首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Replication-deficient adenovirus and modified vaccinia virus Ankara (MVA) vectors expressing single pre-erythrocytic or blood-stage Plasmodium falciparum Ags have entered clinical testing using a heterologous prime-boost immunization approach. In this study, we investigated the utility of the same immunization regimen when combining viral vectored vaccines expressing the 42-kDa C terminus of the blood-stage Ag merozoite surface protein 1 and the pre-erythrocytic Ag circumsporozoite protein in the Plasmodium yoelii mouse model. We find that vaccine coadministration leads to maintained Ab responses and efficacy against blood-stage infection, but reduced secondary CD8(+) T cell responses against both Ags and efficacy against liver-stage infection. CD8(+) T cell interference can be minimized by coadministering the MVA vaccines at separate sites, resulting in enhanced liver-stage efficacy in mice immunized against both Ags compared with just one. CD8(+) T cell interference (following MVA coadministration as a mixture) may be caused partly by a lack of physiologic space for high-magnitude responses against multiple Ags, but is not caused by competition for presentation of Ag on MHC class I molecules, nor is it due to restricted T cell access to APCs presenting both Ags. Instead, enhanced killing of peptide-pulsed cells is observed in mice possessing pre-existing T cells against two Ags compared with just one, suggesting that priming against multiple Ags may in part reduce the potency of multiantigen MVA vectors to stimulate secondary CD8(+) T cell responses. These data have important implications for the development of a multistage or multicomponent viral vectored malaria vaccine for use in humans.  相似文献   

2.
Apical membrane antigen 1 of the malarial parasite Plasmodium falciparum (Pf AMA1) is a merozoite antigen that is considered a strong candidate for inclusion in a malaria vaccine. Antibodies reacting with disulphide bond-dependent epitopes in AMA1 block invasion of host erythrocytes by P.falciparum merozoites, and we show here that epitopes involving sites of mutations in domain III are targets of inhibitory human antibodies. The solution structure of AMA1 domain III, a 14kDa protein, has been determined using NMR spectroscopy on uniformly 15N and 13C/15N-labelled samples. The structure has a well-defined disulphide-stabilised core region separated by a disordered loop, and both the N and C-terminal regions of the molecule are unstructured. Within the disulphide-stabilised core, residues 443-447 form a turn of helix and residues 495-498 and 503-506 an anti-parallel beta-sheet with a distorted type I beta-turn centred on residues 500-501, producing a beta-hairpin-type structure. The structured region of the molecule includes all three disulphide bonds. The previously unassigned connectivities for two of these bonds could not be established with certainty from the NMR data and structure calculations, but were determined to be C490-C507 and C492-C509 from an antigenic analysis of mutated forms of this domain expressed using phage display. Naturally occurring mutations in domain III that are located far apart in the primary sequence tend to cluster in the region of the disulphide core in the three-dimensional structure of the molecule. The structure shows that nearly all the polymorphic sites have a high level of solvent accessibility, consistent with their location in epitopes recognised by protective antibodies. Even though domain III in solution contains significant regions of disorder in the structure, the disulphide-stabilised core that is structured is clearly an important element of the antigenic surface of AMA1 recognised by protective antibodies.  相似文献   

3.

Background

Two current leading malaria blood-stage vaccine candidate antigens for Plasmodium falciparum, the C-terminal region of merozoite surface protein 1 (MSP119) and apical membrane antigen 1 (AMA1), have been prioritized because of outstanding protective efficacies achieved in a rodent malaria Plasmodium yoelii model. However, P. falciparum vaccines based on these antigens have had disappointing outcomes in clinical trials. Discrepancies in the vaccine efficacies observed between the P. yoelii model and human clinical trials still remain problematic.

