首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the emerging field of tissue engineering and regenerative medicine, new viable and functional tissue is fabricated from living cells cultured on an artificial matrix in a simulated biological environment. It is evident that the specific requirements for the three main components, cells, scaffold materials, and the culture environment, are very different, depending on the type of cells and the organ-specific application. Identifying the variables within each of these components is a complex and challenging assignment, but there do exist general requirements for designing and fabricating tissue engineering scaffolds. Therefore, this review explores one of the three main components, namely, the key concepts, important parameters, and required characteristics related to the development and evaluation of tissue engineering scaffolds. An array of different design strategies will be discussed, which include mimicking the extra cellular matrix, responding to the need for mass transport, predicting the structural architecture, ensuring adequate initial mechanical integrity, modifying the surface chemistry and topography to provide cell signaling, and anticipating the material selection so as to predict the required rate of bioresorption. In addition, this review considers the major challenge of achieving adequate vascularization in tissue engineering constructs, without which no three-dimensional thick tissue such as the heart, liver, and kidney can remain viable.  相似文献   

2.
The value of cultured cells in cell biological, pharmaceutical or biotechnological research depends on the degree of terminal cell differentiation. In conventional Petri dishes or tissue culture plates it is often difficult to achieve culture conditions which resemble the in situ situation of intact tissue, as regards optimal cell adhesion, exchange of nutrients and metabolic products. These limitations prompted us to develop simple laboratory tools which optimize the environment of cultured cells. A perfusion apparatus with various culture containers and compatible cell holder sets was constructed which allows the simulation of organotypic conditions. (i) The cells can be kept on individual and interchangeable support materials for an optimal cell attachment. (ii) Culture medium can be perfused during the whole culture period. (iii) One type of the new culture container can be perfused with different media at the apical and basal side of the cells, thus mimicking the organotypic environment that applies for epithelial monolayers. Cell culture experiments with renal collecting duct epithelia exhibited an excellent morphological appearance showing typical features of principal and intercalated cells.  相似文献   

3.
Generation of renal tubules at the interface of an artificial interstitium.   总被引:2,自引:0,他引:2  
During kidney development a multitude of tubular portions is formed. Little knowledge is available by which cellbiological mechanism a cluster of embryonic cells is able to generate the three-dimensional structure of a tubule. However, this know-how is most important in tissue engineering approaches such as the generation of an artificial kidney module or for the therapy of renal diseases using stem cells. To obtain cellbiological insights in parenchyme development we elaborate a new technique to generate under in vitro conditions renal tubules derived from the embryonic cortex of neonatal rabbits. The aim of the experiments is to establish a specific extracellular environment allowing optimal three-dimensional development of renal tubules under serum-free culture conditions. In the present paper we demonstrate features of the renal stem cell niche and show their isolation as intact microcompartments for advanced tissue culture. Perfusion culture in containers exhibiting a big dead fluid volume results in the development of a flat collecting duct (CD) epithelium at the surface of the tissue explant. In contrast, by fine-tuning the dead fluid volume within a perfusion culture container by an artificial interstitium made of a polyester fleece shows the generation of tubules. It is an up to date unknown morphogenetic information which tells the cells to form tubular structures.  相似文献   

4.
To meet specific requirements of developing tissues urgently needed in tissue engineering, biomaterial research and drug toxicity testing, a versatile perfusion culture system was developed. First an individual biomaterial is selected and then mounted in a MINUSHEET® tissue carrier. After sterilization the assembly is transferred by fine forceps to a 24 well culture plate for seeding cells or mounting tissue on it. To support spatial (3D) development a carrier can be placed in various types of perfusion culture containers. In the basic version a constant flow of culture medium provides contained tissue with always fresh nutrition and respiratory gas. For example, epithelia can be transferred to a gradient container, where they are exposed to different fluids at the luminal and basal side. To observe development of tissue under the microscope, in a different type of container a transparent lid and base are integrated. Finally, stem/progenitor cells are incubated in a container filled by an artificial interstitium to support spatial development. In the past years the described system was applied in numerous own and external investigations. To present an actual overview of resulting experimental data, the present paper was written.  相似文献   

