首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Nonsteroidal anti-inflammatory drugs (NSAIDs) reduce the incidence of colon cancer, but their use is limited by toxicity in the gastrointestinal tract. The coupling of a nitric oxide-releasing moiety to NSAIDs strongly reduces these side effects. We demonstrated that the NO-releasing sulindac (nitrosulindac) has much more potent effects on colon adenocarcinoma cell lines compared to sulindac. Moreover, it could inhibit the growth of cells in soft agar experiments, demonstrating the antineoplastic activity at low concentration of nitrosulindac. However, this reduction in the growth of colon cancer cells seemed to be independent of the classical apoptosis pathway and could be explained by a cytostatic effect. Nitrosulindac caused a light perturbation of the cell cycle parameters not linked to a modification of the levels of p21 or the proliferating cell nuclear antigen. Moreover, neither sulindac, nor nitrosulindac, were able to inhibit the NF-kappa B pathway. These data suggested that nitrosulindac could be a better solution compared to other NSAIDs in the treatment of colon cancer.  相似文献   

3.
4.
Exogenous hydrogen peroxide (H2O2) induces oxidative stress and apoptosis in cancer cells. This study evaluated the antiapoptotic effects of pan-caspase and caspase-3, -8, or -9 inhibitors on H2O2-treated Calu-6 and A549 lung cancer cells in relation to reactive oxygen species (ROS) and glutathione (GSH). Treatment with 50–500 μM H2O2 inhibited the growth of Calu-6 and A549 cells at 24 h and induced apoptosis in these cells. All the tested caspase inhibitors significantly prevented cell death in H2O2-treated lung cancer cells. H2O2 increased intracellular ROS levels, including that of O 2 ·? , at 1 and 24 h. It also increased the activity of catalase but decreased the activity of SOD. In addition, H2O2 triggered GSH deletion in Calu-6 and A549 cells at 24 h. It reduced GSH levels in Calu-6 cells at 1 h but increased them at 24 h. Caspase inhibitors decreased O 2 ·? levels in H2O2-treated Calu-6 cells at 1 h and these inhibitors decreased ROS levels, including that of O 2 ·? , in H2O2-treated A549 cells at 24 h. Caspase inhibitors partially attenuated GSH depletion in H2O2-treated A549 cells and increased GSH levels in these cells at 24 h. However, the inhibitors did not affect GSH deletion and levels in Calu-6 cells at 24 h. In conclusion, H2O2 induced caspase-dependent apoptosis in Calu-6 and A549 cells, which was accompanied by increases in ROS and GSH depletion. The antiapoptotic effects of caspase inhibitors were somewhat related to the suppression of H2O2-induced oxidative stress and GSH depletion.  相似文献   

5.
Glucocorticoid hormones are thought to play a role in carcinogenesis as they regulate cell differentiation and proliferation. We have investigated the effect of dexamethasone on two cell lines derived from a colon carcinoma, which differ by their tumorigenicity. Dexamethasone was found to inhibit growth of both the progressive (PROb) and the regressive clone (REGb). Upon glucocorticoid treatment, PROb cells were found to secrete an additional Mr 40,000 protein. The synthesis and the release in the culture medium of this protein is stimulated specifically by glucocorticoid agonists, and not by other steroid hormones. The anti-glucocorticoid RU 38486 is ineffecient and suppresses the induction of this protein by dexamethasone. Induction is sensitive to actinomycin D, suggesting that regulation may be related to an alteration of the rate of mRNA synthesis. The cellular effect of glucocorticoid hormones being mediated through a specific soluble receptor, we have characterized this protein. The PROb cells contained more specific glucocorticoid-binding sites ( 170,000 sites per cell) than the regressive ones (REGb cells; 100,000 sites per cell). In both clones, the receptor was associated with the Mr 90,000 heat shock protein to yield large complexes (Stokes radius Rs 7.5 nm), which were dissociated to the same extent upon heat- and salt-treatment. The steroid- and DNA-binding unit of the receptor, characterized under denaturing conditions using an anti-receptor monoclonal antibody, was found to be more degraded in the PROb cell line.  相似文献   

