首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to analyze the influence of a custom foot orthotic (CFO) intervention on lower extremity intralimb coupling during a 30-min run in a group of injured runners and to compare the results to a control group of healthy runners. Three-dimensional kinematic data were collected during a 30-min run on healthy female runners (Shoe-only) and a group of female runners who had a recent history of overuse injury (Shoe-only and Shoe with custom foot orthoses). Results from the study revealed that the coordination variability and pattern for the some couplings were influenced by history of injury, foot orthotic intervention and the duration of the run. These data suggest that custom foot orthoses worn by injured runners may play a role in the maintenance of coordination variability of the tibia (transverse plane) and calcaneus (frontal plane) coupling during the Early Stance phase. In addition, it appears that the coupling angle between the knee (transverse plane) and rearfoot (frontal plane) joints becomes more symmetrical in the late stance phase as a run progresses.  相似文献   

2.
Previous research has proposed that a lack of variability in lower extremity coupling during running is associated with pathology. The purpose of the study was to evaluate lower extremity coupling variability in runners with and without a history of iliotibial band syndrome (ITBS) during an exhaustive run. Sixteen runners ran to voluntary exhaustion on a motorized treadmill while a motion capture system recorded reflective marker locations. Eight runners had a history of ITBS. At the start and end of the run, continuous relative phase (CRP) angles and CRP variability between strides were calculated for key lower extremity kinematic couplings. The ITBS runners demonstrated less CRP variability than controls in several couplings between segments that have been associated with knee pain and ITBS symptoms, including tibia rotation-rearfoot motion and rearfoot motion-thigh ad/abduction, but more variability in knee flexion/extension-foot ad/abduction. The ITBS runners also demonstrated low variability at heel strike in coupling between rearfoot motion-tibia rotation. The results suggest that runners prone to ITBS use abnormal segmental coordination patterns, particular in couplings involving thigh ad/abduction and tibia internal/external rotation. Implications for variability in injury etiology are suggested.  相似文献   

3.
As joint coupling variability has been associated with running-related lower extremity injury, the purpose of this study was to identify how variability within the foot may be different between forefoot (FFS) and rearfoot strike (RFS) runners. Identifying typical variability in uninjured runners may contribute to understanding of ideal coordination associated with running foot strike patterns.Fifteen FFS and 15 RFS runners performed a maximal-effort 5 km treadmill run. A 7-segment foot model identified 6 functional articulations (rearfoot, medial and lateral midfoot and forefoot, and 1st metatarsophalangeal) for analysis. Beginning and end of the run motion capture data were analyzed. Vector coding was used to calculate 6 joint couples. Standard deviations of the coupling angles were used to identify variability within subphases of stance (loading, mid-stance, terminal, and pre-swing). Mixed between-within subjects ANOVAs compared differences between the foot strikes, pre and post run.Increased variability was identified within medial foot coupling for FFS and within lateral foot coupling for RFS during loading and mid-stance. The exhaustive run increased variability during mid-stance for both groups.Interpretation. Joint coupling variability profiles for FFS and RFS runners suggest different foot regions have varying coordination needs which should be considered when comparing the strike patterns.  相似文献   

4.
Changes in running strike pattern affect ankle and knee mechanics, but little is known about the influence of strike pattern on the joints distal to the ankle. The purpose of this study was to explore the effects of forefoot strike (FFS) and rearfoot strike (RFS) running patterns on foot kinematics and kinetics, from the perspectives of the midtarsal locking theory and the windlass mechanism. Per the midtarsal locking theory, we hypothesized that the ankle would be more inverted in early stance when using a FFS, resulting in decreased midtarsal joint excursions and increased dynamic stiffness. Associated with a more engaged windlass mechanism, we hypothesized that a FFS would elicit increased metatarsophalangeal joint excursions and negative work in late stance. Eighteen healthy female runners ran overground with both FFS and RFS patterns. Instrumented motion capture and a validated multi-segment foot model were used to analyze midtarsal and metatarsophalangeal joint kinematics and kinetics. During early stance in FFS the ankle was more inverted, with concurrently decreased midtarsal eversion (p < 0.001) and abduction excursions (p = 0.003) but increased dorsiflexion excursion (p = 0.005). Dynamic midtarsal stiffness did not differ (p = 0.761). During late stance in FFS, metatarsophalangeal extension was increased (p = 0.009), with concurrently increased negative work (p < 0.001). In addition, there was simultaneously increased midtarsal positive work (p < 0.001), suggesting enhanced power transfer in FFS. Clear evidence for the presence of midtarsal locking was not observed in either strike pattern during running. However, the windlass mechanism appeared to be engaged to a greater extent during FFS.  相似文献   