Methodology and Results

In this study, we assessed the protective efficacies of a series of MSP119- and AMA1-based vaccines using the P. berghei rodent malarial parasite and its transgenic models. Immunization of mice with a baculoviral-based vaccine (BBV) expressing P. falciparum MSP119 induced high titers of PfMSP119-specific antibodies that strongly reacted with P. falciparum blood-stage parasites. However, no protection was achieved following lethal challenge with transgenic P. berghei expressing PfMSP119 in place of native PbMSP119. Similarly, neither P. berghei MSP119- nor AMA1-BBV was effective against P. berghei. In contrast, immunization with P. yoelii MSP119- and AMA1-BBVs provided 100% and 40% protection, respectively, against P. yoelii lethal challenge. Mice that naturally acquired sterile immunity against P. berghei became cross-resistant to P. yoelii, but not vice versa.

Conclusion

This is the first study to address blood-stage vaccine efficacies using both P. berghei and P. yoelii models at the same time. P. berghei completely circumvents immune responses induced by MSP119- and AMA1-based vaccines, suggesting that P. berghei possesses additional molecules and/or mechanisms that circumvent the host''s immune responses to MSP119 and AMA1, which are lacking in P. yoelii. Although it is not known whether P. falciparum shares these escape mechanisms with P. berghei, P. berghei and its transgenic models may have potential as useful tools for identifying and evaluating new blood-stage vaccine candidate antigens for P. falciparum.  相似文献   

4.
Apical membrane Ag 1 (AMA1) is a leading malaria vaccine candidate. Homologues of AMA1 can induce protection in mice and monkeys, but the mechanism of immunity is not understood. Mice immunized with a refolded, recombinant, Plasmodium chabaudi AMA1 fragment (AMA1B) can withstand subsequent challenge with P. chabaudi adami. Here we show that CD4+ T cell depletion, but not gammadelta T cell depletion, can cause a significant drop in antiparasite immunity in either immunized normal or immunized B cell KO mice. In normal mice, this loss of immunity is not accompanied by a decline in Ab levels. These observations indicate a role for AMA1-specific Ab-independent T cell-mediated immunity. However, the loss of immunity in normal CD4+ T cell-depleted mice is temporary. Furthermore, immunized B cell KO mice cannot survive infection, demonstrating the absolute importance of B cells, and presumably Ab, in AMA1-induced immunity. CD4+ T cells specific for a cryptic conserved epitope on AMA1 can adoptively transfer protection to athymic (nu/nu) mice, the level of which is enhanced by cotransfer of rabbit anti-AMA1-specific antisera. Recipients of rabbit antisera alone do not survive. Some protected recipients of T cells plus antisera do not develop their own AMA 1-specific Ab response, suggesting that AMA 1-specific CMI alone can protect mice. These data are the first to demonstrate the specificity of any protective CMI response in malaria and have important implications for developing a malaria vaccine.  相似文献   

5.
The malarial surface antigen apical membrane antigen (AMA1), from Plasmodium falciparum, is a leading candidate for inclusion in a vaccine against malaria. AMA1 is synthesised by mature blood-stages of the parasite and is located initially in the apical organelles of the merozoite. Prior to merozoite invasion of host erythrocytes, it is processed into a 66 kDa type 1 integral membrane protein on the merozoite surface. The pattern of disulphide bonds in AMA1 has been the basis for separation of the ectodomain into three domains, with three, two and three disulphide bonds, respectively. We have determined the solution structure of a 16kDa construct corresponding to the putative second domain of AMA1. While circular dichroism and hydrodynamic data were consistent with a folded structure for domain II, its NMR spectra were characterised by broad lines and significant peak overlap, more typical of a molten globule. Consistent with this, domain II bound the fluorescent dye 8-anilino-1-naphthalene sulphonate (ANS). We have nonetheless determined a structure, which defines the secondary structure elements and global fold. The two disulphide bonds link the N and C-terminal regions of the molecule, which come together to form a four-stranded beta-sheet linked to a short helix. A long loop linking the N and C-terminal regions contains four other alpha-helices, the locations of which are not fixed relative to the beta-sheet core, even though they are well-defined locally. Very recently this region of domain II has been shown to contain the epitope recognised by the invasion-inhibitory antibody 4G2, even though it does not contain any of the polymorphisms that are regarded as having arisen in response to the pressure of immune recognition.  相似文献   

