首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In avian brood parasitism, both the host and the parasite are expected to develop various conflicting adaptations; hosts develop a defense against parasitism, such as an ability to recognize and reject parasitic eggs that look unlike their own, while parasites evolve egg mimicry to counter this host defense. Hosts may further evolve to generate various egg phenotypes that are not mimicked by parasites. Difference in egg phenotype critically affects the successful reproduction of hosts and parasites. Recent studies have shown that clear polymorphism in egg phenotype is observed in several host–parasite interactions, which suggests that egg polymorphism may be a more universal phenomenon than previously thought. We examined the mechanism for maintaining egg polymorphism in the rufescent prinia (Prinia rufescens) that is parasitized by the plaintive cuckoo (Cacomantis merulinus) from a theoretical viewpoint based on a mathematical model. The prinia has four distinct egg phenotypes: immaculate white, immaculate blue, white with spots, and blue with spots. Only two egg phenotypes, white with spots and blue with spots, are found in the cuckoo population. We show that the observed prinia and cuckoo phenotypes cannot be at an equilibrium and that egg polymorphism can be maintained either at stationary equilibrium or with dynamic, frequency oscillations, depending on the mutation rates of the background color and spottiness. Long‐term monitoring of the prinia–cuckoo interaction over a wide geographic range is needed to test the results of the model analyses.  相似文献   

2.
Coevolutionary arms races are a potent force in evolution, and brood parasite-host dynamics provide classical examples. Different host-races of the common cuckoo, Cuculus canorus, lay eggs in the nests of other species, leaving all parental care to hosts. Cuckoo eggs often (but not always) appear to match remarkably the color and pattern of host eggs, thus reducing detection by hosts. However, most studies of egg mimicry focus on human assessments or reflectance spectra, which fail to account for avian vision. Here, we use discrimination and tetrachromatic color space modeling of bird vision to quantify egg background and spot color mimicry in the common cuckoo and 11 of its principal hosts, and we relate this to egg rejection by different hosts. Egg background color and luminance are strongly mimicked by most cuckoo host-races, and mimicry is better when hosts show strong rejection. We introduce a novel measure of color mimicry-"color overlap"-and show that cuckoo and host background colors increasingly overlap in avian color space as hosts exhibit stronger rejection. Finally, cuckoos with better background color mimicry also have better pattern mimicry. Our findings reveal new information about egg mimicry that would be impossible to derive by the human eye.  相似文献   

3.
Arms races between avian brood parasites and their hosts often result in parasitic mimicry of host eggs, to evade rejection. Once egg mimicry has evolved, host defences could escalate in two ways: (i) hosts could improve their level of egg discrimination; and (ii) negative frequency-dependent selection could generate increased variation in egg appearance (polymorphism) among individuals. Proficiency in one defence might reduce selection on the other, while a combination of the two should enable successful rejection of parasitic eggs. We compared three highly variable host species of the Afrotropical cuckoo finch Anomalospiza imberbis, using egg rejection experiments and modelling of avian colour and pattern vision. We show that each differed in their level of polymorphism, in the visual cues they used to reject foreign eggs, and in their degree of discrimination. The most polymorphic host had the crudest discrimination, whereas the least polymorphic was most discriminating. The third species, not currently parasitized, was intermediate for both defences. A model simulating parasitic laying and host rejection behaviour based on the field experiments showed that the two host strategies result in approximately the same fitness advantage to hosts. Thus, neither strategy is superior, but rather they reflect alternative potential evolutionary trajectories.  相似文献   

4.
Mimicry of a harmless model (aggressive mimicry) is used by egg, chick and fledgling brood parasites that resemble the host''s own eggs, chicks and fledglings. However, aggressive mimicry may also evolve in adult brood parasites, to avoid attack from hosts and/or manipulate their perception of parasitism risk. We tested the hypothesis that female cuckoo finches (Anomalospiza imberbis) are aggressive mimics of female Euplectes weavers, such as the harmless, abundant and sympatric southern red bishop (Euplectes orix). We show that female cuckoo finch plumage colour and pattern more closely resembled those of Euplectes weavers (putative models) than Vidua finches (closest relatives); that their tawny-flanked prinia (Prinia subflava) hosts were equally aggressive towards female cuckoo finches and southern red bishops, and more aggressive to both than to their male counterparts; and that prinias were equally likely to reject an egg after seeing a female cuckoo finch or bishop, and more likely to do so than after seeing a male bishop near their nest. This is, to our knowledge, the first quantitative evidence for aggressive mimicry in an adult bird, and suggests that host–parasite coevolution can select for aggressive mimicry by avian brood parasites, and counter-defences by hosts, at all stages of the reproductive cycle.  相似文献   