6.
Eugenol, a natural compound available in honey and various plants extracts including cloves and Magnoliae flos, is exploited for various medicinal applications. Since most of the drugs used in the cancer are apoptotic inducers, the apoptotic effect and anticancer mechanism of eugenol were investigated against colon cancer cells. Antiproliferative effect was estimated using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay]. Earlier events like MMP (mitochondrial membrane potential), thiol depletion and lipid layer break were measured by using flow cytometry. Apoptosis was evaluated using PI (propidium iodide) staining, TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling) assay and DNA fragmentation assay. MTT assay signified the antiproliferative nature of eugenol against the tested colon cancer cells. PI staining indicated increasing accumulation of cells at sub-G1-phase. Eugenol treatment resulted in reduction of intracellular non-protein thiols and increase in the earlier lipid layer break. Further events like dissipation of MMP and generation of ROS (reactive oxygen species) were accompanied in the eugenol-induced apoptosis. Augmented ROS generation resulted in the DNA fragmentation of treated cells as shown by DNA fragmentation and TUNEL assay. Further activation of PARP (polyadenosine diphosphate-ribose polymerase), p53 and caspase-3 were observed in Western blot analyses. Our results demonstrated molecular mechanism of eugenol-induced apoptosis in human colon cancer cells. This research will further enhance eugenol as a potential chemopreventive agent against colon cancer.  相似文献   

7.
Retinoid resistance has limited the clinical application of retinoids as differentiation-inducing and apoptosis-inducing drugs. This study was designed to investigate whether celecoxib, a selective COX-2 inhibitor, has effects on retinoid sensitivity in human colon cancer cell lines, and to determine the possible mechanism of said effects. Cell viability was measured using the MTT assay. Apoptosis was detected via Annexin-V/PI staining and the flow cytometry assay. PGE2 production was measured with the ELISA assay. The expression of RARβ was assayed via western blotting. The results showed that celecoxib enhanced the inhibitory effect of ATRA in both COX-2 high-expressing HT-29 and COX-2 low-expressing SW480 cell lines. Further study showed the ATRA and celecoxib combination induced greater apoptosis, but that the addition of PGE2 did not affect the enhanced growth-inhibitory and apoptosis-inducing effects of the combination. Moreover, NS398 (another selective COX-2 inhibitor) did not affect the inhibitory effects of ATRA in the two cell lines. Western blotting showed that the expression of RARβ in HT-29 cell lines was increased by celecoxib, but not by NS398, and that the addition of PGE2 did not affect the celecoxib-induced expression of the retinoic acid receptor beta. In conclusion, celecoxib increased the expression of RARβ and the level of cellular ATRA sensitivity through COX-2-independent mechanisms. This finding may provide a potential strategy for combination therapy.  相似文献   

8.
Effect of selenium on the growth of three human colon cancer cell lines   总被引:2,自引:0,他引:2  
The effects of selenium were investigated on three human colon cancer cell lines: Caco 2, HRT 18, and HT 29. At low concentrations (10-100 nM), selenium stimulated cell growth in serum-free medium. Thus, selenium is an essential trace element for cell proliferation. At higher concentrations, selenium inhibited cell growth. The rate of 75Se uptake was the same in all of the cell lines studied, but the quantity incorporated differed. GSH-Px activity was dependent on the selenium content of the medium. DNA and protein synthesis paralleled the growth curve. Comparison with the curve of viability revealed that selenium inhibited cell growth in two ways: by inhibiting DNA synthesis, without affecting cell viability, and, at higher doses, by cytotoxicity.  相似文献   

