首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The fission yeast Schizosaccharomyces pombe is widely-used as a model organism for the study of a broad range of eukaryotic cellular processes such as cell cycle, genome stability and cell morphology. Despite the availability of extensive set of genetic, molecular biological, biochemical and cell biological tools for analysis of protein function in fission yeast, studies are often hampered by the lack of an effective method allowing for the rapid regulation of protein level or protein activity.

Results

In order to be able to regulate protein function, we have made use of a previous finding that the hormone binding domain of steroid receptors can be used as a regulatory cassette to subject the activity of heterologous proteins to hormonal regulation. The approach is based on fusing the protein of interest to the hormone binding domain (HBD) of the estrogen receptor (ER). The HBD tag will attract the Hsp90 complex, which can render the fusion protein inactive. Upon addition of estradiol the protein is quickly released from the Hsp90 complex and thereby activated. We have tagged and characterised the induction of activity of four different HBD-tagged proteins. Here we show that the tag provided the means to effectively regulate the activity of two of these proteins.

Conclusion

The estradiol-regulatable hormone binding domain provides a means to regulate the function of some, though not all, fission yeast proteins. This system may result in very quick and reversible activation of the protein of interest. Therefore it will be a powerful tool and it will open experimental approaches in fission yeast that have previously not been possible. Since fission yeast is a widely-used model organism, this will be valuable in many areas of research.  相似文献   

2.
We have previously shown that replication of fission yeast chromosomes is initiated in distinct regions. Analyses of autonomous replicating sequences have suggested that regions required for replication are very different from those in budding yeast. Here, we present evidence that fission yeast replication origins are specifically associated with proteins that participate in initiation of replication. Most Orp1p, a putative subunit of the fission yeast origin recognition complex (ORC), was found to be associated with chromatin-enriched insoluble components throughout the cell cycle. In contrast, the minichromosome maintenance (Mcm) proteins, SpMcm2p and SpMcm6p, encoded by the nda1(+)/cdc19(+) and mis5(+) genes, respectively, were associated with chromatin DNA only during the G(1) and S phases. Immunostaining of spread nuclei showed SpMcm6p to be localized at discrete foci on chromatin during the G(1) and S phases. A chromatin immunoprecipitation assay demonstrated that Orp1p was preferentially localized at the ars2004 and ars3002 origins of the chromosome throughout the cell cycle, while SpMcm6p was associated with these origins only in the G(1) and S phases. Both Orp1p and SpMcm6p were associated with a 1-kb region that contains elements required for autonomous replication of ars2004. The results suggest that the fission yeast ORC specifically interacts with chromosomal replication origins and that Mcm proteins are loaded onto the origins to play a role in initiation of replication.  相似文献   

3.
In budding (Saccharomyces cerevisiae) and fission (Schizosaccharomyces pombe) yeast and other unicellular organisms, DNA damage and other stimuli can induce cell death resembling apoptosis in metazoans, including the activation of a recently discovered caspase-like molecule in budding yeast. Induction of apoptotic-like cell death in yeasts requires homologues of cell cycle checkpoint proteins that are often required for apoptosis in metazoan cells. Here, we summarize these findings and our unpublished results which show that an important component of metazoan apoptosis recently detected in budding yeast-reactive oxygen species (ROS)-can also be detected in fission yeast undergoing an apoptotic-like cell death. ROS were detected in fission and budding yeast cells bearing conditional mutations in genes encoding DNA replication initiation proteins and in fission yeast cells with mutations that deregulate cyclin-dependent kinases (CDKs). These mutations may cause DNA damage by permitting entry of cells into S phase with a reduced number of replication forks and/or passage through mitosis with incompletely replicated chromosomes. This may be relevant to the frequent requirement for elevated CDK activity in mammalian apoptosis, and to the recent discovery that the initiation protein Cdc6 is destroyed during apoptosis in mammals and in budding yeast cells exposed to lethal levels of DNA damage. Our data indicate that connections between apoptosis-like cell death and DNA replication or CDK activity are complex. Some apoptosis-like pathways require checkpoint proteins, others are inhibited by them, and others are independent of them. This complexity resembles that of apoptotic pathways in mammalian cells, which are frequently deregulated in cancer. The greater genetic tractability of yeasts should help to delineate these complex pathways and their relationships to cancer and to the effects of apoptosis-inducing drugs that inhibit DNA replication.  相似文献   

