首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydraulic conductances of alfalfa and soybean plants grown in controlled environment chambers at the current ambient carbon dioxide concentration and at twice the current ambient concentration were determined from measurements of transpiration rate and leaf and stem water potentials in the growth conditions. Growth at elevated carbon dioxide concentration reduced both transpiration rate and hydraulic conductance from the soil to the leaf in both species. Hydraulic conductance from the soil to the base of the stem was also lower at elevated carbon dioxide in soybean, but not alfalfa. These measurements identified the stem to leaf hydraulic pathway as a major target of the carbon dioxide effect in both species. The conductance of excised stem segments was much less in plants grown at elevated carbon dioxide in soybeans.  相似文献   

2.
3.
M. M. Ludlow 《Planta》1970,91(4):285-290
Summary Net photosynthesis of tropical legume leaves increased by 44% and that of tropical grass leaves was unaffected when oxygen concentration was reduced from 21 to 0.2%. Stomatal resistance to carbon dioxide diffusion was unaltered in both cases but mesophyll resistance of legume leaves decreased with oxygen concentration. It is proposed that the decrease in mesophyll resistance is accompanied by decreases in excitation and carboxylation resistances.  相似文献   

4.
5.
Independent short-term effects of photosynthetic photon flux density (PPFD) of 50–400 μmol m−2 s−1, external CO2 concentration (C a) of 85–850 cm3 m−3, and vapor pressure deficit (VPD) of 0.9–2.2 kPa on net photosynthetic rate (P N), stomatal conductance (g s), leaf internal CO2 concentration (C i), and transpiration rates (E) were investigated in three cacao genotypes. In all these genotypes, increasing PPFD from 50 to 400 μmol m−2 s−1 increased P N by about 50 %, but further increases in PPFD up to 1 500 μmol m−2 s−1 had no effect on P N. Increasing C a significantly increased P N and C i while g s and E decreased more strongly than in most trees that have been studied. In all genotypes, increasing VPD reduced P N, but the slight decrease in g s and the slight increase in C i with increasing VPD were non-significant. Increasing VPD significantly increased E and this may have caused the reduction in P N. The unusually small response of g s to VPD could limit the ability of cacao to grow where VPD is high. There were no significant differences in gas exchange characteristics (g s, C i, E) among the three cacao genotypes under any measurement conditions.  相似文献   

6.
7.
The carbon dioxide concentration in free air carbon dioxide enrichment (FACE) systems typically has rapid fluctuations. In our FACE system, power spectral analysis of CO2 concentration measured every second with an open path analyzer indicated peaks in variation with a period of about one minute. I used open-top chambers to expose cotton and wheat plants to either a constant elevated CO2 concentration of 180 ??mol mol?1 above that of outside ambient air, or to the same mean CO2 concentration, but with the CO2 enrichment cycling between about 30 and 330 ??mol mol?1 above the concentration of outside ambient air, with a period of one minute. Three short-term replicate plantings of cotton were grown in Beltsville, Maryland with these CO2 concentration treatments imposed for 27-day periods over two summers, and one winter wheat crop was grown from sowing to maturity. In cotton, leaf gas-exchange measurements of the continuously elevated treatment and the fluctuating treatment indicated that the fluctuating CO2 concentration treatment consistently resulted in substantial down-regulation of net photosynthetic rate (P N) and stomatal conductance (g s). Total shoot biomass of the vegetative cotton plants in the fluctuating CO2 concentration treatment averaged 30% less than in the constantly elevated CO2 concentration treatment at 27 days after planting. In winter wheat, leaf gas-exchange measurements also indicated that down-regulation of P N and g s occurred in flag leaves in the fluctuating CO2 concentration treatment, but the effect was not as consistent in other leaves, nor as severe as found in cotton. However, wheat grain yields were 12% less in the fluctuating CO2 concentration treatment compared with the constant elevated CO2 concentration treatment. Comparison with wheat yields in chambers without CO2 addition indicated a nonsignificant increase of 5% for the fluctuating elevated CO2 concentration treatment, and a significant increase of 19% for the constant elevated treatment. The results suggest that treatments with fluctuating elevated CO2 concentrations could underestimate plant growth at projected future atmospheric CO2 concentrations.  相似文献   

