首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The biocontrol rhizobacterium Pseudomonas sp. M18 can produce two kinds of antibiotics, namely pyoluteorin (Plt) and phenazine-1-carboxylic acid (PCA), and is antagonistic against a number of soilborne phytopathogens. In this study, a luxR-type quorum-sensing regulatory gene, vqsR, was identified and characterized immediately downstream of the Plt gene cluster in strain M18. A vqsR-inactivated mutant led to a significant decrease in the production of Plt and its biosynthetic gene expression. However, this was restored when introducing the vqsR gene by cloning into the plasmid pME6032 in trans. The vqsR mutation did not exert any obvious influence on the production of PCA and its biosynthetic gene expression and the production of Nacylhomoserine lactones (C4 and C8-HSLs) and their biosynthetic gene rhlI expression. Accordingly, these results introduce VqsR as a regulator of Plt production in Pseudomonas spp., and suggest that the regulatory mechanism of vqsR in strain M18 is distinct from that in P. aeruginosa. In addition, it was demonstrated that vqsR mutation did not have any obvious impact on the expression of Plt-specific ABC transporters and other secondary metabolic global regulators, including GacA, RpoS, and RsmA.  相似文献   

3.
4.
Two interlinked quorum sensing circuits, las and rhl, which control pathogenesis of Pseudomonas aeruginosa are further modulated by numerous regulators, including VqsR (virulence and quorum sensing regulator). High-density oligonucleotide microarrays were used to compare the global expression profile of a wild-type and VqsR mutant in ABC minimal medium. The expression of a large group of metabolic genes, ECF sigma factors as well as of many quorum-sensing genes previously not assigned to VqsR-regulon was found to be affected by the disruption of vqsR.  相似文献   

5.
6.
7.
8.
9.
The relevance of the acyl homoserine lactone (acyl-HSL) quorum signals N-3-oxododecanoyl-homoserine lactone (3OC12HSL) and N-butanoyl-homoserine lactone to the biology and virulence of Pseudomonas aeruginosa is well investigated. Previously, P. aeruginosa was shown to degrade long-chain, but not short-chain, acyl-HSLs as sole carbon and energy sources (J. J. Huang, J.-I. Han, L.-H. Zhang, and J. R. Leadbetter, Appl. Environ. Microbiol. 69:5941-5949, 2003). A gene encoding an enzyme with acyl-HSL acylase activity, pvdQ (PA2385), was identified, but it was not required for acyl-HSL utilization. This indicated that P. aeruginosa encodes another acyl-HSL acylase, which we identify here. A comparison of total cell proteins of cultures grown with long-acyl acyl-HSLs versus other substrates implicated the involvement of a homolog of PvdQ, the product of gene PA1032, for which we propose the name QuiP. Transposon mutants of quiP were defective for growth when P. aeruginosa was cultured in medium containing decanoyl-HSL as a sole carbon and energy source. Complementation with a functional copy of quiP rescued this growth defect. When P. aeruginosa was grown in buffered lysogeny broth, constitutive expression of QuiP in P. aeruginosa led to decreased accumulations of the quorum signal 3OC12HSL, relative to the wild type. Heterologous expression of QuiP was sufficient to confer long-chain acyl-HSL acylase activity upon Escherichia coli. Examination of gene expression patterns during acyl-HSL-dependent growth of P. aeruginosa further supported the involvement of quiP in signal decay and revealed other genes also possibly involved. It is not yet known under which "natural" conditions quiP is expressed or how P. aeruginosa balances the expression of its quorum-sensing systems with the expression of its acyl-HSL acylase activities.  相似文献   

10.
假单胞菌M-18qscR突变株的构建及其对抗生素合成的调控   总被引:1,自引:0,他引:1  
在革兰氏阴性菌中,全局性调控因子QscR参与菌群传感调节系统,调节多种毒素因子、次生代谢产物、稳定期基因以及参与生物膜形成的基因的表达,它通过与靶基因DNA启动子的调节元件结合,调节基因转录。假单胞菌株(Pseudomonas sp.)M-18是促进植物生长的根际细菌,能同时分泌藤黄绿菌素(pyoluterion,Plt)和吩嗪-1-羧酸(phenazine-1-carboxylicacid,PCA)。运用同源重组技术,构建了假单胞菌(Pseudomonas sp.)M-18株的qscR突变菌株M-18Q。比较野生株M-18和突变株M-18Q生物合成PCA和Plt的产量,在28℃恒温条件下,在PPM和KMB培养基中M-18Q菌株合成PCA的量分别约为野生型M-18菌株的4~6倍和3~5倍,分别达到480μg/mL和140μg/mL。在PPM培养基中,野生株M-18和突变株M-18Q几乎都没有Plt的合成,而在KMB培养基中,突变菌株和野生型M-18合成Plt的量基本一致。反式互补实验表明,在qscR突变株M-18Q中,PCA生物合成受到抑制而Plt的生物合成却不受影响。phzA基因是吩嗪合成基因簇中第一个基因,phzA‘-’lacZ翻译融合实验表明,qscR基因产物通过抑制PCA合成基因簇的表达,实施负调控作用。结果表明qscR基因是作为一个全局调控基因区别性地调控PCA和Plt的生物合成。  相似文献   

