首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bioinert materials on which cells do not proliferate, differentiate, nor de-differentiate should be useful for the culture and preservation of stem cells. The Pluronic F127, a triblock copolymer of ethylene oxide, and propylene oxide was activated using carbonyldiimidazole (CDI), and CDI-activated Pluronic was subsequently immobilized on the surface of a lysine-coated polystyrene tissue culture flask. The morphology of fibroblasts (L929 cells) on the Pluronic-immobilized flask was spherical, and did not show spreading behavior. This observation indicates that L929 cells on the Pluronic-immobilized flask were cultured in a bioinert environment. The expression ratio of surface markers on hematopoietic stem cells (CD34 and CD133) cultured in the Pluronic-immobilized flask was significantly higher than that in polystyrene tissue culture flask and commercially available bioinert flask (i.e., low cell binding cultureware). This is caused by the existence of hydrophilic segments of Pluronic F127 on the Pluronic-immobilized flask.  相似文献   

2.
3.
4.
Familial hypertrophic cardiomyopathy (HCM), a leading cause of sudden cardiac death, is primarily caused by mutations in sarcomeric proteins. The pathogenesis of HCM is complex, with functional changes that span scales, from molecules to tissues. This makes it challenging to deconvolve the biophysical molecular defect that drives the disease pathogenesis from downstream changes in cellular function. In this study, we examine an HCM mutation in troponin T, R92Q, for which several models explaining its effects in disease have been put forward. We demonstrate that the primary molecular insult driving disease pathogenesis is mutation-induced alterations in tropomyosin positioning, which causes increased molecular and cellular force generation during calcium-based activation. Computational modeling shows that the increased cellular force is consistent with the molecular mechanism. These changes in cellular contractility cause downstream alterations in gene expression, calcium handling, and electrophysiology. Taken together, our results demonstrate that molecularly driven changes in mechanical tension drive the early disease pathogenesis of familial HCM, leading to activation of adaptive mechanobiological signaling pathways.  相似文献   

5.
Abstract

Congenital Giant Nevi (CGN) are rare melanocytic lesions with the potential to regress into malignant melanoma. Simultaneous up-regulation and cooperative interactions of signaling pathways are crucial events in the pathogenesis of melanocytes. Our study aimed to identify changes in the expression and activation of proteins controlling survival and/or apoptosis of the key signaling pathways PI3K/AKT/BCL2 and Wnt/β-catenin of CGN melanocytes. We applied a model of cultured melanocytes from paired CGN and normal appearing skin, and Western blot (WB) analyzed the expression and activation profile of survival and anti-apoptotic proteins of these signaling pathways, growth pattern, cell cycle and apoptosis. WB analysis demonstrated a significant higher expression level of activated AKT and of BCL2 proteins in the CGN melanocytes compared with paired melanocytes from normal appearing skin. A relative increase in the level of GSK3 and FOXO1 proteins, down stream targets of AKT, as well as of pβ-catenin was also detected in the CGN melanocytes compared with the controls. These changes were not affected by growth of the CGN melanocytes in reduced serum (starvation). Both cell populations shared a similar growth pattern, with no significant differences in the proportion of apoptotic cells and in cell cycle fractions. These data demonstrate for the first time, changes in signaling proteins of cultured CGN melanocytes. Further, suggesting that the changes in AKT/BCL2 signaling molecules might mediate growth and anti-apoptosis processes at least in part, thus increasing the survival potential of CGN melanocytes and maintaining their integrity.  相似文献   

6.
Intrauterine nutrition can program metabolism, creating stable changes in physiology that may have significant health consequences. The mechanism underlying these changes is widely assumed to involve epigenetic changes to the expression of metabolic genes, but evidence supporting this idea is limited. Here we have performed the first study of the epigenomic consequences of exposure to maternal obesity and diabetes. We used a mouse model of natural-onset obesity that allows comparison of genetically identical mice whose mothers were either obese and diabetic or lean with a normal metabolism. We find that the offspring of obese mothers have a latent metabolic phenotype that is unmasked by exposure to a Western-style diet, resulting in glucose intolerance, insulin resistance and hepatic steatosis. The offspring show changes in hepatic gene expression and widespread but subtle alterations in cytosine methylation. Contrary to expectation, these molecular changes do not point to metabolic pathways but instead reside in broadly developmental ontologies. We propose that, rather than being adaptive, these changes may simply produce an inappropriate response to suboptimal environments; maladaptive phenotypes may be avoidable if postnatal nutrition is carefully controlled.  相似文献   