5.
Coevolution is often invoked as an engine of biological diversity. Avian brood parasites and their hosts provide one of the best-known examples of coevolution. Brood parasites lay their eggs in the nests of other species, selecting for host defences and reciprocal counteradaptations in parasites. In theory, this arms race should promote increased rates of speciation and phenotypic evolution. Here, we use recently developed methods to test whether the three largest avian brood parasitic lineages show changes in rates of phenotypic diversity and speciation relative to non-parasitic lineages. Our results challenge the accepted paradigm, and show that there is little consistent evidence that lineages of brood parasites have higher speciation or extinction rates than non-parasitic species. However, we provide the first evidence that the evolution of brood parasitic behaviour may affect rates of evolution in morphological traits associated with parasitism. Specifically, egg size and the colour and pattern of plumage have evolved up to nine times faster in parasitic than in non-parasitic cuckoos. Moreover, cuckoo clades of parasitic species that are sympatric (and share similar host genera) exhibit higher rates of phenotypic evolution. This supports the idea that competition for hosts may be linked to the high phenotypic diversity found in parasitic cuckoos.  相似文献   

6.
The coevolutionary process between avian brood parasites and their hosts predicts that low intraclutch variation in egg colour appearance favours egg discrimination of parasite eggs by hosts. Low intraclutch variation would also result in high interclutch variation, which would increase the difficulty of evolution of mimicry by the cuckoo, because many host colour patterns might coexist in the same host population. We explored this possibility using an experimental approach in the common magpie, Pica pica, and great spotted cuckoo, Clamator glandarius, system. We artificially parasitized magpie nests with great spotted cuckoo model eggs to assess host response in two populations in Spain (Guadix and Doñana) in relation to intraclutch variation in egg appearance, measured by ultraviolet-visible reflectance spectrophotometry. Individuals that rejected model cuckoo eggs had higher intraclutch variation than accepters, suggesting that an increase, rather than a decrease, in intraclutch variation in magpie egg appearance was advantageous for cuckoo egg discrimination.  相似文献   

7.
Avian hosts of brood parasites can evolve anti‐parasitic defenses to recognize and reject foreign eggs from their nests. Theory predicts that higher inter‐clutch and lower intra‐clutch variation in egg appearance facilitates hosts to detect parasitic eggs as egg‐rejection mainly depends on the appearance of the egg. Therefore, we predict that egg patterns and rejection rates will differ when hosts face different intensity of cuckoo parasitism. We tested this prediction in two populations of the plain prinia Prinia inornata: Guangxi in mainland China with high diversity and density of cuckoo species, and Taiwan where there is only one breeding cuckoo species, the oriental cuckoo Cuculus optatus. As expected, egg patterns were similar within clutches but different among clutches (polymorphic eggs) in the mainland population, while the island population produced more uniform egg morphs. Furthermore, the mainland population showed a high rate of egg rejection, while the island population exhibited dramatically reduced egg grasp‐rejection ability in the absence of parasitism by the common cuckoo Cuculus canorus. Our study suggests that prinias show lower intra‐clutch consistency in egg colour and lose egg‐rejecting ability under relaxed selection pressure from brood parasitism.  相似文献   