5.
User satisfaction is afforded considerable importance as an outcome measurement in evidence-based healthcare and the client-centered approach. Several studies have investigated user satisfaction with orthoses. Few studies have investigated user satisfaction with orthoses in Taiwan. Therefore, the purpose of this study was to investigate the user satisfaction with orthotic devices and service using the Taiwanese version of Quebec User Evaluation of Satisfaction with Assistive Technology. We conducted a cross-sectional study of 280 subjects who had used orthoses and received services. The results showed that the mean satisfaction score was 3.74 for the devices and 3.56 for service. Concerning the participants, 69.1% and 59.6% were quite satisfied or very satisfied with their devices and service, respectively. The satisfaction score of orthotic service was lower than that of the devices. Regarding demographic characteristics, participants living in different areas differed only in service score (p = 0.002). The participants living in eastern area and offshore islands were the least satisfied with the orthotic service. For clinical characteristics, there was a significant difference in satisfaction scores among severity of disability (all p = 0.015), types of orthoses (all p = 0.001), and duration of usage (all p = 0.001). The participants with mild disability, wearing the pressure garment and using the orthosis for less than one year, were the most satisfied with their orthotic devices and service. There is a need for improved orthotic devices and services, especially with respect to the comfort of the devices and the provision of subsidy funding.  相似文献   

6.
Researchers conduct gait analyses utilizing both overground and treadmill modes of running. Previous studies comparing these modes analyzed discrete variables. Recently, techniques involving quantitative pattern analysis have assessed kinematic curve similarity in gait. Therefore, the purpose of this study was to compare hip, knee and rearfoot 3-D kinematics between overground and treadmill running using quantitative kinematic curve analysis. Twenty runners ran at 3.35 m/s ± 5% during treadmill and overground conditions while right lower extremity kinematics were recorded. Kinematics of the hip, knee and rearfoot at footstrike and peak were compared using intraclass correlation coefficients. Kinematic curves during stance phase were compared using the trend symmetry method within each subject. The overall average trend symmetry was high, 0.94 (1.0 is perfect symmetry) between running modes. The transverse plane and knee frontal plane exhibited lower similarity (0.86-0.90). Other than a 4.5 degree reduction in rearfoot dorsiflexion at footstrike during treadmill running, all differences were ≤1.5 degrees. 17/18 discrete variables exhibited modest correlations (>0.6) and 8/18 exhibited strong correlations (>0.8). In conclusion, overground and treadmill running kinematic curves were generally similar when averaged across subjects. Although some subjects exhibited differences in transverse plane curves, overall, treadmill running was representative of overground running for most subjects.  相似文献   

7.
Success has been demonstrated in rehabilitation from certain injuries while using positive-pressure treadmills. However, certain injuries progress even with the lighter vertical loads. Our purpose was to investigate changes in muscle activation for various lower limb muscles while running on a positive-pressure treadmill at different amounts of body weight support. We hypothesized that some muscles would show decreases in activation with greater body weight support while others would not.Eleven collegiate distance runners were recruited. EMG amplitude was measured over 12 lower limb muscles. After a short warm-up, subjects ran at 100%, 80%, 60%, and 40% of their body weight for two minutes each. EMG amplitudes were recorded during the final 30 s of each stage.Most muscles demonstrated lower amplitudes as body weight was supported. For the hip adductors during the swing phase and the hamstrings during stance, no significant trend appeared.Positive-pressure treadmills may be useful interventions for certain injuries. However, some injuries, such as hip adductor and hamstring tendonitis or strains may require alternative cross-training to relieve stress on those areas. Runners should be careful in determining how much body weight should be supported for various injuries to return to normal activity in the shortest possible time.  相似文献   

8.
The purpose of this study was to determine the cause and effect relationship between tibial internal rotation and pronation of the foot during walking and heel-toe running. This would allow predictions of orthotic effectiveness in reducing knee pain related to excessive internal tibial rotation. Kinematic and force plate data were collected from twenty subjects performing ten running and ten walking trials across a force plate. Using a least-squares algorithm, attitude matrices for each segment in each frame were obtained and the angular velocity vector of the tibia was calculated. The intersegmental moment at the ankle was calculated from ground reaction force and kinematic data, and the power flow from foot to tibia associated with axial tibial rotation was calculated. In walking, all subjects exhibited a clear power flow from tibia to foot during most of the stance phase, indicating that the foot was following the body. This suggests that the use of foot orthoses to reduce knee pain associated with tibial rotation during walking will not be successful. During running, power flow was also mainly proximal to distal, but there were brief periods of opposite power flow. There was more variability between subjects during running, with five subjects having large distal to proximal power flow peaks. These observations may explain and support previous work that has found variable clinical effects of orthoses between patients.  相似文献   