4.
Previous investigations have shown that the fission yeast, Schizosaccharomyces pombe, has DNA replication origins (500 to 1500 bp) that are larger than those in the budding yeast, Saccharomyces cerevisiae (100 to 150 bp). Deletion and linker substitution analyses of two fission yeast origins revealed that they contain multiple important regions with AT-rich asymmetric (abundant A residues in one strand and T residues in the complementary strand) sequence motifs. In this work we present the characterization of a third fission yeast replication origin, ars3001, which is relatively small (~570 bp) and responsible for replication of ribosomal DNA. Like previously studied fission yeast origins, ars3001 contains multiple important regions. The three most important of these regions resemble each other in several ways: each region is essential for origin function and is at least partially orientation dependent, each region contains similar clusters of A+T-rich asymmetric sequences, and the regions can partially substitute for each other. These observations suggest that ars3001 function requires synergistic interactions between domains binding similar proteins. It is likely that this requirement extends to other fission yeast origins, explaining why such origins are larger than those of budding yeast.  相似文献   

5.
In fission yeast as well as in higher eukaryotic organisms, entry into mitosis is delayed in cells containing damaged or unreplicated DNA. This is accomplished in part by maintaining the Cdc25 phosphatase in a phosphorylated form that binds 14-3-3 proteins. In this study, we generated a mutant of fission yeast Cdc25 that is severely impaired in its ability to bind 14-3-3 proteins. Loss of both the DNA damage and replication checkpoints was observed in fission yeast cells expressing the 14-3-3 binding mutant. These findings indicate that 14-3-3 binding to Cdc25 is required for fission yeast cells to arrest their cell cycle in response to DNA damage and replication blocks. Furthermore, the 14-3-3 binding mutant localized almost exclusively to the nucleus, unlike wild-type Cdc25, which localized to both the cytoplasm and the nucleus. Nuclear accumulation of wild-type Cdc25 was observed when fission yeast cells were treated with leptomycin B, indicating that Cdc25 is actively exported from the nucleus. Nuclear exclusion of wild-type Cdc25 was observed upon overproduction of Rad 24, one of the two fission yeast 14-3-3 proteins, indicating that one function of Rad 24 is to keep Cdc25 out of the nucleus. In support of this conclusion, Rad 24 overproduction did not alter the nuclear location of the 14-3-3 binding mutant. These results indicate that 14-3-3 binding contributes to the nuclear exclusion of Cdc25 and that the nuclear exclusion of Cdc25 is required for a normal checkpoint response to both damaged and unreplicated DNA.  相似文献   

6.
Mcm2-7 proteins are generally considered to function as a heterohexameric complex, providing helicase activity for the elongation step of DNA replication. These proteins are loaded onto replication origins in M-G1 phase in a process termed licensing or pre-replicative complex formation. It is likely that Mcm2-7 proteins are loaded onto chromatin simultaneously as a pre-formed hexamer although some studies suggest that subcomplexes are recruited sequentially. To analyze this process in fission yeast, we have compared the levels and chromatin binding of Mcm2-7 proteins during the fission yeast cell cycle. Mcm subunits are present at approximately 1 x 10(4) molecules/cell and are bound with approximately equal stoichiometry on chromatin in G1/S phase cells. Using a single cell assay, we have correlated the timing of chromatin association of individual Mcm subunits with progression through mitosis. This showed that Mcm2, 4 and 7 associate with chromatin at about the same stage of anaphase, suggesting that licensing involves the simultaneous binding of these subunits. We also examined Mcm2-7 chromatin association when cells enter a G0-like quiescent state. Chromatin binding is lost in this transition in a process that does not require DNA replication or the selective degradation of specific subunits.  相似文献   