8.
大气中CO2浓度升高对植物的影响   总被引:6,自引:0,他引:6  
大气中CO_2浓度升高以及由此所引起的温室效应已成为人们普遍关注的议题。在未来的世界里,CO_2浓度将持续上升。预计到21世纪中叶,CO_2浓度可能达到700ppm。一些试验结果表明;CO_2浓度升高对多数植物的个体生长发育有促进作用,其中包括种子的发芽率提高,幼苗生长加快,叶面积增大,根系数量增多,气孔数量减少,茎干生长轮加宽,开花期提早,种子产量提高等。但是,CO_2浓度升高对植物也有不利影响。在高CO_2浓度环境中,由于过量产生的碳水化合物在叶片中的积累和矿物质的不平衡,许多植物在生长后期生长缓慢或出现负增长;个体生长发育规律的变化将导致一些增长种群逐渐向衰退种群过渡;C_3类杂草的加速生长将引起农业欠收;群落结构与组成的变化将促使一些植物走向绝灭;植物残渣中碳氮比的改变将引起生态系统生产力的下降等。因此,对于今后大气中CO_2浓度升高的影响还要做大量的研究。  相似文献   

9.
大气二氧化碳浓度升高对植物的影响   总被引:36,自引:0,他引:36  
现代人类的活动,特别是矿场燃料的大量使用和植被的破坏,导致大气CO2浓度持续上升。该文阐述了CO2浓度升高对植物的形态、生理、产量和品质,种群消长,群落组成,生态系统结构与功能的影响。  相似文献   

10.
The relative stimulation of photosynthesis by elevated carbon dioxide in C3 species normally increases strongly with increasing temperature. This results from the kinetic characteristics of Rubisco, and has potentially important implications for responses of vegetation to increasing atmospheric carbon dioxide. It is often assumed that because Rubisco characteristics are conservative, all C3 species have the same temperature dependence of the response of photosynthesis to elevated carbon dioxide. However, in this field study of Taraxacum officinale, there were no significant differences in the relative stimulation of photosynthesis by elevated carbon dioxide among days with temperatures ranging from 15 to 34 °C. Nevertheless, short-term measurements indicated a strong temperature dependence of the stimulation. This suggested that acclimation to temperature caused the lack of variation in the seasonal data. Experiments in controlled environments indicated that complete acclimation of the relative stimulation of photosynthesis by elevated carbon dioxide occurred for growth temperatures of 10 – 25 °C. The apparent specificity of Rubisco for carbon dioxide relative to oxygen at 15 °C, as assayed in vivo by measurements of the carbon dioxide concentration at which carboxylation equalled oxygenation, also varied with growth temperature. Changes in the apparent specificity of Rubisco accounted for the acclimation of the temperature dependence of the relative stimulation of photosynthesis by elevated carbon dioxide. It is premature to conclude that low temperatures will necessarily reduce the relative stimulation of photosynthesis caused by rising atmospheric carbon dioxide. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Cotton (Gossypium hirsutum L., cv DPL 5415) plants were grown in naturally lit environment chambers at day/night temperature regimes of 26/18 (T-26/18), 31/23 (T-31/23) and 36/28 °C (T-36/28) and CO2 concentrations of 350 (C-350), 450 (C-450) and 700 L L-1 (C-700). Net photosynthesis rates, stomatal conductance, transpiration, RuBP carboxylase activity and the foliar contents of starch and sucrose were measured during different growth stages. Net CO2 assimilation rates increased with increasing CO2 and temperature regimes. The enhancement of photosynthesis was from 24 mol CO2 m-2 s-1 (with C-350 and T-26/18) to 41 mol m-2 s-1 (with C-700 and T-36/28). Stomatal conductance decreased with increasing CO2 while it increased up to T-31/23 and then declined. The interactive effects of CO2 and temperature resulted in a 30% decrease in transpiration. Although the leaves grown in elevated CO2 had high starch and sucrose concentrations, their content decreased with increasing temperature. Increasing temperature from T-26/18 to 36/28 increased RuBP carboxylase activity in the order of 121, 172 and 190 mol mg-1 chl h-1 at C-350, C-450 and C-700 respectively. Our data suggest that leaf photosynthesis in cotton benefited more from CO_2 enrichment at warm temperatures than at low growth temperature regimes.  相似文献   