9.
Research concerning forefoot strike pattern (FFS) versus rearfoot strike pattern (RFS) running has focused on the ground reaction force even though internal joint contact forces are a more direct measure of the loads responsible for injury. The main purpose of this study was to determine the internal loading of the joints for each strike pattern. A secondary purpose was to determine if converted FFS and RFS runners can adequately represent habitual runners with regards to the internal joint loading. Using inverse dynamics to calculate the net joint moments and reaction forces and optimization techniques to estimate muscle forces, we determined the axial compressive loading at the ankle, knee, and hip. Subjects consisted of 15 habitual FFS and 15 habitual RFS competitive runners. Each subject ran at a preferred running velocity with their habitual strike pattern and then converted to the opposite strike pattern. Plantar flexor muscle forces and net ankle joint moments were greater in the FFS running compared to the RFS running during the first half of the stance phase. The average contact forces during this period increased by 41.7% at the ankle and 14.4% at the knee joint during FFS running. Peak ankle joint contact force was 1.5 body weights greater during FFS running (p<0.05). There was no evidence to support a difference between habitual and converted running for joint contact forces. The increased loading at the ankle joint for FFS is an area of concern for individuals considering altering their foot strike pattern.  相似文献   

10.
Discrete normal plantar stress variations with running speed   总被引:1,自引:0,他引:1  
  相似文献   

11.
Excessive hip motion has been linked to lower extremity pathology. Foot orthoses are commonly used to control motion within lower extremity joints when lower extremity pathology and dysfunction are present. Few studies have investigated the effect of foot orthoses on hip angular kinematics during functional activities. Eighteen females and 18 males performed a vertical jump with and without a prefabricated foot orthoses to determine the biomechanical effect of foot orthoses on hip kinematics when landing from a jump. Data collection included three-dimensional motion analysis of the lower extremity. Paired t tests were performed to determine if differences existed within genders with and without foot orthoses. At the hip joint, there was significantly less hip adduction motion in the foot orthoses condition as compared with the no foot orthoses condition in females (p < .05). There were no differences between foot orthoses conditions in males. Females appear to have a different proximal response to foot orthoses when landing from a forward jump than males.  相似文献   

12.
Biomechanical analysis of the stance phase during barefoot and shod running   总被引:4,自引:0,他引:4  
This study investigated spatio-temporal variables, ground reaction forces and sagittal and frontal plane kinematics during the stance phase of nine trained subjects running barefoot and shod at three different velocities (3.5, 4.5, 5.5 m s(-1)). Differences between conditions were detected with the general linear method (factorial model). Barefoot running is characterized by a significantly larger external loading rate than the shod condition. The flatter foot placement at touchdown is prepared in free flight, implying an actively induced adaptation strategy. In the barefoot condition, plantar pressure measurements reveal a flatter foot placement to correlate with lower peak heel pressures. Therefore, it is assumed that runners adopt this different touchdown geometry in barefoot running in an attempt to limit the local pressure underneath the heel. A significantly higher leg stiffness during the stance phase was found for the barefoot condition. The sagittal kinematic adaptations between conditions were found in the same way for all subjects and at the three running velocities. However, large individual variations were observed between the runners for the rearfoot kinematics.  相似文献   

13.
When stepping down from a curb, individuals typically make initial ground contact with either their rearfoot or forefoot. The purpose of this study was to compare vertical ground reaction forces, lower extremity mechanics, and intra-limb work distribution when individuals adopt a rearfoot technique vs. a forefoot technique, during simulated curb descent. Sixteen subjects stepped down from a platform with both a rearfoot and a forefoot technique. Vertical ground reaction forces and sagittal plane joint kinematics and kinetics were examined for the lead limb during the step-down task. Paired t-tests were used for comparison. Subjects demonstrated greater ankle joint power and negative work, and less hip joint power and negative work, with the forefoot technique vs. the rearfoot technique. Total lower extremity negative work was greater for the forefoot technique vs. the rearfoot technique. The percent contribution to the total negative work was greater for the ankle joint, and less for the hip and knee joints, with the forefoot technique vs. the rearfoot technique. The results of this study may provide insight into how curb descent technique can be modified to alter lower extremity loading.  相似文献   