7.
The inhalation of asbestos fibers is considered to be highly harmful, and lead to fibrotic and/or malignant disease. Epithelial-to-mesenchymal transition (EMT) is a common pathogenic mechanism in asbestos associated fibrotic (asbestosis) and malignant lung diseases. The characterization of molecular pathways contributing to EMT may provide new possibilities for prognostic and therapeutic applications. The role of asbestos as an inducer of EMT has not been previously characterized. We exposed cultured human lung epithelial cells to crocidolite asbestos and analyzed alterations in the expression of epithelial and mesenchymal marker proteins and cell morphology. Asbestos was found to induce downregulation of E-cadherin protein levels in A549 lung carcinoma cells in 2-dimensional (2D) and 3D cultures. Similar findings were made in primary small airway epithelial cells cultured in 3D conditions where the cells retained alveolar type II cell phenotype. A549 cells also exhibited loss of cell-cell contacts, actin reorganization and expression of α-smooth muscle actin (α-SMA) in 2D cultures. These phenotypic changes were not associated with increased transforming growth factor (TGF)-β signaling activity. MAPK/Erk signaling pathway was found to mediate asbestos-induced downregulation of E-cadherin and alterations in cell morphology. Our results suggest that asbestos can induce epithelial plasticity, which can be interfered by blocking the MAPK/Erk kinase activity.  相似文献   

8.
The effect of standard orthopaedic materials on proliferation and differentiation of osteoblasts was examined using a standardised cell culture system. Osteoblasts hFOB 1.19 were cultured on stainless steel (SS), a chromium-cobalt-molybdenum alloy (CrCoMb) and commercially pure titanium (cpTi) for 12 days. Cell culture polystyrene (PS) was used as a reference. Cell numbers and cell viability were used as parameters of proliferation. Cell differentiation was assessed using alkaline phosphatase activity, collagen I and osteocalcin production. The parameters of proliferation showed earlier maximum values on PS and cpTi, while proliferation was delayed on SS and CrCoMb. The highest values of differentiation were found on cpTi. The development of alkaline phosphatase activity showed two peaks reflecting apoptosis and redifferentiation. The cell culture system hFOB 1.19 is thus suitable for revealing differences in proliferation and differentiation of osteoblasts on standard orthopaedic materials. The results correlate with previous in vivo findings. Using this system, the dynamic effect of the material surface on the differentiation process of osteoblasts can be demonstrated.  相似文献   

9.
10.
Influenza A virus exerts a large health burden during both yearly epidemics and global pandemics. However, designing effective vaccine and treatment options has proven difficult since the virus evolves rapidly. Therefore, it may be beneficial to identify host proteins associated with viral infection and replication to establish potential new antiviral targets. We have previously measured host protein responses in continuously cultured A549 cells infected with mouse-adapted virus strain A/PR/8/34(H1N1; PR8). We here identify and measure host proteins differentially regulated in more relevant primary human bronchial airway epithelial (HBAE) cells. A total of 3740 cytosolic HBAE proteins were identified by 2D LC-MS/MS, of which 52 were up-regulated ≥2-fold and 41 were down-regulated ≥2-fold after PR8 infection. Up-regulated HBAE proteins clustered primarily into interferon signaling, other host defense processes, and molecular transport, whereas down-regulated proteins were associated with cell death signaling pathways, cell adhesion and motility, and lipid metabolism. Comparison to influenza-infected A549 cells indicated some common influenza-induced host cell alterations, including defense response, molecular transport proteins, and cell adhesion. However, HBAE-specific alterations consisted of interferon and cell death signaling. These data point to important differences between influenza replication in continuous and primary cell lines and/or alveolar and bronchial epithelial cells.  相似文献   

11.
12.
The ability of synapses to undergo changes in structure and function in response to alterations of neuronal activity is an essential property of neural circuits. One way that this is achieved is through global changes in the molecular composition of the synapse; however, it is not clear how these changes are coupled to the dynamics of neuronal activity. Here we found that, in cultured rat cortical neurons, bidirectional changes of neuronal activity led to corresponding alterations in the expression of brain-derived neurotrophic factor (BDNF) and phosphorylation of its receptor tropomyosin-related kinase B (TrkB), as well as in the level of synaptic proteins. Exogenous BDNF reversed changes in synaptic proteins induced by chronic activity blockade, while inhibiting Trk kinase activity or depleting endogenous BDNF abolished the concentration changes induced by chronic activity elevation. Both tetrodotoxin and bicuculline had significant, but opposite, effects on synaptic protein ubiquitination in a time-dependent manner. Furthermore, exogenous BDNF was sufficient to increase ubiquitination of synaptic proteins, whereas scavenging endogenous BDNF or inhibiting Trk kinase activity prevented the ubiquitination of synaptic proteins induced by chronic elevation of neuronal activity. Inhibiting the proteasome or blocking protein polyubiquitination mimicked the effect of tetrodotoxin on the levels of synaptic proteins and canceled the effects of BDNF. Our study indicates that BDNF-TrkB signaling acts upstream of the ubiquitin proteasome system, linking neuronal activity to protein turnover at the synapse.  相似文献   