7.
Cardiac failure is a major health problem with increasing incidence due to aging of the population. Studies in both experimental animals and humans have suggested that aldosterone excess may have deleterious effects on cardiac function. In order to generate a novel screening system for the identification of aldosterone antagonists, we expressed the human mineralocorticoid receptor (MR) and the human glucocorticoid receptor (GR), respectively, in the fission yeast Schizosaccharomyces pombe. Reporter plasmids containing two hormone-responsive elements upstream of a fission yeast minimal promotor and either a lacZ gene (for quantification) or a neomycin gene (for survival screening) were constructed and cotransformed into fission yeast strains with expression plasmids for MR or GR. The functionality of the reporter systems was then tested using physiological ligands of both receptors as well as known inhibitors. Transactivating activity of MR could be stimulated by aldosterone, 11-deoxycorticosterone, 11-deoxycortisol, cortisol, cortisone, and spironolactone, but not by progesterone, while GR activity was stimulated by cortisol and cortisone, but also not by progesterone. Taken together, we have succeeded in establishing fission yeast-based screening systems that allow the identification of MR- or GR-interacting compounds. Moreover, our data show that after expression in fission yeast both receptors did not differentiate between steroids with different configurations at positions 11beta, 17 and 18. This finding suggests that only recognition of C-21 substituents may be accomplished by the receptor proteins alone, while the physiologically important selectivity towards other positions of the steroid ligand depends on other factors which are not conserved from fission yeast to man.  相似文献   

8.
The initiation of eukaryotic DNA replication is preceded by the assembly of prereplication complexes (pre-RCs) at chromosomal origins of DNA replication. Pre-RC assembly requires the essential DNA replication proteins ORC, Cdc6, and Cdt1 to load the MCM DNA helicase onto chromatin. Saccharomyces cerevisiae Noc3 (ScNoc3), an evolutionarily conserved protein originally implicated in 60S ribosomal subunit trafficking, has been proposed to be an essential regulator of DNA replication that plays a direct role during pre-RC formation in budding yeast. We have cloned Schizosaccharomyces pombe noc3(+) (Spnoc3(+)), the S. pombe homolog of the budding yeast ScNOC3 gene, and functionally characterized the requirement for the SpNoc3 protein during ribosome biogenesis, cell cycle progression, and DNA replication in fission yeast. We showed that fission yeast SpNoc3 is a functional homolog of budding yeast ScNoc3 that is essential for cell viability and ribosome biogenesis. We also showed that SpNoc3 is required for the normal completion of cell division in fission yeast. However, in contrast to the proposal that ScNoc3 plays an essential role during DNA replication in budding yeast, we demonstrated that fission yeast cells do enter and complete S phase in the absence of SpNoc3, suggesting that SpNoc3 is not essential for DNA replication in fission yeast.  相似文献   

9.
Bradshaw E  Yoshida M  Ling F 《FEBS letters》2012,586(8):1245-1251
In budding yeast, the mitochondrial DNA (mtDNA) replication pathway involving the homologous DNA pairing protein Mhr1 promotes mitochondrial allele segregation. Mitochondrial fusion facilitates the recombination-mediated replication pathway; however, the role of fission remains largely unknown. By monitoring mitochondrial allele segregation during zygotic division, we found that the absence of fission proteins Fis1 or Mdv1, but not Dnm1, resulted in increased initial homoplasmy levels and decreased mtDNA copy number. However, decreases in mtDNA copy number alone were not sufficient for rapid establishment of homoplasmy, suggesting that inhibiting the activities of certain fission proteins promotes homoplasmy by reducing the number of mtDNA segregation units.  相似文献   

10.
The fission yeast Schizosaccharomyces pombe serves as a model system for studying role of actin cytoskeleton, since it has simple actin cytoskeletons and is genetically tractable. In contrast, biochemical approaches using this organism are still developing; fission yeast actin has so far not been isolated in its native form and characterized, and therefore, biochemical assays of fission yeast actin-binding proteins (ABPs) or myosin have been performed using rabbit skeletal muscle actin that may interact with the fission yeast ABPs in a manner different from fission yeast actin. Here, we report a novel method for isolating functionally active actin from fission yeast cells. The highly purified fission yeast actin polymerized with kinetics somewhat different from those of muscle actin and forms filaments that are structurally indistinguishable from skeletal muscle actin filaments. The fission yeast actin was a significantly weaker activator of Mg(2+)-ATPase of HMM of skeletal muscle myosin than muscle actin. The fission yeast profilin Cdc3 suppressed polymerization of fission yeast actin more effectively than that of muscle actin and showed an affinity for fission yeast actin higher than for muscle actin. The establishment of purification of fission yeast actin will enable reconstruction of physiologically relevant interactions between the actin and fission yeast ABPs or myosins and contribute to clarification of function of actin cytoskeleton in various cellular activities.  相似文献   