6.
Zhang, Z.-H., Chen, L., Saito, S., Kanagawa, O., and Sendo, F. 2000. Possible modulation by male sex hormone of Th1/Th2 function in protection against Plasmodium chabaudi chabaudi AS infection in mice. Experimental Parasitology 96, 121-129. We examined the mortality, survival time, and parasitemia in interferon gamma receptor (IFN-gamma R)-deficient (IFN-gamma R(-/-)) and IL-4-deficient (IL-4(-/-)) mice infected with Plasmodium chabaudi AS and compared them with the wild type counterparts (IFN-gamma R(+/+) and IL-4(+/+), respectively). (1) Mortality was higher and survival time was shorter in males of both IFN-gamma R(-/-) and IL-4(-/-) mice infected with P. chabaudi AS, compared with their wild type counterparts, whereas such a difference was not observed in female mice. (2) These differences between males and females were not observed when male mice were castrated; however, female castration had no effect on the data. (3) The rate of parasitemia in both male and female IFN-gamma R(-/-) and IL-4(-/-) mice was higher at some points during the observation than in the wild type counterparts. (4) These results on susceptibility vs resistance to P. chabaudi AS infection can be explained partially by the levels of expression of Th1/Th2 cytokine and chemokine mRNAs in the spleen cells of the infected mice. These results suggest that male sex hormones modulate the function of Th1/Th2 cells and that these T cells counteract the activity of these hormones in protection against P. chabaudi AS infection in mice.  相似文献   

7.
Extracellular domains of malaria antigens almost invariably contain disulphide linkages but lack N- and O-linked glycosylation. The best practical approach to generating recombinant extracellular Plasmodium proteins is not established and the problems encountered when using a bacterial expression/refolding approach are discussed in detail. Limited proteolysis experiments were used to identify a relatively non-flexible core region of the Plasmodium falciparum protein apical membrane antigen 1 (AMA1), and refolding/purification was used to generate two fragments of AMA1. Several chromatographically distinct AMA1 variants were identified that are presumably differentially refolded proteins. One of these AMA1 preparations proved to be crystallizable and generated two crystal forms that diffracted X-rays to 2 A resolution.  相似文献   

8.
Polley SD  Conway DJ 《Genetics》2001,158(4):1505-1512
The surface-accessible ectodomain region of the Plasmodium falciparum apical membrane antigen 1 (AMA1) is a malaria vaccine candidate. The amino acid sequence may be under selection from naturally acquired immune responses, and previous analyses with a small number of allele sequences indicate a non-neutral pattern of nucleotide variation. To investigate whether there is selection to maintain polymorphism within a population, and to identify the parts of the ectodomain under strongest selection, a sample of 51 alleles from a single endemic population was studied. Analyses using Fu and Li's D and F tests, Tajima's D test, and the McDonald-Kreitman test (with the chimpanzee parasite P. reichenowi as outgroup) show significant departure from neutrality and indicate the selective maintenance of alleles within the population. There is also evidence of a very high recombination rate throughout the sequence, as estimated by the recombination parameter, C, and by the rapid decline in linkage disequilibrium with increasing nucleotide distance. Of the three domains (I-III) encoding structures determined by disulfide bonds, the evidence of selection is strongest for Domains I and III. We predict that these domains in particular are targets of naturally acquired protective immune responses in humans.  相似文献   

9.
Plasmodium sporozoites are transmitted through the bite of infected mosquitoes and invade hepatocytes as a first and obligatory step of the parasite life cycle in man. Hepatocyte invasion involves proteins secreted from parasite vesicles called micronemes, the most characterized being the thrombospondin-related adhesive protein (TRAP). Here we investigated the expression and function of another microneme protein recently identified in Plasmodium falciparum sporozoites, apical membrane antigen 1 (AMA-1). P. falciparum AMA-1 is expressed in sporozoites and is lost after invasion of hepatocytes, and anti-AMA-1 antibodies inhibit sporozoite invasion, suggesting that the protein is involved during invasion of hepatocytes. As observed with TRAP, AMA-1 is initially mostly sequestered within the sporozoite. Upon microneme exocytosis, AMA-1 and TRAP relocate to the sporozoite surface, where they are proteolytically cleaved, resulting in the shedding of soluble fragments. A subset of serine protease inhibitors blocks the processing and shedding of both AMA-1 and TRAP and inhibits sporozoite infectivity, suggesting that interfering with sporozoite proteolytic processing may constitute a valuable strategy to prevent hepatocyte infection.  相似文献   

