首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Recent data have revealed that epigenetic alterations, including DNA methylation and chromatin structure changes, are among the earliest molecular abnormalities to occur during tumorigenesis. The inherent thermodynamic stability of cytosine methylation and the apparent high specificity of the alterations for disease may accelerate the development of powerful molecular diagnostics for cancer. We report a genome-wide analysis of DNA methylation alterations in breast cancer. The approach efficiently identified a large collection of novel differentially DNA methylated loci (approximately 200), a subset of which was independently validated across a panel of over 230 clinical samples. The differential cytosine methylation events were independent of patient age, tumor stage, estrogen receptor status or family history of breast cancer. The power of the global approach for discovery is underscored by the identification of a single differentially methylated locus, associated with the GHSR gene, capable of distinguishing infiltrating ductal breast carcinoma from normal and benign breast tissues with a sensitivity and specificity of 90% and 96%, respectively. Notably, the frequency of these molecular abnormalities in breast tumors substantially exceeds the frequency of any other single genetic or epigenetic change reported to date. The discovery of over 50 novel DNA methylation-based biomarkers of breast cancer may provide new routes for development of DNA methylation-based diagnostics and prognostics, as well as reveal epigenetically regulated mechanism involved in breast tumorigenesis.  相似文献   

2.
Proteomics of breast carcinoma   总被引:10,自引:0,他引:10  
Beast cancer is the most diagnosed cancer in women, accounting for approximately 40,000 deaths annually in the USA. Significant advances have been made in the areas of detection and treatment, but a significant number of breast cancers are detected late. The advent of proteomics provides the hope of discovering novel biological markers that can be used for early detection, disease diagnosis, prognostication and prediction of response to therapy. Several proteomics technologies including 2D-PAGE, 2D-DIGE, ICAT, SELDI-TOF, MudPIT and protein arrays have been used to uncover molecular mechanisms associated with breast carcinoma at the global level, and a number of these technologies, particularly the SELDI-TOF hold promise as a proteomic approach that can be applied at the bedside for discovering protein patterns that distinguish disease and disease-free states with high sensitivity and specificity. Laser microdissection, a method for selection of homogenous cell populations, coupled to 2D-DIGE or MudPIT constitute a new proteomics-based paradigm for detecting disease in pathology specimens and monitoring disease response to therapy. This review describes proteomics technologies, and their application in the proteomic analysis of breast carcinoma.  相似文献   

3.
Efficiently generating evidence of clinical utility is a major challenge for ensuring clinical adoption of valuable diagnostics. A new approach to reimbursement in the United States offers a balance between evidence and incentives for molecular diagnostic tests.  相似文献   

4.
Nucleic acid based molecular techniques have been introduced into the diagnosis of malignant melanoma similarly to other cancers. They were applied for refinement of staging and to detect minimal residual disease. There are several good melanocyte-specific genetic markers such as tyrosinase, gp100, Melan-A/MART-1 and MIA. Unlike in the case of the lymph nodes, peripheral blood or bone marrow do not contain melanocytes excluding the possibility of fals positive reactions. Considering the pronounced heterogeneity of melanoma cells the most reliable molecular marker is the expression of tyrosinase. Several studies indicate that the quantity of circulating melanoma cells correlates with tumor burden and disease progression and reflects the effect of therapy. On the other hand, molecular techniques detect circulating melanoma cells much more frequently than the clinical manifestation of the disease progression (molecular recurrence), questioning the clinical significance of the detection of a small number of melanoma cells in the circulation. Based on these data molecular diagnostics is not part of the melanoma protocols yet and further studies are necessary to define its diagnostic role.  相似文献   

5.
Nanomedicine is an emerging field that integrates nanotechnology, biomolecular engineering, life sciences and medicine; it is expected to produce major breakthroughs in medical diagnostics and therapeutics. Due to the size-compatibility of nano-scale structures and devices with proteins and nucleic acids, the design, synthesis and application of nanoprobes, nanocarriers and nanomachines provide unprecedented opportunities for achieving a better control of biological processes, and drastic improvements in disease detection, therapy, and prevention. Recent advances in nanomedicine include the development of functional nanoparticle based molecular imaging probes, nano-structured materials as drug/gene carriers for in vivo delivery, and engineered molecular machines for treating single-gene disorders. This review focuses on the development of molecular imaging probes and engineered nucleases for nanomedicine, including quantum dot bioconjugates, quantum dot-fluorescent protein FRET probes, molecular beacons, magnetic and gold nanoparticle based imaging contrast agents, and the design and validation of zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs) for gene targeting. The challenges in translating nanomedicine approaches to clinical applications are discussed.  相似文献   

