首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
目的:构建含p53保守结合位点的microRNA(miRNA)表达载体,促进相关miRNA在具有野生型p53蛋白细胞中的高效表达。方法:改构miRNA表达载体pCMV-miR,在其多克隆位点前插入p53保守结合位点,分别将miR-138、miR-34a和miR-21前体序列pre-miR-138、pre-miR-34a和pre-miR-21插入上述改构的载体pCMV/p53-miR,将构建的pCMV/p53-miR-138、pCMV/p53-miR-34a和pCMV/p53-miR-21表达载体转染具有野生型p53的HeLa细胞和不表达p53的H1299细胞,分析p53对上述miRNA表达调控的影响。结果:转染改构的miRNA表达载体后,HeLa细胞中miR-138、miR-34a和miR-21的表达水平明显提高,它们对应的已知靶基因Cyclin D3、CDK2和PTEN的表达同时被显著下调。结论:在p53转录调控作用下,具有p53保守结合位点的miRNA表达载体能够更加有效地提高miRNA的表达水平;构建的载体不但可用于促进相关miRNA的表达,也能用于miRNA是否受p53调控的检测。  相似文献   

7.
8.
9.
Interleukin 4 (IL-4) induces B-cell differentiation and survival of chronic lymphocytic leukemia (CLL) cells. MicroRNAs (miRNAs) regulate mRNA and protein expression, and several miRNAs, deregulated in CLL, might play roles as oncogenes or tumor suppressors. We have studied the miRNA profile of CLL, and its response to IL-4, by oligonucleotide microarrays, resulting in the detection of a set of 129 mature miRNAs consistently expressed in CLL, which included 41 differentially expressed compared to normal B cells (NBC), and 6 significantly underexpressed in ZAP-70 positive patients. IL-4 stimulation brought about up-regulation of the 5p and 3p mature variants of the miR-21 gene, which maps immediately downstream to the VMP1 gene, and of the mature forms generated from the miR-362 (3p and 5p), miR-500a (3p), miR-502 (3p), and miR-532 (3p and 5p) genes, which map within the third intron of the CLCN5 gene. Both genes are in turn regulated by IL-4, suggesting that these miRNAs were regulated by IL-4 as passengers from their carrier genes. Their levels of up-regulation by IL-4 significantly correlated with cytoprotection. MiR-21 has been reported to be leukemogenic, associated to bad prognosis in CLL, and the miRNA more frequently overexpressed in human cancer. Up-regulation by IL-4 of miR-21 and the miRNAs hosted in the CLCN5 locus may contribute to evasion of apoptosis of CLL cells. These findings indicate that the IL-4 pathway and the miRNAs induced by IL-4 are promising targets for the development of novel therapies in CLL.  相似文献   

10.
In the pathogenesis of malignancies, an active regulatory role belongs to small noncoding RNAs, miRNA (miR). miRNA expression profiles are often associated with the prognosis and therapeutic outcome of different oncological diseases. It is well known that in comparison with normal tissues cancer cells are characterized by hyperexpression of oncogenic miRNAs which leads to oncogenic transformation, carcinogenesis and metastasis progression. From this point of view, selective down-regulation of miRNA expression by specific agents, such as antisense oligonucleotides that recognize particular sequences, therefore, can be an effective tool to regulate the amount of miRNA in cancer cells and decrease tumor malignancy. In this paper, we have designed a series of antisense oligonucleotides addressed to the oncogenic miR-21 with a view to its selective binding and studied patterns of interaction of miR-21 with these oligonucleotides in vitro. The series included linear and hairpin oligonucleotides with the length of antisense fragment of 10–16 nucleotides (nt) complementary to the 5'- or the 3'-end of miRNA target. Hairpin oligonucleotides consist of a sequence complementary to miR-21 and a hairpin containing a four-nucleotide loop and stem of 6–9 bp necessary for stabilizing the complex with miR-21. It has been shown that inclusion of the hairpin with the stem of 6 bp to the oligonucleotide structure leads to a 1.6-fold increase in binding efficiency with miR-21 in comparison with a linear oligonucleotide and elongation of the stem from six to nine bp does not increase binding efficiency. Hairpin oligonucleotides with an antisense sequence of 14 nt effectively hybridize with miR-21 and are not inferior to 16-mer linear and hairpin oligonucleotides in the efficiency of complex formation. Thus, we have shown that hairpin oligonucleotides with antisense fragment of 14 nt and a hairpin, including the stem of 6 bp, are optimal for selective and effective sequestering of mature miR-21.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
The miR-17 ~ 92a polycistron, also known as oncomiR-1, is commonly overexpressed in multiple cancers and has several oncogenic properties. OncomiR-1 encodes six constituent microRNAs (miRs), each enzymatically processed with different efficiencies. However, the structural mechanism that regulates this differential processing remains unclear. Chemical probing of oncomiR-1 revealed that the Drosha cleavage sites of pri-miR-92a are sequestered in a four-way junction. NPSL2, an independent stem loop element, is positioned just upstream of pri-miR-92a and sequesters a crucial part of the sequence that constitutes the basal helix of pri-miR-92a. Disruption of the NPSL2 hairpin structure could promote the formation of a pri-miR-92a structure that is primed for processing by Drosha. Thus, NPSL2 is predicted to function as a structural switch, regulating pri-miR-92a processing. Here, we determined the solution structure of NPSL2 using solution NMR spectroscopy. This is the first high-resolution structure of an oncomiR-1 element. NPSL2 adopts a hairpin structure with a large, but highly structured, apical and internal loops. The 10-bp apical loop contains a pH-sensitive A+·C mismatch. Additionally, several adenosines within the apical and internal loops have elevated pKa values. The protonation of these adenosines can stabilize the NPSL2 structure through electrostatic interactions. Our study provides fundamental insights into the secondary and tertiary structure of an important RNA hairpin proposed to regulate miR biogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号