9.
10.
Incidence of colon cancer has increased rapidly in China. Although many colon cancer cell lines have been established previously, most of them were derived from patients from western countries. Epidemiological, clinical, cytogenetic, and molecular biological studies showed that there are considerable differences between Chinese and western countries colon cancer patients. Therefore, establishment of novel colon cancer cell line from Chinese is useful for studying the racial difference of this disease and can be important for studying the pathogenesis of colon cancer in China. In our laboratory, two novel continuous human colon cancer cell lines, SHT-1 and SHH-1, have been established in vitro from Chinese patients, and both cell lines have been passaged for 4 yr, and they have been continuously subcultured with more than 800 population doubling and without signs of senescence. Both cell lines were obtained from primary tumor tissues during colon cancer surgery. Cells grew rapidly with a doubling time of 36–39 h and a plating efficiency of 26–28%. These cells exhibited an epithelial morphology and expressed cytokeratin. Tumor developed in severe combined immunodeficient (SCID) mice 4–6 wk after inoculated subcutaneously with the cultured cancer cells. Karyotypic analysis and comparative genomic hybridization (CGH) analysis in SHT-1 cells revealed a hypertriploid modal number of 76 with numerous numerical and structural abnormalities previously linked to colon cancer. In another cell line (SHH-1), CGH analysis revealed that −1p13 was the only cytogenetic anomaly.  相似文献   

11.
Althoughaccumulating evidence suggests a chemopreventive role for folic acid incolon cancer, the regulation of this process in unknown. We hypothesizethat supplemental folic acid exerts its chemopreventive role byinhibiting mucosal hyperproliferation, an event considered to becentral to the initiation of carcinogenesis in the gastrointestinaltract. The present investigation examines the effect of supplementalfolic acid on proliferation of Caco-2 and HCT-116 colon cancer celllines. Furthermore, because certain tyrosine kinases, particularlyepidermal growth factor receptor (EGFR), play a role in regulating cellproliferation, we also examined the folic acid-induced changes intyrosine kinase activity and expression of EGFR. In Caco-2 and HCT-116cells, maintained in RPMI 1640 medium containing 1 µg/ml folic acid,we observed that the supplemental folic acid inhibited proliferation ina dose-dependent manner. Pretreatment of HCT-116 and Caco-2 cell lineswith supplemental folic acid (1.25 µg/ml) completely abrogated transforming growth factor- (TGF-)-induced proliferation in bothcell lines. Tyrosine kinase activity and the relative concentration ofEGFR were markedly diminished in both cell lines following a 24-hexposure to supplemental folic acid. The folic acid-induced inhibitionof EGFR tyrosine kinase activity in colon cancer cell lines was alsoassociated with a concomitant reduction in the relative concentrationof the 14-kDa membrane-bound precursor form of TGF-. In conclusion,our data suggest that supplemental folic acid is effective in reducingproliferation in two unrelated colon cancer cell lines and that EGFRtyrosine kinase appears to be involved in regulating this process.

  相似文献   

12.
13.
Cytokinetic effects of cisplatin on human ovarian cancer cell lines with natural cisplatin-resistance was examined by means of flow cytometry. These ovarian cancer cell lines derived from patients with clear cell carcinoma and serous cystadenocarcinoma were established and designated "KK" and "MH", respectively. Both KK and MH cells have shown resistance to cisplatin and IC50 of them were 0.95 microM and 3.28 microM, respectively. Cisplatin inhibited cell cycle progression at G2 +M phase up to IC50 of each cell from the analysis of cell cycle. Similar results had been obtained in the case of "KF" cell which was sensitive to cisplatin. Further studies of these cells should be performed to elucidate the mechanism of cisplatin resistance.  相似文献   