6.
With the development of de novo binders for protein targets from non‐related scaffolds, many possibilities for therapeutics and diagnostics have been created. In this study, we described the use of de novo design approach to create single‐chain fragment variable (scFv) for Salmonella enterica subspecies enterica serovar Typhi TolC protein. Typhoid fever is a global health concern in developing and underdeveloped countries. Rapid typhoid diagnostics will improve disease management and therapy. In this work, molecular dynamics simulation was first performed on a homology model of TolC protein in POPE membrane bilayer to obtain the central structure that was subsequently used as the target for scFv design. Potential hotspot residues capable of anchoring the binders to the target were identified by docking “disembodied” amino acid residues against TolC surface. Next, scFv scaffolds were selected from Protein Data Bank to harbor the computed hotspot residues. The hotspot residues were then incorporated into the scFv scaffold complementarity determining regions. The designs recapitulated binding energy, shape complementarity, and interface surface area of natural protein‐antibody interfaces. This approach has yielded 5 designs with high binding affinity against TolC that may be beneficial for the future development of antigen‐based detection agents for typhoid diagnostics.  相似文献   

7.
Molecular medicine is a new research field underlain by achievements of the Human Genome Project. The review considers the contribution of the Laboratory of Prenatal Diagnostics of the Ott Institute of Obstetrics and Gynecology to the development of molecular medicine in Russia. Special emphasis is placed on molecular diagnostics, predictive medicine, and gene therapy. The lab obtained priority results in devising and promoting methods of molecular diagnostics of the most common severe hereditary disorders such as cystic fibrosis, Duchenne muscular dystrophy, hemophilia A, and fragile X syndrome. Owing to the Russian program Human Genome, St. Petersburg researchers laid the foundations for theoretical and applied predictive medicine, which is aimed at identifying and analyzing the genes associated with predisposition to high-incidence multifactorial disorders. Experiments with mdx mice providing a model of Duchenne muscular dystrophy were carried out to select the optimal way of delivering a transgene (cDNA of the dystrophin gene) contained in various constructs for the purpose of gene therapy.  相似文献   

8.
Sequencing of the human genome opened the way to the exploration of the proteome and this has lead to the identification of large numbers of proteins in complex biological samples. The identification of diagnostic patterns in samples taken from patients to aid diagnosis is in the early stages of development. The solution to many of the technical challenges in proteomics and protein based molecular diagnostics will be found in new applications of nanomaterials. This review describes some of the physical and chemical principles underlying nanomaterials and devices and outlines how they can be used in proteomics; developments which are establishing nanoproteomics as a new field. Nanoproteomics will provide the platform for the discovery of next generation biomarkers. The field of molecular diagnostics will then come of age.  相似文献   

9.
We present an updated account of breast cancer treatment and of progress toward “precision” cancer therapy; we focus on new developments in diagnostic molecular pathology and breast cancer that have emerged during the past 2 years. Increasing awareness of new prognostic and predictive methodologies, and introduction of next generation sequencing has increased understanding of both tumor biology and clinical behavior, which offers the possibility of more appropriate therapeutic choices. It remains unclear which of these testing methodologies provides the most informative and cost-effective actionable results for predictive and prognostic pathology. It is likely, however, that an integrated “step-wise” approach that uses the traditional clinical-pathologic paradigms coordinated with molecular characterization of breast tumor tissue, will offer the most comprehensive and cost-effective options for individualized, “precision” therapy for patients with breast cancer.  相似文献   