10.
11.
Plasmodium vivax is a highly prevalent malaria pathogen of man; the following report is the first to describe the cloning and expression of a major asexual erythrocytic stage antigen of this species. The screening of a genomic DNA expression library with a monoclonal antibody directed against a 200-kDa surface component (Pv200) of the more mature schizonts of P. vivax led to the selection of a recombinant bacterial clone which produced a fusion protein. Mouse and rabbit immune sera raised against the purified fusion protein recognized the 200-kDa parasite antigen on Western blots and reacted with the surface of segmenters by immunofluorescence. Sequencing of the 1.9-kb P. vivax DNA insert coding for this fusion protein revealed a 45-47% homology at the nucleotide level with the P. falciparum gene of a parasite surface antigen, Pf195, which has been shown to be a promising candidate for a malaria vaccine in primates and in man.  相似文献   

12.
Plasmodium falciparum apical membrane antigen 1 (AMA-1) is expressed during both the sporozoite and merozoite stage of the parasite's life cycle. The role placed by AMA-1 during sporozoite invasion of hepatocytes has not been made sufficiently clear to date. Identifying the sequences involved in binding to hepatocytes is an important step towards understanding the structural basis for sporozoite-hepatocyte interaction. Binding assays between P. falciparum AMA-1 peptides and HepG2 cell were performed in this study to identify possible AMA-1 functional regions. Four AMA-1 high activity binding peptides (HABPs) bound specifically to hepatocytes: 4310 ((74)QHAYPIDHEGAEPAPQEQNL(93)), 4316 ((194)TLDEMRHFYKDNKYVKNLDE(213)), 4321 ((294)VVDNWEKVCPRKNLQNAKFGY(313)) and 4332 ((514)AEVTSNNEVVVKEEYKDEYA(533)). Their binding to these cells became saturable and resistant to treatment with neuraminidase. Most of these peptides were located in AMA-1 domains I and III, these being target regions for protective antibody responses. These peptides interacted with 36 and 58 kDa proteins on the erythrocyte surface. Some of the peptides were found in exposed regions of the AMA-1 protein, thereby facilitating their interaction with host cells. It is thus probable that AMA-1 regions defined by the four peptides mentioned above are involved in sporozoite-hepatocyte interaction.  相似文献   

13.
Verra F  Hughes AL 《Parassitologia》1999,41(1-3):93-95
The Apical Membrane Antigen-1 (AMA-1) is a protein localized in the apical organelles of the merozoite, one of the stages in the life cycle of malaria parasites (Plasmodium spp.) that infects the vertebrate host. This antigen, which is encoded by a single polymorphic locus, plays a role in evading immune detection and mediating invasion into target host cells. We found evidence of positive Darwinian selection on immunogenic regions of P. falciparum AMA-1 favoring genetic diversity in the T-cell epitopes and in regions likely to interact with host antibodies. These results support the hypothesis that polymorphism at the AMA-1 locus in maintained by balancing selection arising from host immune recognition.  相似文献   