5.
Summary The composition of the gaseous environment within tissue culture vessels is a critical factor in determining in vitro plant growth and morphogenic responsiveness. Consequently, the provision of an adequate and sustainable oxygen supply for cultured plant cells (including isolated protoplasts), tissues and organs is a crucial prerequisite for optimization and regulation of such cultural responses. During the past decade, research has focused on improving growth and development using artificial gas carriers based on inert perfluorocarbon (PFC) liquids and hemoglobin (Hb) solution. Supplementation of culture media with such artificial oxygen carriers has demonstrated beneficial effects of increased and sustainable cellular mitotic division and subsequent biomass production in a diverse range of plant species, during both short- and longer-term culture. Studies have targeted systems where oxygen availability is actually or potentially a major growth-limiting factor. Undoubtedly, gas carrier-facilitated improvements in regulating the supply of respiratory gases to cultured cells, tissues and organs will have increasingly important biotechnological and practical implications in the context of plant micropropagation, somatic hybridization, transgenic plant production, and secondary product biosynthesis.  相似文献   

6.
Recent advances in cell biology and tissue engineering have used various delivery vehicles for transplanting varying cell cultures with limited success. These techniques are frequently complicated by tissue necrosis, infection, and resorption. The purpose of this study was to investigate whether urothelium cells, tracheal epithelial cells, and preadipocytes cultured in vitro could be successfully transplanted onto a prefabricated capsule surface by using fibrin glue as a delivery vehicle, with the ultimate goal for use in reconstruction. In the first step of the animal study, tissue specimens (bladder urothelium, tracheal epithelial cells, epididymal fat pad) were harvested for in vitro cell culturing, and a silicone block was implanted subcutaneously or within the anterior rectus sheath to induce capsule formation. After 6 to 10 days, when primary cultures were confluent, the animals were re-anesthetized, the newly formed capsule pouches were incised, and the suspensions of cultured urothelia cells (n = 40), tracheal epithelial cells (n = 32), and preadipocytes (n = 40) were implanted onto the capsule surface in two groups, one using standard culture medium as a delivery vehicle and the second using fibrin glue. Histologic sections were taken, and different histomorphologic studies were performed according to tissue type. Consistently in all animals, a highly vascularized capsule was induced by the silicon material. In all animals in which the authors used fibrin glue as a delivery vehicle, they could demonstrate a successful reimplantation of cultured urothelium cells, tracheal epithelial cells, or preadipocytes. Their animal studies showed that capsule induction in combination with fibrin glue as a delivery vehicle is a successful model for transplantation of different in vivo cultured tissue types.  相似文献   

7.
Microgravity offers unique advantages for the cultivation of mammalian tissues because the lack of gravity-induced sedimentation supports three-dimensional growth in batch culture in aqueous medium. Bioreactors that simulate microgravity but operate in unit gravity provide conditions that permit human epithelial cells to grow to densities approaching 107 cells/ml on microcarriers in suspension, in masses up to 1 cm in diameter, and under conditions of low shear stress. While useful for many different applications in tissue culture, this culture system is especially useful for the analysis of the microenvironment in which host matrix and cells interact with infiltrating tumor cells. Growth in the microgravity-based bioreactor has supported morphological differentiation of human colon carcinoma cells when cultured with normal human stromal cells. Furthermore, these co-cultures produced factors that stimulated goblet cell production in normal colon cells in an in vivo bioassay. Early experiments also suggest that the microgravity environment will not alter the ability of epithelial cells to recognize and associate with each other and with constituents of basement membrane and extracellular matrix. These findings suggest that cells grown in bioreactors that simulate aspects of microgravity or under actual microgravity conditions will produce tissues and substances in sufficient quantity and at high enough concentration to promote characterization of molecules that control differentiation and neoplastic transformation. © 1993 Wiley-Liss, Inc.  相似文献   

8.
The reconstitution of a fully organized and functional hair follicle from dissociated cells propagated under defined tissue culture conditions is a challenge still pending in tissue engineering. The loss of hair follicles caused by injuries or pathologies such as alopecia not only affects the patients’ psychological well-being, but also endangers certain inherent functions of the skin. It is then of great interest to find different strategies aiming to regenerate or neogenerate the hair follicle under conditions proper of an adult individual. Based upon current knowledge on the epithelial and dermal cells and their interactions during the embryonic hair generation and adult hair cycling, many researchers have tried to obtain mature hair follicles using different strategies and approaches depending on the causes of hair loss. This review summarizes current advances in the different experimental strategies to regenerate or neogenerate hair follicles, with emphasis on those involving neogenesis of hair follicles in adult individuals using isolated cells and tissue engineering. Most of these experiments were performed using rodent cells, particularly from embryonic or newborn origin. However, no successful strategy to generate human hair follicles from adult cells has yet been reported. This review identifies several issues that should be considered to achieve this objective. Perhaps the most important challenge is to provide three-dimensional culture conditions mimicking the structure of living tissue. Improving culture conditions that allow the expansion of specific cells while protecting their inductive properties, as well as methods for selecting populations of epithelial stem cells, should give us the necessary tools to overcome the difficulties that constrain human hair follicle neogenesis. An analysis of patent trends shows that the number of patent applications aimed at hair follicle regeneration and neogenesis has been increasing during the last decade. This field is attractive not only to academic researchers but also to the companies that own almost half of the patents in this field.  相似文献   