13.
14.
Successful osseointegration of an implant depends on the properties of the material of which it is made. A standardized cell culture system for the assessment of the biological effect of material surfaces has already been described. In the present study, this system has been extended to include the quantitative analysis of the material-dependent osteoblast gene expression. Human foetal osteoblasts (hFOB 1.19) were cultured for 3 weeks on titanium surfaces of varying roughness, and on surfaces of chromium-cobalt-molybdenum alloy (CrCoMo). Using a real time RT-PCR technique, expressions of alkaline phosphatase, collagen 1 and osteocalcin were determined as parameters of osteoblast differentiation. In comparison with CrCoMo, differentiation was accelerated on titanium. While the smooth titanium surface leads to earlier cell growth, the rough surface induces more prolonged and stronger cell proliferation. Our results confirm at the molecular level the excellent clinical biocompatibility of titanium surfaces. The real-time RT-PCR provides a new method for the quantitative assessment of material-dependent osteoblastic differentiation.  相似文献   

15.
Mass spectrometry‐based proteomic strategies can profile the expression level of proteins in response to external stimuli. Nicotine affects diverse cellular pathways, however, the nicotine‐induced alterations on the global proteome across human cell lines have not been fully elucidated. We measured perturbations in protein levels resulting from nicotine treatment in four cell lines—HEK, HeLa, PaSC, and SH‐SY5Y—in a single experiment using tandem mass tags (TMT10‐plex) and high‐resolution mass spectrometry. We quantified 8590 proteins across all cell lines. Of these, nicotine increased the abundance of 31 proteins 1.5‐fold or greater in all cell lines. Likewise, considering proteins with altered levels in at least three of the four cell lines, 64 were up‐regulated, while one was down‐regulated. Gene ontology analysis revealed that ~40% of these proteins were membrane bound, and functioned in transmembrane signaling and receptor activity. We highlighted proteins, including APP, APLP2, LAPTM4B, and NCOA4, which were dysregulated by nicotine in all cell lines investigated and may have implications in downstream signaling pathways, particularly autophagy. Using the outlined methodology, studies in additional (including primary) cell lines will provide further evidence that alterations in the levels of these proteins are indeed a general response to nicotine and thereby merit further investigation.  相似文献   

16.
Genetic alterations are responsible for the development of cancer in ductal cells of the pancreas. These genetic changes result in abnormal molecular expression of proteins that are involved in cell proliferation, cell cycle control and adhesion. Some of the genetic mutations result in aberrant proteins that can be recognized as novel or foreign by cells of innate and adaptive immune systems. These are appropriate targets for therapeutic intervention which may involve immunobiologic approaches. These approaches may be less effective because of immune escape mechanisms developed by tumor cells within the microenvironment of the tumor mass. Immunobiotherapy intervention of pancreas cancer must circumvent these obstacles and integrate effective immunotherapy with molecularly targeted approaches to pancreas cancer intervention.  相似文献   

17.
Signal transduction and functional changes in neutrophils with aging   总被引:4,自引:0,他引:4  
It is well known that the immune response decreases during aging, leading to a higher susceptibility to infections, cancers and autoimmune disorders. Most widely studied have been alterations in the adaptive immune response. Recently, the role of the innate immune response as a first-line defence against bacterial invasion and as a modulator of the adaptive immune response has become more widely recognized. One of the most important cell components of the innate response is neutrophils and it is therefore important to elucidate their function during aging. With aging there is an alteration of the receptor-driven functions of human neutrophils, such as superoxide anion production, chemotaxis and apoptosis. One of the alterations underlying these functional changes is a decrease in signalling elicited by specific receptors. Alterations were also found in the neutrophil membrane lipid rafts. These alterations in neutrophil functions and signal transduction that occur during aging might contribute to the significant increase in infections in old age.  相似文献   

18.
The present study aimed to explore the lactation-induced changes in hepatic gene expression in sows (Sus scrofa) during lactation. Using a porcine whole-genome microarray a total of 632 differentially expressed genes in the liver of lactating compared to non-lactating sows could be identified. Enrichment analysis revealed that the differentially expressed genes were mainly involved in fatty acid metabolism, pyruvate metabolism, glutathione metabolism, glycine, serine and threonine metabolism, citrate cycle, glycerophospholipid metabolism, PPAR signaling, and focal adhesion. The most striking observation with respect to intermediary metabolism was that genes involved in fatty acid catabolism, the catabolism of gluconeogenic amino acids, the citrate cycle and the respiratory chain were up-regulated in the liver of sows during lactation. With respect to immune response, it could be demonstrated that genes encoding acute phase proteins and genes involved in tissue repair were up-regulated and genes encoding adhesion molecules were down-regulated in the liver of sows during lactation. The results indicate that energy-generating pathways and pathways involved in the delivery of gluconeogenic substrates are induced in sow liver during lactation. The alterations of expression of genes encoding proteins involved in immune response suggest that lactation in sows may cause an adaptive immune response that possibly counteracts hepatic inflammation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号