8.
When brood parasites exploit multiple host species, egg rejection by hosts may select for the evolution of host‐specific races, where each race mimics a particular host's egg type. However, some brood parasites that exploit multiple hosts with the ability to reject foreign eggs appear to have only a single egg type. In these cases, it is unclear how the parasite egg escapes detection by its hosts. Three possible explanations are: 1) host‐specific races are present, but differences in egg morphology are difficult for the human eye to detect; 2) the brood parasite evolves a single egg type that is intermediate in appearance between the eggs of its hosts; 3) or the parasite evolves mimicry of one of its hosts, which subsequently allows it to exploit other species with similar egg morphology. Here we test these possibilities by quantifying parameters of egg appearance of the brood‐parasitic Pacific koel Eudynamys orientalis and seven of its hosts. Koel eggs laid in the nests of different hosts did not show significant differences in colour or pattern, suggesting that koels have not evolved host‐specific races. Koel eggs were similar in colour, luminance and pattern to the majority of hosts, but were significantly more similar in colour and luminance to one of the major hosts than to two other major hosts, supporting hypothesis 3. Our findings suggest that mimicry of one host can allow a brood parasite to exploit new hosts with similar egg morphologies, which could inhibit the evolution of host defences in naïve hosts.  相似文献   

9.
Recent evidence suggests that blue‐green coloration of bird eggshells may be related to female and/or egg phenotypic quality, and that such colour may affect parental effort and therefore the nutritional environment of developing nestlings. Here we suggest that these relationships and the signal function of eggshell coloration would affect the outcome of coevolution between avian brood parasites and their hosts in at least three different non‐exclusive evolutionary pathways. First, by laying blue‐green coloured eggs, cuckoo females may exploit possible sensory biases of their hosts, constraining the evolution of parasitic egg recognition, and thus avoid rejection. Second, because of the relatively high costs of laying blue eggs, cuckoo females may be limited in their ability to mimic costly blue‐green eggs of their hosts because cuckoo females lay many more eggs than their hosts. Furthermore, costs associated with foreign egg recognition errors would be relatively higher for hosts laying blue eggs. Third, cuckoos may use coloration of host eggs for selecting individuals or specific hosts of appropriate phenotypic quality (i.e. parental abilities). We here explored some predictions emerging from the above scenarios and found partial support for two of them by studying egg coloration of European cuckoos (Cuculus canorus) and that of their 25 main hosts, as well as parasitism and rejection rate of hosts. Cuckoo hosts parasitized with more blue, green, and ultraviolet cuckoo eggs, or those laying more blue‐green eggs, were more prone to accept experimental parasitism with artificial cuckoo eggs. In addition, coloration of cuckoo eggs is more variable when parasitizing hosts laying bluer‐greener eggs, even after controlling for the effect of host egg coloration (i.e. degree of egg matching). Globally, our results are consistent with the proposed hypothesis that host egg traits that are related to phenotypic quality of hosts, such as egg coloration, may have important implications for the coevolutionary interaction between hosts and brood parasites. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 154–168.  相似文献   

10.
Many passerine host species have counteracted the parasite egg mimicry in their coevolutionary arms race with the common cuckoo (Cuculus canorus) by evolving increased interclutch and reduced intraclutch variation in egg appearance. Such variations make it easier for hosts to recognize a foreign egg, reduce the possibility of making recognition errors, and reduce the ability of the cuckoo to mimic the eggs of a particular host. Here, we investigate if such clutch characteristics have evolved among North American passerines. We predict that due to the absence of brood parasites with egg mimicry on this continent, these passerines should (1) not show any relationship between rejection rates and intra- or interclutch variation, and (2) intraclutch variation should be lower and interclutch variation higher in European hosts exposed to cuckoo parasitism as compared to North American hosts parasitized by cowbirds. Here we present data that show support for most of these and other predictions, as well as when controlling statistically for effects of common descent. However, the effect of continent on intraclutch variation was less than predicted and we discuss a possible reason for this. All things considered, the results demonstrate that parasitism by a specialist brood parasite with egg mimicry is a powerful selective force regarding the evolution of egg characteristics in passerine birds.  相似文献   