9.
Epithelial tissues emerge from coordinated sequences of cell renewal, specialization and assembly. Like corresponding immature tissues, adult epithelial tissues are provided by stem cells which are responsible for tissue homeostasis. Advances in epithelial histogenesis has permitted to clarify several aspects related to stem cell identification and dynamics and to understand how stem cells interact with their environment, the so-called stem cell niche. The development and maintenance of epithelial tissues involves epithelial-mesenchymal signalling pathways and cell-matrix interactions which control target nuclear factors and genes. The tooth germ is a prototype for such inductive tissue interactions and provides a powerful experimental system for the study of genetic pathways during development. Clonogenic epithelial cells isolated from developing as well mature epithelial tissues has been used to engineer epithelial tissue-equivalents, e.g. epidermal constructs, that are used in clinical practise and biomedical research. Information on molecular mechanisms which regulate epithelial histogenesis, including the role of specific growth/differentiation factors and cognate receptors, is essential to improve epithelial tissue engineering.  相似文献   

10.
Cultured prostatic epithelial cells have been extensively studied as a model of prostate biology. What is the lineage relationship of the cultured cells to the epithelial cell types in tissue? How different are cultured cells derived from tumor tissue to those derived from benign tissue? Expression of cluster designation (CD) cell surface molecules has been shown to be useful in characterizing cells according to lineage. A CD profile was therefore generated for cultured human prostatic epithelial cells and compared with those previously established for basal and luminal epithelial cells in the prostate. Presence of CD44, CD49b, CD49f, and CD104 and absence of CD57 suggests that cultured cells were derived from basal cells of prostatic tissues. However, expression of certain CD antigens characteristic of luminal epithelial cells was also observed in subpopulations of cultured cells. The pattern of CD antigens in cultured cells reflects a phenotype similar to that of transit-amplifying cells that have been described in the prostate. Several CD antigens were found expressed by both cultured prostatic epithelial and stromal cells, and are probably associated with cell proliferation. The CD profiles of cultured epithelial cell strains derived from normal compared with malignant tissues were notably similar to each other and to that of the prostate cancer cell line PC-3. We conclude that cells in culture retain expression of certain lineage-characteristic CD antigens. Furthermore, CD antigens can define subpopulations of cells with differential gene expression.  相似文献   

11.
目的探讨大鼠阴道黏膜上皮细胞的体外培养和扩增技术,为构建组织工程化阴道动物模型提供种子细胞。方法取大鼠阴道全层组织,经Dispase酶和胰酶分步消化后,接种于无血清角化细胞培养液中连续培养,观察细胞形态、体外生长特性和超微结构,绘制生长曲线,免疫组化鉴定。结果原代细胞培养24-36 h后开始贴壁,7-10d约80%融合,呈铺路石样外观,可连续传5-6代;扫描电镜下细胞表面可见微绒毛嵴;角蛋白染色阳性,细胞纯度98%;第五代细胞为正常二倍体核型。结论该方法培养的阴道上皮细胞增殖状态良好,细胞纯度高,扩增迅速,可在较短时间内获得大量细胞用于组织工程学研究。  相似文献   

12.
Applying tissue engineering principles to design an auto-secretory device is a potential solution for patients suffering loss of salivary gland function. However, the largest challenge in implementing this solution is the primary culture of human salivary gland cells, because the cells are highly differentiated and difficult to expand in vitro. This situation leads to the lack of reports on the in vitro cell biology and physiology of human salivary gland cells. This study used a low-calcium culture system to selectively cultivate human parotid gland acinar (PGAC) cells from tissues with high purity in cell composition. This condition enables PGAC cells to continuously proliferate and retain the phenotypes of epithelial acinar cells to express secreting products (α-amylase) and function-related proteins (aquaporin-3, aquaporin-5, and ZO-1). Notably, when the cells reached confluence, three-dimensional (3D) cell aggregates were observed in crowded regions. These self-formed cell spheres were termed post-confluence structures (PCSs). Unexpectedly, despite being cultured in the same media, cells in PCSs exhibited higher expression levels and different expression patterns of function-related proteins compared to the two-dimensional (2D) cells. Translocation of aquoporin-3 from cytosolic to alongside the cell boundaries, and of ZO-1 molecules to the boundary of the PCSs were also observed. These observations suggest that when PGAC cells cultured on the 2D substrate would form PCSs without the help of 3D scaffolds and retain certain differentiation and polarity. This phenomenon implies that it is possible to introduce 2D substrates instead of 3D scaffolds into artificial salivary gland tissue engineering.  相似文献   