10.
MOTIVATION: Molecular diagnostics aims at classifying diseases into clinically relevant sub-entities based on molecular characteristics. Typically, the entities are split into subgroups, which might contain several variants yielding a hierarchical model of the disease. Recent years have introduced a plethora of new molecular screening technologies to molecular diagnostics. As a result molecular profiles of patients became complex and the classification task more difficult. RESULTS: We present a novel tool for detecting hierarchical structure in binary datasets. We aim for identifying molecular characteristics, which are stochastically implying other characteristics. The final hierarchical structure is encoded in a directed transitive graph where nodes represent molecular characteristics and a directed edge from a node A to a node B denotes that almost all cases with characteristic B also display characteristic A. Naturally, these graphs need to be transitive. In the core of our modeling approach lies the problem of calculating good transitive approximations of given directed but not necessarily transitive graphs. By good transitive approximation we understand transitive graphs, which differ from the reference graph in only a small number of edges. It is known that the problem of finding optimal transitive approximation is NP-complete. Here we develop an efficient heuristic for generating good transitive approximations. We evaluate the computational efficiency of the algorithm in simulations, and demonstrate its use in the context of a large genome-wide study on mature aggressive lymphomas. AVAILABILITY: The software used in our analysis is freely available from http://compdiag.uni-regensburg.de/software/transApproxs.shtml.  相似文献   

11.
The worldwide incidence of breast cancer affects 1.2 million women each year. In contrast to the high occurrence of this malady, a decline in mortality is reported among industrialized countries. In this respect, both awareness campaigns and substantial progress achieved in therapy and diagnosis allowed for the enhancement of the survival rate in patients with breast cancer. Undoubtedly, oncology research programs played a relevant role in the improvement of therapeutics and diagnostics for breast cancer. Major strides were reported, especially over the last decade and a half, in better understanding molecular and cellular biology events involved in breast cancer pathogenesis and progression of the disease. However, therapeutic approaches for the treatment of patients with breast cancer need further improvement. Therapeutic interventions can chronically compromise both the state of health and quality of life of breast cancer survivors. In addition, current therapeutic approaches have not significantly improved the survival rate in patients with metastatic disease. On these grounds, it is necessary to develop more efficient therapeutics and diagnostic tools, which can improve the health and quality of life of breast cancer survivors and increase the survival rate in patients with metastatic disease. In this respect, the field of cancer research has placed a particular emphasis on the elucidation of genetic and epigenetic alterations that may lead to the pathogenesis of breast cancer and contribute to its progression.  相似文献   

12.
microRNAs (miRNAs) are a new class of non-protein-coding small RNAs, which regulate the expression of more than 30% protein-coding genes. The unique expression profiles of different miRNAs in different types of cancers and at different stages in one cancer type suggest that miRNAs can function as novel biomarkers for disease diagnostics and may present a new strategy for miRNA gene therapy. Anti-miRNAs and antisense oligonucleotides (ASO) have been employed to inhibit specific miRNA expression in vitro and in vivo for investigational and clinical purposes. Although miRNA-based diagnostics and gene therapy are still in their infancy, their huge potentials will meet our need for future disease diagnostics and gene therapy. High efficient delivery of miRNAs into targeted sites, designing accurate anti-miRNA/ASOs, and related biosafety issues are three major challenges in this field.  相似文献   

13.
Conventional methods to identify fungi have often relied on identification of disease symptoms, isolation and culturing of environmental organisms, and laboratory identification by morphology and biochemical tests. Although these methods are still fundamental there is an increasing move towards molecular diagnostics of fungi in all fields. In this review, some of the molecular approaches to fungal diagnostics based on polymerase chain reaction (PCR) and DNA/RNA probe technology are discussed. This includes several technological advances in PCR-based methods for the detection, identification and quantification of fungi including real-time PCR which has been successfully used to provide rapid, quantitative data on fungal species from environmental samples. PCR and probe based methods have provided new tools for the enumeration of fungal species, but it is still necessary to combine the new technology with more conventional methods to gain a fuller understanding of interactions occurring in the environment. Since its introduction in the mid 1980's PCR has provided many molecular diagnostic tools, some of which are discussed within this review, and with the advances in micro-array technology and real-time PCR methods the future is bright for the development of accurate, quantitative diagnostic tools that can provide information not only on individual fungal species but also on whole communities.  相似文献   