11.
Many hosts of avian brood parasites such as the common cuckoo (Cuculus canorus) show refined egg discrimination behaviour. Egg recognition in most open‐nesting hosts seems to be based entirely on differences in colour. However, hole‐ and dome‐nesting hosts may rely largely on luminance contrasts. Here, we studied egg rejection behaviour in nightingales (Luscinia megarhynchos), an open‐nesting species that nests in deeply shadowed positions and lays very specific dark olive‐green eggs. Although being theoretically suitable as hosts of the cuckoo, nightingales are very rarely parasitized and no cuckoo egg morph mimicking nightingale eggs is known. Thus, we predicted high rejection rate of foreign eggs, but because of the dim nesting environments, luminance contrasts would be an important cue in egg rejection decisions, similar to cavity‐ or dome‐nesting species. We experimentally parasitized nightingale nests with two groups of model egg types: ‘bright eggs’ and ‘dark eggs’. Within each group, one of the egg types was an effective match while the other type was a poor colour match (whitish vs. pale blue and olive‐green vs. black).We used a discrimination visual model to quantify host‐model egg similarity and compared egg rejection predicted by the model with the observed rejection pattern. Consistent with a scenario of largely luminance‐based egg recognition, blue and white eggs, which had larger achromatic mismatching, were rejected at a higher relative rate than the better achromatic matching black and green eggs. Nightingales showed strong aggression to a cuckoo dummy, suggesting that they were involved in coevolutionary interactions with the cuckoo in the past. However, because of the highly distinct appearance of nightingale eggs relative to the other sympatrically breeding passerines, and the largely luminance‐based egg recognition, this arms race was likely terminated at an early stage.  相似文献   

12.
Some parasite cuckoo species lay eggs that, to the human eye, appear to mimic the appearance of the eggs of their favourite hosts, which hinders discrimination and removal of their eggs by host species. Hitherto, perception of cuckoo-host egg mimicry has been estimated based on human vision or spectrophotometry, which does not account for what the receivers' eye (i.e. hosts) actually discriminates. Using a discrimination model approach that reproduces host retinal functioning, and museum egg collections collected in the south of Finland, where at least six different races of the European cuckoo (Cuculus canorus) coexist, I first assess whether the colour design of cuckoo eggs of different races maximizes matching for two favourite avian hosts, viz. the redstart (Phoenicurus phoenicurus) and the pied wagtail (Motacilla alba). Second, I assess the role of nest luminosity on host perception of mimicry by the same two hosts. Phoenicurus-cuckoo eggs showed a better chromatic matching with the redstart-host eggs than other cuckoo races, and in most cases can not be discriminated. Sylvia-cuckoo eggs, however, showed better achromatic matching with redstart-host eggs than Phoenicurus-cuckoo eggs. Also, Motacilla-cuckoo eggs showed poorer chromatic and achromatic matching with pied wagtail-host eggs than Sylvia-cuckoo eggs. Nest luminosity affected chromatic and achromatic differences between cuckoo and host eggs, although only minimally affected the proportion of cuckoo eggs discriminated by chromatic signals. These results reveal that cuckoo races as assessed by humans do not entirely match with host perception of matching and that achromatic mechanisms could play a main role in the discrimination of cuckoo eggs at low-light levels.  相似文献   

13.

Background

Avian brood parasites and their hosts are involved in complex offence-defense coevolutionary arms races. The most common pair of reciprocal adaptations in these systems is egg discrimination by hosts and egg mimicry by parasites. As mimicry improves, more advanced host adaptations evolve such as decreased intra- and increased interclutch variation in egg appearance to facilitate detection of parasitic eggs. As interclutch variation increases, parasites able to choose hosts matching best their own egg phenotype should be selected, but this requires that parasites know their own egg phenotype and select host nests correspondingly.

Methodology/Principal Findings

We compared egg mimicry of common cuckoo Cuculus canorus eggs in naturally parasitized marsh warbler Acrocephalus palustris nests and their nearest unparasitized conspecific neighbors having similar laying dates and nest-site characteristics. Modeling of avian vision and image analyses revealed no evidence that cuckoos parasitize nests where their eggs better match the host eggs. Cuckoo eggs were as good mimics, in terms of background and spot color, background luminance, spotting pattern and egg size, of host eggs in the nests actually exploited as those in the neighboring unparasitized nests.