11.
Ribonucleotide reductase (RNR) is an essential enzyme that provides the cell with a balanced supply of deoxyribonucleoside triphosphates for DNA replication and repair. Mutations that affect the regulation of RNR in yeast and mammalian cells can lead to genetic abnormalities and cell death. We have expressed and purified the components of the RNR system in fission yeast, the large subunit Cdc22p, the small subunit Suc22p, and the replication inhibitor Spd1p. It was proposed (Liu, C., Powell, K. A., Mundt, K., Wu, L., Carr, A. M., and Caspari, T. (2003) Genes Dev. 17, 1130-1140) that Spd1 is an RNR inhibitor, acting by anchoring the Suc22p inside the nucleus during G1 phase. Using in vitro assays with highly purified proteins we have demonstrated that Spd1 indeed is a very efficient inhibitor of fission yeast RNR, but acting on Cdc22p. Furthermore, biosensor technique showed that Spd1p binds to the Cdc22p with a KD of 2.4 microM, whereas the affinity to Suc22p is negligible. Therefore, Spd1p inhibits fission yeast RNR activity by interacting with the Cdc22p. Similar to the situation in budding yeast, logarithmically growing fission yeast increases the dNTP pools 2-fold after 3 h of incubation in the UV mimetic 4-nitroquinoline-N-oxide. This increase is smaller than the increase observed in budding yeast but of the same order as the dNTP pool increase when synchronous Schizosaccharomyces pombe cdc10 cells are going from G1 to S-phase.  相似文献   

12.
Assembly of replication complexes at the replication origins is strictly regulated. Cdc45p is known to be a part of the active replication complexes. In Xenopus egg extracts, Cdc45p was shown to be required for loading of DNA polymerase alpha onto chromatin. The fission yeast cdc45 homologue was identified as a suppressor for nda4 and named sna41. Nevertheless, it is not known how Cdc45p facilitates loading of DNA polymerase alpha onto chromatin, particularly to prereplicative complexes. To gain novel insight into the function of this protein in fission yeast, we characterized the fission yeast Cdc45 homologue, Sna41p. We have constructed C-terminally epitope-tagged Sna41p and Pol alpha p and replaced the endogenous genes with the corresponding tagged genes. Analyses of protein-protein interactions in vivo by the use of these tagged strains revealed the following: Sna41p interacts with Pol alpha p throughout the cell cycle, whereas it interacts with Mis5p/Mcm6p in the chromatin fractions at the G(1)-S boundary through S phase. In an initiation-defective sna41 mutant, sna41(goa1), interaction of Pol alpha p with Mis5p is not observed, although Pol alpha p loading onto the chromatin that occurs before G(1) START is not affected. These results show that fission yeast Sna41p facilitates the loading of Pol alpha p onto minichromosome maintenance proteins. Our results are consistent with a model in which loading of Pol alpha p onto replication origins occurs through two steps, namely, loading onto chromatin at preSTART and association with prereplicative complexes at G(1)-S through Sna41p, which interacts with minichromosome maintenance proteins in a cell cycle-dependent manner.  相似文献   

13.
H A Snaith  S L Forsburg 《Genetics》1999,152(3):839-851
The fission yeast Schizosaccharomyces pombe can be induced to perform multiple rounds of DNA replication without intervening mitoses by manipulating the activity of the cyclin-dependent kinase p34(cdc2). We have examined the role in this abnormal rereplication of a large panel of genes known to be involved in normal S phase. The genes analyzed can be grouped into four classes: (1) those that have no effect on rereplication, (2) others that delay DNA accumulation, (3) several that allow a gradual increase in DNA content but not in genome equivalents, and finally, (4) mutations that completely block rereplication. The rereplication induced by overexpression of the CDK inhibitor Rum1p or depletion of the Cdc13p cyclin is essentially the same and requires the activity of two minor B-type cyclins, cig1(+) and cig2(+). In particular, the level, composition, and localization of the MCM protein complex does not alter during rereplication. Thus rereplication in fission yeast mimics the DNA synthesis of normal S phase, and the inability to rereplicate provides an excellent assay for novel S-phase mutants.  相似文献   

14.
Kai M  Wang TS 《Mutation research》2003,532(1-2):59-73
Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Polkappa). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks.Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.  相似文献   