14.
The recent ten to twenty years have seen a substantial progress in the diagnosis and treatment of breast cancer. A rapid development of various curative options has led to the improvement of treatment outcomes, while paying more and more attention to the aspects of quality of life and cosmetic effect. In our publication, we wish to outline certain trends in the development of modern treatment of breast cancer. Among topics discussed are new forms of molecular diagnostics, new approach to the idea of sentinel node biopsy, as well as new techniques for delivery of medical procedures, the increasing use of nomograms, progress in the techniques of breast conservative treatment, modern approach to occult breast lesions, the increasing use of neoadjuvant treatment and intraoperative radiotherapy.  相似文献   

15.
Erectile dysfunction is a common problem affecting many men across all age groups. Its etiology is multifactorial. Hormonal, vascular, neurogenic, lifestyle, and psychological entities have all been implicated as causative agents. The molecular basis underlying its etiology and progression is complex and still challenges researchers in the field. Nonetheless, newly discovered common pathways and targets of its pathogenesis have opened a new era for both prevention and active treatment of the disease. This review describes some of the known molecular mechanisms contributing to erectile dysfunction and discusses the future of gene therapy for the disease.  相似文献   

16.
Nanotechnology has prompted researchers to develop new and improved materials aimed at biomedical applications with particular emphasis in diagnostics and therapy. Special interest has been directed at providing enhanced biomolecular diagnostics, including SNP detection gene expression profiles and biomarker characterisation. These strategies have focused on the development of nanoscale devices and platforms that can be used for single molecule characterisation of nucleic acid, DNA or RNA, and protein at an increased rate when compared to traditional techniques. Also, several advances have been reported on DNA analysis in real time, at both high resolution and very high throughputs, suitable for biomedical diagnostics. Here, we shall provide a review of available nanotechnology-based platforms for biomolecular recognition, and their application to molecular diagnostics and genome analysis, with emphasis on the use of noble metal nanoparticles for simple and specific analysis systems. Particular focus will be put on those already being translated into clinical settings. This article is part of a Special Issue entitled: Proteomics: The clinical link.  相似文献   

17.
18.
Inorganic nanoparticles (NPs) including semiconductor quantum dots (QDs), iron oxide NPs and gold NPs have been developed as contrast agents for diagnostics by molecular imaging. Compared with traditional contrast agents, NPs offer several advantages: their optical and magnetic properties can be tailored by engineering the composition, structure, size and shape; their surfaces can be modified with ligands to target specific biomarkers of disease; the contrast enhancement provided can be equivalent to millions of molecular counterparts; and they can be integrated with a combination of different functions for multimodal imaging. Here, we review recent advances in the development of contrast agents based on inorganic NPs for molecular imaging, and also touch on contrast enhancement, surface modification, tissue targeting, clearance and toxicity. As research efforts intensify, contrast agents based on inorganic NPs that are highly sensitive, target-specific and safe to use are expected to enter clinical applications in the near future.  相似文献   

19.
Radiolabeled peptides have become important tools in nuclear oncology, both as diagnostics and more recently also as therapeutics. They represent a distinct sector of the molecular targeting approach, which in many areas of therapy will implement the old "magic bullet" concept by specifically directing the therapeutic agent to the site of action. In this three-part review, we present a comprehensive overview of the literature on receptor-mediated tumor targeting with the different radiopeptides currently studied. Part I summarizes the general concepts and methods of targeting, the selection of radioisotopes, chelators, and the criteria of peptide ligand development. Then, the >400 studies on the application to somatostatin/somatostatin-release inhibiting factor receptor-mediated tumor localization and treatment will be reviewed, demonstrating that peptide radiopharmaceuticals have gained an important position in clinical medicine.  相似文献   

20.
Radiolabeled peptides have become important tools in nuclear oncology, both as diagnostics and more recently also as therapeutics. They represent a distinct sector of the molecular targeting approach, which in many areas of therapy will implement the old “magic bullet” concept by specifically directing the therapeutic agent to the site of action. In this three-part review, we present a comprehensive overview of the literature on receptor-mediated tumor targeting with the different radiopeptides currently studied. Part I summarizes the general concepts and methods of targeting, the selection of radioisotopes, chelators, and the criteria of peptide ligand development. Then, the >400 studies on the application to somatostatin/somatostatin-release inhibiting factor receptor-mediated tumor localization and treatment will be reviewed, demonstrating that peptide radiopharmaceuticals have gained an important position in clinical medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号