14.
Comparisons of the effects of clinically relevant concentrations of the anticancer agent paclitaxel on growth, viability, and apoptosis were determined using in vitro human cell cultures. Growth of the cervical cancer cell line, HeLa-S3, was significantly reduced, and apoptotic index was significantly increased, after 24 h in cultures treated with 12 nM paclitaxel. In contrast, hepatic carcinoma (HEpG2) cells capable of detoxifying paclitaxel were only affected at paclitaxel concentrations ge120 nM. The previously uncharacterized non-cancerous human microvessel endothelial cell line HMEC-1, was more sensitive to paclitaxel treatment than both HeLa-S3 and HEpG2 cells, demonstrating decreased growth and increased apoptosis with 1.2 nM paclitaxel. These results are significant in the design of in vitro cell culture systems to study drug metabolism and toxicity.  相似文献   

15.
The cell lines SW480 and SW620, derived from different stages of colon carcinoma in the same patient, have been used for a number of biochemical, immunological, and genetic studies on colon cancer. A comparative analysis of their karyotypes may identify chromosomal aberrations that might represent markers for metastatic spread. In the present study spectral karyotyping (SKY) was applied to these two colon cancer cell lines. Compared to previously reported G-banded karyotypes, 9 (SW480) and 7 (SW620) markers were identical, 3 (SW480) and 3 (SW620) markers could be redefined, 5 (SW480) and 8 (SW620) markers were newly identified, and 4 (SW480) and 5 (SW620) of the previous described markers could not be confirmed. The redefined aberrations include very complex rearrangements, such as a der(16) t(3;16;1;16;8;16; 1;16;10) and a der(18)t(18;15;17)(q12; p11p13;??) in SW620 and a der(19)t(19;8;19;5) in SW480, that have not been identified by conventional banding techniques. The resulting chromosome gains (5q11-->5q15, 7pter-->q22, 11, 13q14-->qter, 20pter-->p12, X) and losses (8pter-->p2, 18q12-->qter, Y) found in both SW480 and SW620 were in good agreement with those frequently described in colorectal tumors as primary changes in the stem cell. Abnormalities found exclusively in SW620 cells only (gains of 5pter-->5q11, 12q12-->q23, 15p13-->p11, and 16q21-->q24 and losses of 2pter-->2p24, 4q28-->qter, and 6q25-->qter) can be viewed as changes that occurred in a putative metastatic founder cell.  相似文献   

16.
Established lines of human colon cancer cells from several sources (LS180, LS174T, HT29, SW480, SW1345) had water proton nuclear magnetic resonance (NMR) spin-lattice relaxation times (T1) of 460 +/- 45 msec to 982 +/- 9 msec and spin-spin relaxation times (T2) of 83 +/- 6 msec to 176 +/- 6 msec. Two clones derived from single cells of line LS174T were similar in T1 and T2 to the parent line. Differences among the cell lines were not totally a function of cellular hydration. Normal adult and fetal human primary colon cells were wetter and had higher T1 and T2 values than established cell lines. Relaxation times in this study substantiate variations seen for human colon tumors in earlier studies. Established cell lines maintained water relaxation times similar to tumor tissue values. Along with other morphological and biochemical criteria, the relaxation times suggest that these established human colon cancer cell lines may serve as a good experimental model for the study of human colon cancer.  相似文献   

17.
Short-chain fatty acids (SCFAs) have been demonstrated to induce differentiation and/or apoptosis in colon cancer cells. A close correlation between tissue transglutaminase (tTG) expression and differentiation and/or apoptosis has been suggested in many cell lineages. However, the effects of SCFAs on tTG expression in colon cancer cells have not yet been reported. In this report, the relationship between cytosolic tTG levels and differentiation state was investigated in six human colon cancer cell lines. Effects of four kinds of SCFAs (acetate, propionate, n-butyrate, and isobutyrate) on the expression of tTG then were investigated in association with their effects on apoptosis induction. High expression of tTG protein and mRNA were found in SW480 and WiDr cell lines, which exhibited well differentiated phenotypes. tTG expression was hardly detectable in the less differentiated cell lines COLO201, COLO320DM, and CW-2. However, n-butyrate and propionate significantly increased cytosolic tTG levels at concentrations above 0.5 mM in these less differentiated colon cancer cells. n-Butyrate and propionate induced growth suppression and apoptosis in these cell lines at concentrations that can induce tTG expression. Acetate and isobutyrate did not induce tTG expression or growth suppression at concentrations up to 8 mM. In conclusion, tTG induction by propionate and n-butyrate was suggested to be closely linked to their differentiation- and apoptosis-inducing effects in colon cancer cells. These findings may explain the mechanisms by which dietary fiber show preventive effects against colon carcinogenesis.  相似文献   