Conclusions/Significance

We reviewed the evidence for brood parasites selecting better-matching host egg phenotypes from several relevant studies and argue that such selection probably cannot exist in host-parasite systems where host interclutch variation is continuous and overall low or moderate. To date there is also no evidence that parasites prefer certain egg phenotypes in systems where it should be most advantageous, i.e., when both hosts and parasites lay polymorphic eggs. Hence, the existence of an ability to select host nests to maximize mimicry by brood parasites appears unlikely, but this possibility should be further explored in cuckoo-host systems where the host has evolved discrete egg phenotypes.  相似文献   

14.
Interspecific arms races between cuckoos and their hosts have produced remarkable examples of mimicry, with parasite eggs evolving to match host egg appearance and so evade removal by hosts. Certain bronze-cuckoo species, however, lay eggs that are cryptic rather than mimetic. These eggs are coated in a low luminance pigment that camouflages them within the dark interiors of hosts'' nests. We investigated whether cuckoo egg crypsis is likely to have arisen from the same coevolutionary processes known to favour egg mimicry. We added high and low luminance-painted eggs to the nests of large-billed gerygones (Gerygone magnirostris), a host of the little bronze-cuckoo (Chalcites minutillus). Gerygones rarely rejected either egg type, and did not reject natural cuckoo eggs. Cuckoos, by contrast, regularly removed an egg from clutches before laying their own and were five times more likely to remove a high luminance model than its low luminance counterpart. Given that we found one-third of all parasitized nests were exploited by multiple cuckoos, our results suggest that competition between cuckoos has been the key selective agent for egg crypsis. In such intraspecific arms races, crypsis may be favoured over mimicry because it can reduce the risk of egg removal to levels below chance.  相似文献   

15.
Hosts of obligate avian brood parasites use visual cues to distinguishbetween their own eggs and those of the parasite. Despite majordifferences between human and bird vision, most previous studieson cuckoo egg mimicry estimated color matching based on humancolor vision. Undetected by humans, ultraviolet reflectance(UVR) may play a previously ignored role for rejection behaviorin avian brood parasite systems. We explored this possibilityby manipulating UVR of great spotted cuckoo Clamator glandariuseggs and assessing the response of magpie Pica pica hosts. Wecoated cuckoo eggs with an ultraviolet (UV) light blocker thatreduced UVR but left the human visible reflectance (400–700nm) unaltered. The first control treatment also coated the eggsbut did not alter their reflectance. A second control groupof cuckoo eggs was maintained uncoated to control for handlingeffects on magpie discrimination. We artificially parasitizeda third of a breeding magpie population with each type of experimentalegg and studied the rejection of cuckoo eggs. We failed to findsignificant differences between rejection rate of cuckoo eggswith and without reduced reflectance in the UV region. Our resultsindicate that artificial reduction of UVR of cuckoo eggs doesnot affect the probability of ejection by magpie hosts.  相似文献   

16.
Interactions between parasitic cuckoos and their songbird hosts form a classical reciprocal “arms race,” and are an excellent model for understanding the process of coevolution. Changes in host egg coloration via the evolution of interclutch variation in egg color or intraclutch consistency in egg color are hypothesized counter adaptations that facilitate egg recognition and thus limit brood parasitism. Whether these antiparasitism strategies are maintained when the selective pressure of parasitism is relaxed remains debated. However, introduced species provide unique opportunities for testing the direction and extent of natural selection on phenotypic trait maintenance and variation. Here, we investigated egg rejection behavior and egg color polymorphism in the red‐billed leiothrix (Leiothrix lutea), a common cuckoo (Cuculus canorus) host, in a population introduced to Hawaii 100 years ago (breeding without cuckoos) and a native population in China (breeding with cuckoos). We found that egg rejection ability was equally strong in both the native and the introduced populations, but levels of interclutch variation and intraclutch consistency in egg color in the native population were higher than in the introduced population. This suggests that egg rejection behavior in hosts can be maintained in the absence of brood parasitism and that egg appearance is maintained by natural selection as a counter adaptation to brood parasitism. This study provides rare evidence that host antiparasitism strategies can change under parasite‐relaxed conditions and reduced selection pressure.  相似文献   