14.
Tibial stress fractures are a common and debilitating injury that occur in distance runners. Runners may be able to decrease tibial stress fracture risk by adopting a running pattern that reduces biomechanical parameters associated with a history of tibial stress fracture. The purpose of this study was to test the hypothesis that converting to a forefoot striking pattern or increasing cadence without focusing on changing foot strike type would reduce injury risk parameters in recreational runners. Running kinematics, ground reaction forces and tibial accelerations were recorded from seventeen healthy, habitual rearfoot striking runners while running in their natural running pattern and after two acute retraining conditions: (1) converting to forefoot striking without focusing on cadence and (2) increasing cadence without focusing on foot strike. We found that converting to forefoot striking decreased two risk factors for tibial stress fracture: average and peak loading rates. Increasing cadence decreased one risk factor: peak hip adduction angle. Our results demonstrate that acute adaptation to forefoot striking reduces different injury risk parameters than acute adaptation to increased cadence and suggest that both modifications may reduce the risk of tibial stress fractures.  相似文献   

15.

Aim/Hypothesis

The etiology of plantar fasciitis (PF) has been related to several risk factors, but the magnitude of the plantar load is the most commonly described factor. Although PF is the third most-common injury in runners, only two studies have investigated this factor in runners, and their results are still inconclusive regarding the injury stage.

Objective

Analyze and compare the plantar loads and vertical loading rate during running of runners in the acute stage of PF to those in the chronic stage of the injury in relation to healthy runners.

Methods

Forty-five runners with unilateral PF (30 acute and 15 chronic) and 30 healthy control runners were evaluated while running at 12 km/h for 40 meters wearing standardized running shoes and Pedar-X insoles. The contact area and time, maximum force, and force-time integral over the rearfoot, midfoot, and forefoot were recorded and the loading rate (20–80% of the first vertical peak) was calculated. Groups were compared by ANOVAs (p<0.05).

Results

Maximum force and force-time integral over the rearfoot and the loading rate was higher in runners with PF (acute and chronic) compared with controls (p<0.01). Runners with PF in the acute stage showed lower loading rate and maximum force over the rearfoot compared to runners in the chronic stage (p<0.01).

Conclusion

Runners with PF showed different dynamic patterns of plantar loads during running over the rearfoot area depending on the injury stage (acute or chronic). In the acute stage of PF, runners presented lower loading rate and forces over the rearfoot, possibly due to dynamic mechanisms related to pain protection of the calcaneal area.  相似文献   

16.
In walking, humans prefer a moderate step width that minimizes energetic cost and vary step width from step-to-step to maintain lateral balance. Arm swing also reduces energetic cost and improves lateral balance. In running, humans prefer a narrow step width that may present a challenge for maintaining lateral balance. However, arm swing in running may improve lateral balance and help reduce energetic cost. To understand the roles of step width and arm swing, we hypothesized that net metabolic power would be greater at step widths greater or less than preferred and when running without arm swing. We further hypothesized that step width variability (indicator of lateral balance) would be greater at step widths greater or less than preferred and when running without arm swing. Ten subjects ran (3m/s) at four target step widths (0%, 15%, 20%, and 25% leg length (LL)) with arm swing, at their preferred step width with arm swing, and at their preferred step width without arm swing. We measured metabolic power, step width, and step width variability. When subjects ran at target step widths less (0% LL) or greater (15%, 20%, and 25% LL) than preferred, both net metabolic power demand (by 3%, 9%, 12%, and 15%) and step width variability (by 7%, 33%, 46%, and 69%) increased. When running without arm swing, both net metabolic power demand (by 8%) and step width variability (by 9%) increased compared to running with arm swing. It appears that humans prefer to run with a narrow step width and swing their arms so as to minimize energetic cost and improve lateral balance.  相似文献   

17.
The purpose of the present study was to determine the effects of orthoses designed to support the forefoot and rearfoot on the kinematics and kinetics of the lower extremity joints during walking. Fifteen participants volunteered for this study. Kinematic and kinetic variables during overground walking were compared with the participants wearing sandals without orthoses or sandals with orthoses. Orthoses increased knee internal abduction moment during late stance and knee abduction angular impulse, and reduced the medial ground reaction force during late stance, adduction free moment, forefoot eversion angle, ankle inversion moment and angular impulse, hip adduction angle, hip abduction moment, and hip external rotation moment and angular impulse (p<0.05). Orthoses decreased the torsional forces on the lower extremity and reduced the loading at the hip during walking. These findings combined with our previous studies and those of others suggest that forefoot abnormalities are critically important in influencing lower extremity kinematics and kinetics, and may underlie some non-traumatic lower extremity injuries.  相似文献   