13.
Subcultured explants of Magnolia soulangeana Soul, were incubated in tissue culture containers fitted with different types of closures. Type of closure affected the CO2 concentration, with levels as high as 14% CO2 being detected. The ethylene concentration increased gradually with time, to as much as 2–3 ppm after 9 weeks. There was a large variation in the composition of the atmosphere within the containers of any one type. The way by which a container was closed influenced exchange of the inner gas phase with the surrounding atmosphere and was important in determining the development of the cultured tissues.  相似文献   

14.
Electroporation-mediated delivery of molecules is a procedure widely used for transfecting complementary DNA in bacteria, mammalian and plant cells. This technique has proven very efficient for the introduction of macromolecules into cells in suspension culture and even into cells in their native tissue environment, e.g. retina and embryonic tissues. However, in spite of several attempts to date, there are no well-established procedures to electroporate polarized epithelial cells adhering to a tissue culture substrate (glass, plastic or filter). We report here the development of a simple procedure that uses available commercial equipment and works efficiently and reproducibly for a variety of epithelial cell lines in culture.  相似文献   

15.
One cervical cancer cell line, C9, carrying human papillomavirus type 18 (HPV18) genes that is one of the major etiologic oncoviruses for cervical cancer was characterized. This cell line was further characterized for its capacity related to the epithelial cell proliferation, stratification and differentiation in reconstituted artificial epithelial tissue. Thein vitro construction of three dimensional artificial cervical epithelial tissue has been engineered using C9 epithelial cancer cells, human foreskin fibroblasts and a matrix made of type I collagen by organotypic culture of epithelial cells. The morphology of paraffin embedded artificial tissue was examined by histochemical staining. The artificial epithelial tissues were well developed having multilayer. However, the tissue morphology was similar to the cervical tissue having displasia induced by HPV infection. The characteristics of the artificial tissues were examined by determining the expression of specific marker proteins. In the C9 derived artificial tissues, the expression of EGF receptor, an epithelial proliferation marker proteins for stratum basale was observed up to the stratum spinosum. Another epithelial proliferation marker for stratum spinosum, cytokeratins 5/6/18, were observed well over the stratum spinosum. For the differentiation markers, the expression of involucrin and filaggrin were observed while the terminal differentiation marker, cytokeratins 10/13 were not detected at all. Therefore the reconstituted artificial epithelial tissues expressed the same types of differentiation marker proteins that are expressed in normal human cervical epithelial tissues but lacked the final differentiation capacity representing characteristics of C9 cell line as a cancer tissue derived cell line. Expression of HPV18 E6 oncoprotein was also observed in this artificial cervical epithelial tissue though the intensity of the staining was weak. Thus this artificial cervical epithelial tissue though the intensity of the staining was weak. Thus this artificial epithelial tissue could be used as a useful model system to examine the relationship between HPV-induced cervical oncogenesis and epithelial cell differentiation.  相似文献   

16.
The incidence of cancer rises exponentially with age in humans and many other mammalian species. Malignant tumors are caused by an accumulation of oncogenic mutations. In addition, malignant tumorigenesis requires a permissive tissue environment in which mutant cells can survive, proliferate, and express their neoplastic phenotype. We propose that the age-related increase in cancer results from a synergy between the accumulation of mutations and age-related, pro-oncogenic changes in the tissue milieu. Most age-related cancers derive from the epithelial cells of renewable tissues. An important element of epithelial tissues is the stroma, the sub-epithelial layer composed of extracellular matrix and several cell types. The stroma is maintained, remodeled and repaired by resident fibroblasts, supports and instructs the epithelium, and is essential for epithelial function. One change that occurs in tissues during aging is the accumulation of epithelial cells and fibroblasts that have undergone cellular senescence. Cellular senescence irreversibly arrests proliferation in response to damage or stimuli that put cells at risk for neoplastic transformation. Senescent cells secrete factors that can disrupt tissue architecture and/or stimulate nearby cells to proliferate. We therefore speculate that their presence may create a pro-oncogenic tissue environment that synergizes with oncogenic mutations to drive the rise in cancer incidence with age. Recent evidence lends support to this idea, and suggests that senescent stromal fibroblasts may be particularly adept at creating a tissue environment that can promote the development of age-related epithelial cancers.  相似文献   