17.
Hosts either tolerate avian brood parasitism or reject it by ejecting parasitic eggs, as seen in most rejecter hosts of common cuckoos, Cuculus canorus, or by abandoning parasitized clutches, as seen in most rejecter hosts of brown‐headed cowbirds, Molothrus ater. What explains consistent variation between alternative rejection behaviours of hosts within the same species and across species when exposed to different types of parasites? Life history theory predicts that when parasites decrease the fitness of host offspring, but not the future reproductive success of host adults, optimal clutch size should decrease. Consistent with this prediction, evolutionarily old cowbird hosts, but not cuckoo hosts, have lower clutch sizes than related rarely‐ or newly parasitized species. We constructed a mathematical model to calculate the fitness payoffs of egg ejector vs. nest abandoner hosts to determine if various aspects of host life history traits and brood parasites’ virulence on adult and young host fitness differentially influence the payoffs of alternative host defences. These calculations showed that in general egg ejection was a superior anti‐parasite strategy to nest abandonment. Yet, increasing parasitism rates and increasing fitness values of hosts’ eggs in both currently parasitized and future replacement nests led to switch points in fitness payoffs in favour of nest abandonment. Nonetheless, nest abandonment became selectively more favourable only at lower clutch sizes and only when hosts faced parasitism by a cowbird‐ rather than a cuckoo‐type brood parasite. We suggest that, in addition to evolutionary lag and gape‐size limitation, our estimated fitness differences based on life history trait variation provide new insights for the consistent differences observed in the anti‐parasite rejection strategies between many cuckoo‐ and cowbird‐hosts.  相似文献   

18.
The evolution of complex organismal traits is obvious as a historical fact, but the underlying causes—including the role of natural selection—are contested. Gould argued that a random walk from a necessarily simple beginning would produce the appearance of increasing complexity over time. Others contend that selection, including coevolutionary arms races, can systematically push organisms toward more complex traits. Methodological challenges have largely precluded experimental tests of these hypotheses. Using the Avida platform for digital evolution, we show that coevolution of hosts and parasites greatly increases organismal complexity relative to that otherwise achieved. As parasites evolve to counter the rise of resistant hosts, parasite populations retain a genetic record of past coevolutionary states. As a consequence, hosts differentially escape by performing progressively more complex functions. We show that coevolution''s unique feedback between host and parasite frequencies is a key process in the evolution of complexity. Strikingly, the hosts evolve genomes that are also more phenotypically evolvable, similar to the phenomenon of contingency loci observed in bacterial pathogens. Because coevolution is ubiquitous in nature, our results support a general model whereby antagonistic interactions and natural selection together favor both increased complexity and evolvability.  相似文献   

19.
Avian brood parasites lay their eggs in other birds' nests and impose considerable fitness costs on their hosts. Historically and scientifically, the best studied example of circumventing host defences is the mimicry of host eggshell colour by the common cuckoo (Cuculus canorus). Yet the chemical basis of eggshell colour similarity, which impacts hosts' tolerance towards parasitic eggs, remains unknown. We tested the alternative scenarios that (i) cuckoos replicate host egg pigment chemistry, or (ii) cuckoos use alternative mechanisms to produce a similar perceptual effect to mimic host egg appearance. In parallel with patterns of similarity in avian-perceived colour mimicry, the concentrations of the two key eggshell pigments, biliverdin and protoporphyrin, were most similar between the cuckoo host-races and their respective hosts. Thus, the chemical basis of avian host-parasite egg colour mimicry is evolutionarily conserved, but also intraspecifically flexible. These analyses of pigment composition reveal a novel proximate dimension of coevolutionary interactions between avian brood parasites and hosts, and imply that alternative phenotypes may arise by the modifications of already existing biochemical and physiological mechanisms and pathways.  相似文献   

20.
Parasitic cuckoos lay eggs that mimic those of their hosts, and such close phenotypic matching may arise from coevolutionary interactions between parasite and host. However, cuckoos may also explicitly choose hosts in a way that increases degree of matching between eggs of cuckoos and parasites, with female preference for specific host phenotypes increasing the degree of matching. We tested for temporal change in degree of matching between eggs of the parasitic European cuckoo (Cuculus canorus) and its reed warbler (Acrocephalus scirpaceus) host during 24 consecutive years in a recently parasitized reed warbler population. Cuckoo-host egg matching in an ultraviolet-brownness component yielding most of the chromatic variance of eggs improved during the study period. Improved matching was not due to changes in cuckoo egg phenotype. Cuckoo eggs matched host eggs for ultraviolet-brownness within nests irrespective of duration of sympatry. Ultraviolet-brownness of cuckoo eggs was similar to that of reed warbler eggs at parasitized nests, but differed from that of reed warbler eggs at unparasitized nests. These findings provide tentative support for the cuckoo preference hypothesis suggesting that cuckoo-host egg matching could partially be due to cuckoo females selecting host nests based on the appearance of their eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号