14.
Apical membrane antigen 1 (AMA-1) is considered to be a major candidate antigen for a malaria vaccine. Previous immunoepidemiological studies of naturally acquired immunity to Plasmodium vivax AMA-1 (PvAMA-1) have shown a higher prevalence of specific antibodies to domain II (DII) of AMA-1. In the present study, we confirmed that specific antibody responses from naturally infected individuals were highly reactive to both full-length AMA-1 and DII. Also, we demonstrated a strong association between AMA-1 and DII IgG and IgG subclass responses. We analyzed the primary sequence of PvAMA-1 for B cell linear epitopes co-occurring with intrinsically unstructured/disordered regions (IURs). The B cell epitope comprising the amino acid sequence 290–307 of PvAMA-1 (SASDQPTQYEEEMTDYQK), with the highest prediction scores, was identified in domain II and further selected for chemical synthesis and immunological testing. The antigenicity of the synthetic peptide was identified by serological analysis using sera from P. vivax-infected individuals who were knowingly reactive to the PvAMA-1 ectodomain only, domain II only, or reactive to both antigens. Although the synthetic peptide was recognized by all serum samples specific to domain II, serum with reactivity only to the full-length protein presented 58.3% positivity. Moreover, IgG reactivity against PvAMA-1 and domain II after depletion of specific synthetic peptide antibodies was reduced by 18% and 33% (P = 0.0001 for both), respectively. These results suggest that the linear epitope SASDQPTQYEEEMTDYQK is highly antigenic during natural human infections and is an important antigenic region of the domain II of PvAMA-1, suggesting its possible future use in pre-clinical studies.  相似文献   

15.
The phagocytosis of free Plasmodium chabaudi parasite by resident peritoneal macrophages of mouse was studied in an in vitro system. The effect of antimalarial antiserum (HIS) was assessed by preincubation of parasite macrophages and both parasite and macrophages with HIS prior to use in phagocytic assays. Highest phagocytic index was obtained with HIS pretreated parasites. The two activities viz. opsonic (parasite dependent) and cytophilic (macrophage dependent) were noted to operate independent of each other. The phagocytosis promoting activity was found to be complement dependent. The receptor site for binding of HIS opsonized but not medium opsonized parasite on the surface of macrophages was blocked by pretreatment of these cells with HIS-soluble antigen combination.  相似文献   

16.
We determined that recombinant interleukin 2 (rIL-2) administered in conjunction with herpes simplex virus (HSV) crude extract or recombinant glycoprotein D subunit vaccine enhances the protective effect of either antigen preparation against HSV type 2 genital infection in guinea pigs. Animals that received the vaccine accompanied by rIL-2 had an incidence of infection, assessed by detection of clinical lesions and/or viral shedding, that varied between 0 and 43% significantly lower than the incidence of 63 to 100% in guinea pigs submitted to the same immunization schedule without rIL-2. Animals that escaped acute infection failed to develop recurrent disease. In addition, severity of acute infection was decreased by rIL-2 co-administration as well as by increasing the number of vaccine doses. We also studied the immune response of the guinea pigs to vaccination and the mechanism of protection. Both enzyme-linked immunosorbent assay titers of antibodies to HSV type 2 and specific antigen stimulation of lymphocytes measured by proliferation and interferon production did not significantly differ among the immunization groups. However, specific cellular cytotoxicity was enhanced by rIL-2 co-administration and was positively correlated with protection. This suggests that rIL-2 may become an important adjuvant in active immunization programs using subunit vaccines, particularly against diseases in which cellular cytotoxicity is a major defense mechanism.  相似文献   

17.
The course of anemia and the erythropoietic response in the bone marrow, spleen, and blood were studied during Plasmodium chabaudi AS infection in resistant C57BL/6 (B6) and susceptible A/J (A) mice. Infections in B6 mice were characterized by moderate levels of both parasitemia and anemia and survival. In contrast, A mice experienced high parasitemia, severe anemia, and high mortality rates. During the period of anemia, erythropoiesis, as measured by in vivo 59Fe incorporation, was significantly more depressed in bone marrow and more increased in the spleen in resistant B6 mice. The increase in splenic 59Fe incorporation was a function of the size of the spleen. Bone marrow CFU-E were decreased to 50% of control in both strains, while splenic CFU-E were increased twofold greater in B6 mice compared to those in A mice. However, the absolute numbers of CFU-E per spleen in the two strains were not significantly different during peak parasitemia. Bone marrow BFU-E were transiently increased before peak parasitemia whereas splenic BFU-E peaked during peak parasitemia. A mice had significantly lower numbers of BFU-E per spleen on all days except at peak parasitemia. The frequency of blood-borne BFU-E and plasma erythropoietin titers was increased earlier and to a greater extent in A mice. These results suggest that an impaired amplification of late-stage splenic erythropoiesis may be an important determinant in the severity of anemia and lethality of infection with P. chabaudi AS in A mice. Moreover, these results demonstrate that the defective amplification of splenic erythropoiesis in A mice is neither caused by a defect in the mobilization of BFU-E from the bone marrow to the spleen nor caused by a defect in erythropoietin production.  相似文献   