15.
In fission yeast, overexpression of the replication initiator protein Cdc18p induces re-replication, a phenotype characterized by continuous DNA synthesis in the absence of cell division. In contrast, overexpression of Cdc6p, the budding yeast homolog of Cdc18p, does not cause re-replication in S. cerevisiae. However, we have found that Cdc6p has the ability to induce re-replication in fission yeast. Cdc6p cannot functionally replace Cdc18p, but instead interferes with the proteolysis of both Cdc18p and Rum1p, the inhibitor of the protein kinase Cdc2p. This activity of Cdc6p is entirely contained within a short N-terminal peptide, which forms a tight complex with Cdc2p and the F-box/WD-repeat protein Sud1p/Pop2p, a component of the SCFPop ubiquitin ligase in fission yeast. These interactions are mediated by two distinct regions within the N-terminal region of Cdc6p and depend on the integrity of its Cdc2p phosphorylation sites. The data suggest that disruption of re-replication control by overexpression of Cdc6p in fission yeast is a consequence of sequestration of Cdc2p and Pop2p, two factors involved in the negative regulation of Rum1p, Cdc18p and potentially other replication proteins.  相似文献   

16.
The fission yeast cdc21 protein belongs to the MCM family, implicated in the once per cell cycle regulation of chromosome replication. In budding yeast, proteins in this family are eliminated from the nucleus during S phase, which has led to the suggestion that they may serve to distinguish unreplicated from replicated DNA, as in the licensing factor model. We show here that, in contrast to the situation in budding yeast, cdc21 remains in the nucleus after S phase, as is found for related proteins in mammalian cells. We suggest that regulation of nuclear import of these proteins may not be an essential aspect of their function in chromosome replication. To determine the function of cdc21+, we have analysed the phenotype of a gene deletion. cdc21+ is required for entry into S phase and, unexpectedly, a proportion of cells depleted of the gene product are able to enter mitosis in the absence of DNA replication. These results are consistent with the view that individual proteins in the MCM family are required for all initiation events, and defective initiation may impair the coordination between mitosis and S phase.  相似文献   

17.
We describe an in situ technique for studying the chromatin binding of proteins in the fission yeast Schizosaccharomyces pombe. After tagging the protein of interest with green fluorescent protein (GFP), chromatin-associated protein is detected by GFP fluorescence following cell permeabilization and washing with a non-ionic detergent. Cell morphology and nuclear structure are preserved in this procedure, allowing structures such as the mitotic spindle to be detected by indirect immunofluorescence. Cell cycle changes in the chromatin association of proteins can therefore be determined from individual cells in asynchronous cultures. We have applied this method to the DNA replication factor mcm4/cdc21, and find that chromatin association occurs during anaphase B, significantly earlier than is the case in budding yeast. Binding of mcm4 to chromatin requires orc1 and cdc18 (homologous to Cdc6 in budding yeast). Release of mcm4 from chromatin occurs during S phase and requires DNA replication. Upon overexpressing cdc18, we show that mcm4 is required for re-replication of the genome in the absence of mitosis and is associated with chromatin in cells undergoing re-replication.  相似文献   

18.
19.
All eukaryotes use similar proteins to licence replication origins but, paradoxically, origin DNA is much less conserved. Specific binding sites for these proteins have now been identified on fission yeast and Drosophila chromosomes, suggesting that the DNA-binding activity of the origin recognition complex has diverged to recruit conserved initiation factors on polymorphic replication origins. Once formed, competent origins are activated by cyclin- and Dbf4-dependent kinases. The latter have been shown to control S phase in several organisms but, in contrast to cyclin-dependent kinases, seem regulated at the level of individual origins. Global and local regulations generate specific patterns of DNA replication that help establish epigenetic chromosome states.  相似文献   

20.
Dolan WP  Sherman DA  Forsburg SL 《Chromosoma》2004,113(3):145-156
Cdc45 is a conserved protein required for firing of replication origins and processive DNA replication. We used an in situ chromatin-binding assay to determine factors required for fission yeast Cdc45p chromatin binding. Assembly of the pre-replicative complex is essential for Cdc45p chromatin binding, but pre-replicative complex assembly occurs independently of Cdc45p. Fission yeast Cdc45p associates with MCM proteins in asynchronously growing cells and cells arrested in S phase by hydroxyurea, but not in cells arrested at the G2/M transition. Both hsk1+ (the fission yeast CDC7 homologue) and rad4+/cut5+ (the fission yeast DPB11 homologue) are required for Cdc45p chromatin binding. Cdc45p also remains chromatin-bound in mutants that fail to recover from replication arrest. In summary, Cdc45p chromatin binding requires an intact pre-replicative complex as well as signaling from both the Dbf4-dependent kinase and cyclin-dependent kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号