18.
The benzophenanthridine alkaloid sanguinarine has antimicrobial and possibly anticancer properties but it is not clear to what extent these activities involve DNA damage. Thus, we studied its ability to cause DNA single and double strand breaks, as well as increased levels of 8-oxodeoxyguanosine, in human colon cancer cells and found DNA damage consistent with oxidation. Since the tumor suppressor p53 is frequently involved in inducing apoptosis following DNA damage we investigated the effect of sanguinarine in wild type, p53-mutant and p53-null colon cancer cell lines. We found them to be equally sensitive to this plant compound, indicating that cell death is not mediated by p53 in this case. In addition, our observation that apoptosis induced by sanguinarine is initiated very rapidly raised the question whether there is enough time for cellular signaling in response to DNA damage. Moreover, the abundance of double strand breaks is not consistent with only oxidative damage to DNA. We conclude that the majority of DNA double strand breaks in sanguinarine-treated cells are likely the result, rather than the cause, of apoptotic cell death and that apoptosis induced by sanguinarine is independent of p53 and most likely independent of DNA damage.  相似文献   

19.
Activin A has been reported to play a role in the progression of colorectal cancer. Because dietary fiber protects against colorectal cancer, we hypothesized that butyrate, a fermentation product of dietary fiber, may affect the expression of activin A in colon cancer cells. Semiquantitative RT-PCR demonstrated that the activin A gene was upregulated by sodium butyrate in the human colon cancer cell lines HT-29 and Caco-2 in a concentration- and time-dependent manner. However, the activin A gene did not respond to sodium butyrate in the human normal colonic cell line FHC, rat normal intestinal epithelial cell (IEC) line IEC-6, and the explant of rat colon. Flow cytometry and agarose gel electrophoresis of genomic DNA revealed that cell cycle arrest and apoptosis were induced by sodium butyrate but not exogenous activin A in HT-29 cells, indicating that activin A could not act as an autocrine factor in colon cancer cells. By assuming that activin A promotes colorectal cancer spread as a paracrine factor, our findings suggest that butyrate could act as a tumor promoter in some circumstances.  相似文献   

20.
Exposure of three colon cancer cell lines, SW480, DLD-1, and COLO201, to arsenic trioxide in the medium induced a marked concentration-dependent suppression of cell growth. The intracellular contents of reduced glutathione (GSH) in these cell lines tended to be inversely correlated with the sensitivity of the cells to arsenic trioxide. Among the cell lines, SW480 cells underwent apoptosis at the low arsenic trioxide concentration of 2 microM, which was prevented by pretreatment of the cells with N-acetylcysteine and was enhanced by buthionine sulfoximine. The production of reactive oxygen intermediates which were examined by 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA), increased with time after treatment with arsenic trioxide. The apoptosis was executed by the activation of caspase 3, which was shown by Western blot, enzymatic activity, and apoptosis inhibition assay. The mitochondrial membrane potential of adherent apoptotic SW480 cells and the cells from intermediate layer separated by density gradient centrifugation, both of which showed the active form of caspase 3 by Western blot analysis, was not lost. The overexpression of Bcl-2 protein in SW480 cells could not prevent the apoptosis induced by the treatment with arsenic trioxide. All these findings indicate that arsenic trioxide-induced apoptosis in SW480 cells is executed by the activation of caspase 3 without mediating by mitochondria under the overproduction of reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号