18.
More than 15 years after the discovery of human immunodeficiency virus (HIV), researchers are still struggling to design a protective AIDS vaccine. A remaining problem is a lack of basic knowledge about the immunological requirements for protection against retroviruses. Infection of macaque monkeys with simian immunodeficiency virus is still the best model for HIV vaccine research. However, in this model it remains difficult to determine protective immunological mechanisms because of limited numbers of experimental animals and their genetic heterogeneity. Thus, fundamental concepts in retroviral immunology have to be defined in other ways such as mouse models. This minireview summarizes new findings on cellular and molecular mechanisms in protection of mice against Friend murine retrovirus infection. It has been shown that complex immune responses, including B and T cell responses, are required for efficient protection in this model. Multiple viral antigens are necessary to elicit such broad immune reactivity. Efficacious vaccines must protect not only against acute disease, but also against the establishment of persistent infections or the host is at serious risk of virus reactivation. The minireview closes with a discussion on the relevance of findings from the mouse model on the design of a protective vaccine against HIV.  相似文献   

19.
Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a malaria merozoite integral membrane protein that plays an essential but poorly understood role in invasion of host erythrocytes. The PfAMA-1 ectodomain comprises three disulfide-constrained domains, the first of which (domain I) is preceded by an N-terminal prosequence. PfAMA-1 is initially routed to secretory organelles at the apical end of the merozoite, where the 83-kDa precursor (PfAMA-1(83)) is converted to a 66-kDa form (PfAMA-1(66)). At about the time of erythrocyte invasion, PfAMA-1(66) selectively translocates onto the merozoite surface. Here we use direct microsequencing and mass spectrometric peptide mass fingerprinting to characterize in detail the primary structure and proteolytic processing of PfAMA-1. We have determined the site at which processing takes place to convert PfAMA-1(83) to PfAMA-1(66) and have shown that both species possess a completely intact and unmodified transmembrane and cytoplasmic domain. Following relocation to the merozoite surface, PfAMA-1(66) is further proteolytically cleaved at one of two alternative sites, either between domains II and III, or at a membrane-proximal site following domain III. As a result, the bulk of the ectodomain is shed from the parasite surface in the form of two soluble fragments of 44 and 48 kDa. PfAMA-1 is not detectably modified by the addition of N-linked oligosaccharides.  相似文献   

20.
A number of stage-specific antigens have been characterized for vaccine development against Plasmodium falciparum malaria. This study presents a comprehensive analysis of the sequence polymorphism in Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) in population samples from the eastern and western parts of India. This is the first study of its kind for the nearly full length PfAMA-1 gene from these regions in India. Our observations confirmed that sequence diversity of PfAMA-1 confines only to point mutations and shows 4-8% variation as compared to the prototypes. As opposed to the previous studies on PfAMA-1, our study revealed a greater degree of polymorphism in the Domain II region of PfAMA-1 protein, though signature for diversifying selection is seen throughout the gene. Our present investigation also indicates a very high degree of variation in the reported T- and B-cell epitopes of PfAMA-1. Few noteworthy and unique observations made in this study are the substitution of Cysteine residues responsible for the disulfide bond structure of the protein and the presence of premature termination after 595 amino acids in 3 of the 13 isolates under consideration. These crucial findings add new perspectives to the future of AMA-1 research and could have major implications in establishing AMA-1 as a vaccine candidate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号