17.
Intestinal tissue and cell cultures   总被引:7,自引:0,他引:7  
The culture of animal cells and tissues is a widely used technique in the field of cellular and molecular biology; one of the most interesting aspect being linked to the study of the mechanisms of cell differentiation. In the specific case of intestinal epithelial cells, various tissue culture technologies have proved to be important tools for the study of precise facets related to intestinal function, pathology and differentiation. Concerning this latter aspect, organ culture experiments have brought about interesting data on the hormonal or nutritional control of intestinal maturation. Nevertheless, the study of the precise mechanisms underlying epithelial proliferation and/or differentiation at the cellular level needs more adequate cell culture model systems. One of them has been described for two cell lines derived from human colonic adenocarcinomas, in which the cells can be induced to achieve enterocytic-like differentiation. Up to date, none of the continuous cell lines starting from normal undifferentiated cells have allowed generation of morphological or functional enterocytic polarity. In contrast, primary cell cultures which allow maintenance of a more physiological environment for the epithelial cells like contacts with their in vivo counterparts, mesenchymal cells or extracellular matrix molecules, have proved to be promising approaches.  相似文献   

18.
Tissue engineering: current state and perspectives   总被引:23,自引:0,他引:23  
Tissue engineering is an interdisciplinary field that involves cell biology, materials science, reactor engineering, and clinical research with the goal of creating new tissues and organs. Significant advances in tissue engineering have been made through improving singular aspects within the overall approach, e.g., materials design, reactor design, or cell source. Increasingly, however, advances are being made by combining several areas to create environments which promote the development of new tissues whose properties more closely match their native counterparts. This approach does not seek to reproduce all the complexities involved in development, but rather seeks to promote an environment which permits the native capacity of cells to integrate, differentiate, and develop new tissues. Progenitors and stem cells will play a critical role in understanding and developing new engineered tissues as part of this approach.  相似文献   

19.
Summary A method is described for the three-dimensional (3-D) in vitro culture of nontransformed gastrointestinal epithelial cells from the human duodenal mucosa. Biopsies obtained from human duodenum were finely minced. The tissue fragments were suspended in culture medium supplemented with 5% fetal calf serum and the appropriate antibiotics. The suspended mucosal fragments generated spheroid-like multicellular vesicles consisting of highly prismatic absorptive and goblet cells retaining most of the histological features of the tissue in vivo. We performed immunocytochemical studies to determine the origin of the vesicles using monoclonal antibodies against EP4. The histochemistry of the vesicles showed alkaline phosphatase activity. Ultrastructural studies revealed that these cells exhibit characteristics of normal duodenal cells in vivo: apical microvilli, glycocalyx, tight junctions and desmosomes, lateral membrane interdigitations, mucous droplets, and a well-developed Golgi apparatus. An overgrowth of the vesicles by fibroblasts was not seen during cultivation. In contrast with the two-dimensional cell cultures grown on artificial supports, the vesicle cells show organization similar to that of natural epithelia. The polarization and cytoarchitecture of normal gastrointestinal epithelial cells cultured as 3-D vesicles are comparable to those known for the native tissue. This study was undertaken to provide a morphological baseline for subsequent infection experiments.  相似文献   

20.
Adipose-derived adult stem cells for cartilage tissue engineering   总被引:9,自引:0,他引:9  
Guilak F  Awad HA  Fermor B  Leddy HA  Gimble JM 《Biorheology》2004,41(3-4):389-399
Tissue engineering is a promising therapeutic approach that uses combinations of implanted cells, biomaterial scaffolds, and biologically active molecules to repair or regenerate damaged or diseased tissues. Many diverse and increasingly complex approaches are being developed to repair articular cartilage, with the underlying premise that cells introduced exogenously play a necessary role in the success of engineered tissue replacements. A major consideration that remains in this field is the identification and characterization of appropriate sources of cells for tissue-engineered repair of cartilage. In particular, there has been significant emphasis on the use of undifferentiated progenitor cells, or "stem" cells that can be expanded in culture and differentiated into a variety of different cell types. Recent studies have identified the presence of an abundant source of stem cells in subcutaneous adipose tissue. These cells, termed adipose-derived adult stem (ADAS) cells, show characteristics of multipotent adult stem cells, similar to those of bone marrow derived mesenchymal stem cells (MSCs), and under appropriate culture conditions, synthesize cartilage-specific matrix proteins that are assembled in a cartilaginous extracellular matrix. The growth and chondrogenic differentiation of ADAS cells is strongly influenced by factors in the biochemical as well as biophysical environment of the cells. Furthermore, there is strong evidence that the interaction between the cells, the extracellular biomaterial substrate, and growth factors regulate ADAS cell differentiation and tissue growth. Overall, ADAS cells show significant promise for the development of functional tissue replacements for various tissues of the musculoskeletal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号