18.
Running research has focused on reducing injuries by changing running technique. One proposed method is to change from rearfoot striking (RFS) to forefoot striking (FFS) because FFS is thought to be a more natural running pattern that may reduce loading and injury risk. Muscle activity affects loading and influences running patterns; however, the differences in muscle activity between natural FFS runners and natural RFS runners are unknown. The purpose of this study was to measure muscle activity in natural FFS runners and natural RFS runners. We tested the hypotheses that tibialis anterior activity would be significantly lower while activity of the plantarflexors would be significantly greater in FFS runners, compared to RFS runners, during late swing phase and early stance phase. Gait kinematics, ground reaction forces and electromyographic patterns of ten muscles were collected from twelve natural RFS runners and ten natural FFS runners. The root mean square (RMS) of each muscle?s activity was calculated during terminal swing phase and early stance phase. We found significantly lower RMS activity in the tibialis anterior in FFS runners during terminal swing phase, compared to RFS runners. In contrast, the medial and lateral gastrocnemius showed significantly greater RMS activity in terminal swing phase in FFS runners. No significant differences were found during early stance phase for the tibialis anterior or the plantarflexors. Recognizing the differences in muscle activity between FFS and RFS runners is an important step toward understanding how foot strike patterns may contribute to different types of injury.  相似文献   

19.
The purpose of this study was to examine the running performances and associated thermoregulatory responses of African and Caucasian runners in cool and warm conditions. On two separate occasions, 12 (n = 6 African, n = 6 Caucasian) well-trained men ran on a motorized treadmill at 70% of peak treadmill running velocity for 30 min followed by an 8-km self-paced performance run (PR) in cool (15 degrees C) or warm (35 degrees C) humid (60% relative humidity) conditions. Time to complete the PR in the cool condition was not different between groups ( approximately 27 min) but was significantly longer in warm conditions for Caucasian (33.0 +/- 1.6 min) vs. African (29.7 +/- 2.3 min, P < 0.01) runners. Rectal temperatures were not different between groups but were higher during warm compared with cool conditions. During the 8-km PR, sweat rates for Africans (25.3 +/- 2.3 ml/min) were lower compared with Caucasians (32.2 +/- 4.1 ml/min; P < 0.01). Relative rates of heat production were less for Africans than Caucasians in the heat. The finding that African runners ran faster only in the heat despite similar thermoregulatory responses as Caucasian runners suggests that the larger Caucasians reduce their running speed to ensure an optimal rate of heat storage without developing dangerous hyperthermia. According to this model, the superior running performance in the heat of these African runners can be partly attributed to their smaller size and hence their capacity to run faster in the heat while storing heat at the same rate as heavier Caucasian runners.  相似文献   

20.
Rollover crashes are dynamic and complex events in which head impacts with the roof can cause catastrophic neck injuries. Ex vivo and computational models are valuable in understanding, and ultimately preventing, these injuries. Although neck posture and muscle activity influence the resulting injury, there is currently no in vivo data describing these parameters immediately prior to a head-first impact. The specific objectives of this study were to determine the in vivo neck vertebral alignment and muscle activation levels when upside down, a condition that occurs during a rollover. Eleven human subjects (6F, 5M) were tested while seated upright and inverted in a custom-built apparatus. Vertebral alignment was measured using fluoroscopy and muscle activity was recorded using surface and indwelling electrodes in eight superficial and deep neck muscles. In vivo vertebral alignment and muscle activation levels differed between the upright and inverted conditions. When inverted and relaxed, the neck was more lordotic, C1 was aligned posterior to C7, the Frankfort plane was extended, and the activity of six muscles increased compared to upright and relaxed. When inverted subjects were asked to look forward to eliminate head extension, flexor muscle activity increased, C7 was more flexed, and C1 was aligned anterior to C7 versus upright and relaxed. Combined with the large inter-subject variability observed, these findings indicate that cadaveric or computational models designed to study injuries and prevention devices while inverted need to consider a variety of postures and muscle conditions to be relevant to the in vivo situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号