12.
13.
14.
15.
16.
用无色透明的塑料袋代替锥形瓶,套在实验用的叶片上并抽出其中的空气:用锥形瓶、分液漏斗和橡胶塞等组装成“去除空气中二氧化碳装置”;在装置内用氢氧化钠与二氧化碳反应的方式去除空气中二氧化碳;经分液漏斗向锥形瓶内注水.并将排出的“空气”注入部分套有叶片的塑料袋中,另一部直接注入空气。  相似文献   

17.
The purpose of this study was to test for direct inhibition of rice canopy apparent respiration by elevated atmospheric carbon dioxide concentration ([CO2]) across a range of short‐term air temperature treatments. Rice (cv. IR‐72) was grown in eight naturally sunlit, semiclosed, plant growth chambers at daytime [CO2] treatments of 350 and 700 μmol mol?1. Short‐term night‐time air temperature treatments ranged from 21 to 40 °C. Whole canopy respiration, expressed on a ground area basis (Rd), was measured at night by periodically venting the chambers with ambient air. This night‐time chamber venting and resealing procedure produced a range of increasing chamber [CO2] which we used to test for potential inhibitory effects of rising [CO2] on Rd. A nitrous oxide leak detection system was used to correct Rd measurements for chamber leakage rate (L) and also to determine if apparent reductions in night‐time Rd with rising [CO2] could be completely accounted for by L. The L was affected by both CO2 concentration gradient between the chamber and ambient air and the inherent leakiness of each individual chamber. Nevertheless, after correcting Rd for L, we detected a rapid and reversible, direct inhibition of Rd with rising chamber [CO2] for air temperatures above 21 °C. This effect was larger for the 350 compared with the 700 μmol mol?1 daytime [CO2] treatment and was also increased with increasing short‐term air temperature treatments. However, little difference in Rd was found between the two daytime [CO2] treatments when night‐time [CO2] was at the respective daytime [CO2]. These results suggest that naturally occurring diurnal changes in both ambient [CO2] and air temperature can affect Rd. Because naturally occurring diurnal changes in both [CO2] and air temperature can be expected in a future higher CO2 world, short‐term direct effects of these environmental variables on rice Rd can also be expected.  相似文献   

18.
Global warming due to increasing greenhouse gases emission and the subsequent climatic changes are the most serious environmental challenges faced by environmental scientists, academicians, regulatory agencies and policy makers worldwide. Among the various greenhouse gases, CO2 constitutes a major share and its concentration is increasing rapidly. Therefore, there is perhaps an urgent need to formulate suitable policies and programs that can firmly reduce and sequester CO2 emissions in a sustainable way. In order to combat the predicted disaster due to rising CO2 level, several CO2 capture and storage technologies and medium are being widely pursued and deliberated. Among them soil carbon sequestration (SCS) is gaining global attention because of its stability and role in long-term surface reservoir, natural low cost and eco-friendly means to combat climate change. Apart from the carbon capturing, the process of soil carbon stabilization also provides other tangible benefits that includes achieving food security, by improving soil quality, wasteland reclamation and preventing soil erosion. The present article aimed to address all these concerns and provide strategies and critical research needs to implement SCS as a mitigation option for increasing atmospheric CO2 level and its future directions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号