11.
12.
13.
14.
15.
16.
17.
Mou R  Bai F  Duan Q  Wang X  Xu H  Bai Y  Zhang X  Jin S  Qiao M 《FEMS microbiology letters》2011,324(2):173-180
The Pseudomonas aeruginosa quorum sensing (QS) system is controlled by the signal molecules acyl homoserine lactones (AHLs) that are synthesized from acyl enoyl-acyl carrier proteins (acyl-ACPs) provided by the fatty acid biosynthesis cycle. Pfm (PA2950), an enoyl-CoA reductase, has previously been shown to affect swimming mobility and fatty acid biosynthesis. In this report, we further show that pfm influences bacterial adherence to human cells. Microarray assay results suggest that pfm affects bacterial adherence through its influence on the QS system. Further experiments confirmed that the pfm mutant strain produces significantly less QS signal molecules than the corresponding wild-type strain. Using strains Escherichia coli DH5α(pECP64, lasB'-lacZ) and E.?coli DH5α(pECP61.5, rhlA'-lacZ), biosensors for N-(3-oxododecanoyl) homoserine lactone (3O-C(12) -HSL) and N-butyryl homoserine lactone (C(4) -HSL), respectively, we found that pfm mutant strain produces decreased amounts of both signal molecules. Elastase activity and pyocyanin measurements further confirmed the reduced levels of 3O-C(12) -HSL and C(4) -HSL in the pfm mutant. Finally, bacterial virulence, as assessed by the Caenorhabditis elegans worm killing assay, is decreased in the pfm mutant. Taken together, these data indicate that pfm can be an important target for the control of P.?aeruginosa infectivity.  相似文献   

18.
Quorum sensing (QS) is a cell density-dependent signaling system that is used by bacteria to coordinate gene expression within their population. In this study, the authors describe the development and characterization of various cell-based bioassay systems for detecting QS inhibitors based on three LuxR family proteins, TraR, LasR, and the recently identified QscR. Three different gram-negative bacteria, Escherichia coli, Agrobacterium tumefaciens, and Pseudomonas aeruginosa, were employed as reporter strains to overproduce one of the aforementioned QS activator proteins and respond to inhibitors. The nine different whole-cell assay systems (three reporter strains × three QS proteins) were evaluated for their applicability and reliability by studying quantitative responses to various furanones, which are potent inhibitors of the LuxR family proteins. These results demonstrate that the cell-based bioassay systems are sensitive and reliable tools for screening of QS activators and inhibitors. This study also suggests that furanones are potentially important QS inhibitors for many LuxR-type activator proteins.  相似文献   

19.
20.
The Pseudomonas aeruginosa protein PtxS negatively regulates its own synthesis by binding to the upstream region of its gene. We have recently identified a 14 bp palindromic sequence within the ptxS upstream region as the PtxS operator site (OP1). In this study, we searched the P. aeruginosa genomic sequence to determine whether this 14 bp sequence exists in other regions of the P. aeruginosa chromosome. Another PtxS operator site (OP2) was located 47 bp downstream of ptxS. DNA gel shift experiments confirmed that PtxS specifically binds to a 520 bp fragment that carries OP2. The DNA segment 3' of OP2 contains four open reading frames (ORF1-ORF4), which code for 29, 32, 48 and 35 kDa proteins respectively. The molecular weight of the products of ORFs 2 and 3 were confirmed by T7 expression experiments. Computer analyses suggest that ORF2 encodes an ATP-dependent kinase; ORF3, a transporter; and ORF4, a dehydrogenase. The predicted product of ORF1 showed no homology to previously identified proteins and contains all the conserved amino acids within the aldose 1-epimerase protein motif. Examination of the ptxs-ORF1 intergenic region (using promoter fusion experiments) showed that no potential promoter exists. An isogenic mutant defective in ORF1 was constructed in the P. aeruginosa strain PAO1. In contrast to its parent strain, the mutant failed to grow on a minimal medium in which 2-ketogluconate was the sole carbon source. Similarly, a previously constructed ptxS isogenic mutant of PAO1 did not grow in a minimal medium containing 2-ketogluconate as the sole carbon source. Furthermore, a plasmid carrying a fragment that contains ptxS and ORFs 1-4 complemented the defect of the previously described P. aeruginosa 2-ketogluconate-negative mutant. In the presence of 10 mM 2-ketogluconate, the in vitro binding of PtxS to a DNA fragment that carries either OP1 or OP2 was inhibited. These results suggest that: (i) ptxS together with the other four ORFs constitute the 2-ketogluconate utilization operon (kgu) in P. aeruginosa. Therefore, ORFs 1-4 were designated kguE, kguK, kguT and kguD respectively. (ii) PtxS regulates the expression of the kgu operon by binding to two operators (OP1 and OP2) within the operon; and (iii) 2-ketogluconate is the molecular inducer of the kgu operon or the molecular effector of PtxS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号