV-B, gamma-rays, and DNA cross-linkers. An AtREV7-disrupted mutant, rev7, was possibly sensitive to cis-diamminedichloroplatinum(II), a kind of DNA cross-linker, but it was not sensitive to acute UV-B and gamma-ray irradiation. On the other hand, the aerial growth of rev7, like the aerial growth of rev1 and rev3, was inhibited by long-term UV-B. These results suggest that a TLS mechanism exists in a higher plant and show that AtREV1 and AtREV7 have important roles in tolerating exposure to DNA-damaging agents.  相似文献   

8.
The most labour-intensive feature of the in vivo rat liver UDS assay is the scoring of hepatocyte autoradiograms by microscope. Even with image analyser and computer equipment the scoring phase of a full study might require half of the technical effort applied. Practice recommended by guidelines has been to score 50 cells/slide and two slides per animal. Now sufficient data have been accumulated, an evaluation was made to observe whether this procedure was necessary. An analysis of the accumulated UDS database in our laboratory was made to determine the sources of variability of mean net nuclear grain count, [N - C]. It was observed that the two largest components of variation in negative control animal mean [N - C]. were between-day and interanimal variability. The contribution from sampling error during slide scoring was relatively small. Theoretical calculations showed that the greater sampling error derived from scoring 30 rather than 50 cells/slide would result in only a marginal increase in total assay variation. To test this, 30 cells/slide were randomly selected from the 50 cells scored originally in negative control animals in each of 18 studies over an 18-month period. It was confirmed that reducing the number of cells had a negligible effect on the variation of negative control animal mean [N - C] values. Furthermore, analysis of data from 10 more studies confirmed that within-study variation would be essentially unaffected by scoring 30 cells/slide. The use of 30 rather than 50 cells per slide (a total of 60 cells per animal) has therefore been adopted for all current studies and scoring procedures modified to avoid operator bias during the selection of a smaller number of cells.  相似文献   

9.
《Annals of botany》2001,87(6):719-728
To test the reliability of DNA image cytometry for the measurement of nuclear DNA content in plant material, we conducted independent experiments in two laboratories using different image analysis instruments for densitometric measurement of nuclear DNA amount in Feulgen-stained squash preparations of root tips. The 2C nuclear DNA content of the nine species studied spanned a 100-fold range (approx. 0.3–33 pg). The estimates of nuclear DNA content measured with image cytometry methods were comparable to values obtained previously using both photometric cytometry and flow cytometry. Image cytometry methods showed little variation among repeated experiments within each laboratory or among different operators using the same instrument. Furthermore, the interphase-peak method (measurement of several hundred interphase nuclei per slide) was comparable to the classical prophase/telophase approach (measurement of ten early prophase and ten late telophase nuclei per slide). Hence, DNA image cytometry gives accurate and reproducible results and may be used as an alternative to photometric cytometry in plant nuclear DNA content measurements. In the present study, we propose that two standards for quality control of nuclear DNA content measurement are used in plant DNA image cytometry: (1) the coefficient of variation of the peak should be lower than 6%, and (2) the 4C/2C ratio should be between 1.9 and 2.1.  相似文献   

10.
A recently published paper (Schoenwolf 1982) suggested the use of modified microscope slide boxes to store glass knives routinely used for ultramicrotomy. Since the microscope slide boxes cost about $10.00, require modification and may damage the fragile cutting edge unless the knife is carefully oriented, Schoenwolf's method appears to be more expensive and cumbersome than the one used routinely in the authors' laboratory.  相似文献   

11.
There is burgeoning interest in protein microarrays, but a source of thousands of nonredundant, purified proteins was not previously available. Here we show a glass chip containing 2413 nonredundant purified human fusion proteins on a polymer surface, where densities up to 1600 proteins/cm(2) on a microscope slide can be realized. In addition, the polymer coating of the glass slide enables screening of protein interactions under nondenaturing conditions. Such screenings require only 200-microl sample volumes, illustrating their potential for high-throughput applications. Here we demonstrate two applications: the characterization of antibody binding, specificity, and cross-reactivity; and profiling the antibody repertoire in body fluids, such as serum from patients with autoimmune diseases. For the first application, we have incubated these protein chips with anti-RGSHis(6), anti-GAPDH, and anti-HSP90beta antibodies. In an initial proof of principle study for the second application, we have screened serum from alopecia and arthritis patients. With analysis of large sample numbers, identification of disease-associated proteins to generate novel diagnostic markers may be possible.  相似文献   

12.
Poly (ADP-ribose) polymerases (PARPs) catalyze the transfer of multiple poly(ADP-ribose) units onto target proteins. Poly(ADP-ribosyl)ation plays a crucial role in a variety of cellular processes including, most prominently, auto-activation of PARP at sites of DNA breaks to activate DNA repair processes. In humans, PARP1 (the founding and most characterized member of the PARP family) accounts for more than 90% of overall cellular PARP activity in response to DNA damage. We have found that, in contrast with animals, in Arabidopsis thaliana PARP2 (At4g02390), rather than PARP1 (At2g31320), makes the greatest contribution to PARP activity and organismal viability in response to genotoxic stresses caused by bleomycin, mitomycin C or gamma-radiation. Plant PARP2 proteins carry SAP DNA binding motifs rather than the zinc finger domains common in plant and animal PARP1 proteins. PARP2 also makes stronger contributions than PARP1 to plant immune responses including restriction of pathogenic Pseudomonas syringae pv. tomato growth and reduction of infection-associated DNA double-strand break abundance. For poly(ADP-ribose) glycohydrolase (PARG) enzymes, we find that Arabidopsis PARG1 and not PARG2 is the major contributor to poly(ADP-ribose) removal from acceptor proteins. The activity or abundance of PARP2 is influenced by PARP1 and PARG1. PARP2 and PARP1 physically interact with each other, and with PARG1 and PARG2, suggesting relatively direct regulatory interactions among these mediators of the balance of poly(ADP-ribosyl)ation. As with plant PARP2, plant PARG proteins are also structurally distinct from their animal counterparts. Hence core aspects of plant poly(ADP-ribosyl)ation are mediated by substantially different enzymes than in animals, suggesting the likelihood of substantial differences in regulation.  相似文献   

13.
14.
15.
16.
The completion of human genome sequencing has shifted the focus of research from genes to proteins. In this regard, a protein library chip has become a useful tool for cell-free protein synthesis. In this study, we attempted to make a highly-integrated protein chip from a DNA library using in vitro protein synthesis on a microchamber array fabricated by using PDMS (polydimethyl siloxane), a hydrophobic surface, and glass, a hydrophilic bottom substrate. These structural properties prevented cross-contamination among the chambers. The minimum volume capacity of the smallest chamber was about 1 pl. The total number of chambers per chip was 10,000 on one chip (capacity 150 pl) and 250,000 on two others (1 and 5 pl). Next, we attempted in vitro protein synthesis using this microchamber array. The fluorescence of Green Fluorescent Protein (GFP) expressed on the chamber was rapidly detected (within just 1 h). GFP expression was also successful using immobilized DNA molecules on polymer beads. DNA immobilized beads were added as the source to each microchamber. Protein was successfully synthesized from DNA immobilized beads, which allowed easy handling of the DNA molecules.  相似文献   

17.
文章讨论了DNA芯片的制作原理和杂交信号的检测方法。依其结构,DNA芯片可分为两种形式,DNA阵列和寡核苷酸微芯片。DNA芯片的制作方法主要有光导原位合成法和自动化点样法。DNA芯片与标记的探针或DNA样品杂交,并通过探测杂交信号谱型来实现DNA序列或基因表达的分析。适应于DNA芯片的发展,同时出现了许多新型的杂交信号检测方法。主要有激光荧光扫描显微镜、激光扫描共焦显微镜、结合使用CCD相机的荧光显微镜、光纤生物传感器、化学发生法、光激发磷光物质存储屏法、光散射法等。  相似文献   

18.
基因芯片技术及应用研究进展   总被引:19,自引:0,他引:19  
采用高速打印或光刻合成技术可在硅片、玻璃或尼龙膜上制造DNA微阵列。样品DNA/RNA通过PCR扩增、体外转录等技术掺入荧光标记分子,与微阵列杂交后通过荧光扫描仪器扫描及计算机分析即可获得样品中大量基因序列及表达的信息。该技术可应用于高通量基因表达平行分析、大规模基因发现及序列分析、基因多态性分析和基因组研究等 。  相似文献   

19.
The oxidized base 7,8-oxoguanine (8-oxo-G) is the most common DNA lesion generated by reactive oxygen species. This lesion is highly mutagenic due to the frequent misincorporation of A opposite 8-oxo-G during DNA replication. In mammalian cells, the DNA polymerase (pol) family X enzyme DNA pol λ catalyzes the correct incorporation of C opposite 8-oxo-G, together with the auxiliary factor proliferating cell nuclear antigen (PCNA). Here, we show that Arabidopsis thaliana DNA pol λ, the only member of the X family in plants, is as efficient in performing error-free translesion synthesis past 8-oxo-G as its mammalian homolog. Arabidopsis, in contrast with animal cells, possesses two genes for PCNA. Using in vitro and in vivo approaches, we observed that PCNA2, but not PCNA1, physically interacts with DNA pol λ, enhancing its fidelity and efficiency in translesion synthesis. The levels of DNA pol λ in transgenic plantlets characterized by overexpression or silencing of Arabidopsis POLL correlate with the ability of cell extracts to perform error-free translesion synthesis. The important role of DNA pol λ is corroborated by the observation that the promoter of POLL is activated by UV and that both overexpressing and silenced plants show altered growth phenotypes.  相似文献   

20.
A novel method for DNA quantification and specific sequence detection in a highly integrated silicon microchamber array is described. Polymerase chain reaction (PCR) mixture of only 40 nL volume could be introduced precisely into each chamber of the mineral oil layer coated microarray by using a nanoliter dispensing system. The elimination of carry-over and cross-contamination between microchambers, and multiple DNA amplification and detection by TaqMan chemistry were demonstrated, for the first time, by using our system. Five different gene targets, related to Escherichia coli were amplified and detected simultaneously on the same chip by using DNA from three different serotypes as the templates. The conventional method of DNA quantification, which depends on the real-time monitoring of variations in fluorescence intensity, was not applied to our system, instead a simple method was established. Counting the number of the microchambers with a high fluorescence signal as a consequence of TaqMan PCR provided the precise quantification of trace amounts of DNA. The initial DNA concentration for Rhesus D (RhD) gene in each microchamber was ranged from 0.4 to 12 copies, and quantification was achieved by observing the changes in the released fluorescence signals of the microchambers on the chip. DNA target could be detected as small as 0.4 copies. The amplified DNA was detected with a CCD camera built-in to a fluorescence microscope, and also evaluated by a DNA microarray scanner with associated software. This simple method of counting the high fluorescence signal released in microchambers as a consequence of TaqMan PCR was further integrated with a portable miniaturized thermal cycler unit. Such a small device is surely a strong candidate for low-cost DNA amplification, and detected as little as 0.4 copies of target DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号