首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of indole-3-acetic acid (IAA) catalyzed by horseradish peroxidase (HRP) in the absence of added H2O2 was studied at pH 7.4 using spectral and kinetic approaches. Upon addition of a hundred-fold excess of IAA to HRP the native enzyme was rapidly transformed to compound II (HRP-II). HRP-II was the predominant catalytic enzyme species during the steady state. No compound III was observed. HRP-II was slowly transformed to the stable inactive verdohemo-protein, P-670. A precursor of P-670, so-called P-940 was not detected. After the cessation of IAA oxidation there was neither oxygen consumption nor P-670 formation; the remaining HRP-II was spontaneously reduced to native enzyme. Single exponential kinetics were observed in the steady state for IAA oxidation, oxygen consumption and P-670 formation yielding identical first order rate constants of about 6 . 10(4) s(-1). A comparison of the rate of IAA oxidation by HRP-II in the steady state and in the transient state indicated that more than 1 3 of the IAA was oxidized non-enzymatically during the steady state, confirming that a free radical chain reaction is involved in the peroxidase-catalyzed oxidation of IAA. IAA oxidation stopped before IAA was completely consumed, which cannot be ascribed to enzyme inactivation because 30-50% of the enzyme was still active after the end of the reaction. Instead, incomplete IAA oxidation is explained in terms of termination of the free radical chain reaction. Bimolecular rate constants of IAA oxidation by HRP-I and HRP-II determined under transient state conditions were (2.2 +/- 0.1) x 10(3) M(-1) s(-1) and (2.3 +/- 0.2) x 10(2) M(-1) s(-1).  相似文献   

2.
Some photochemical reactions of horseradish peroxidase compounds I and II (HRP-I and HRP-II, respectively) have been studied by electronic absorption spectroscopy over the temperature range 297 degrees K-10 degrees K. In glassy matrices below 80 degrees K HRP-I is rapidly converted to hrp-ii when irradiated with low power white light. The native enzyme and HRP-II are not photochemically active at these temperatures with low power irradiation. At room temperature the spontaneous decay of both HRP-I and HRP-II is catalyzed by irradiation with white light. It is shown that the photolysis is dependent upon light in the region 450-320 nm. It is concluded that the HRP-I and HRP-II conformations are closely related with only a low transition energy in the presence of electrons generated by the light. The conversion of HRP-II to HRP is accompanied by large conformational changes and so is inhibited at low temperatures.  相似文献   

3.
The reaction kinetics of the peroxidase activity of prostaglandin H synthase have been examined with 15-hydroperoxyeicosatetraenoic acid and hydrogen peroxide as substrates and tetramethylphenylenediamine as cosubstrate. The apparent Km and Vmax values for both hydroperoxides were found to increase linearly with the cosubstrate concentration. The overall reaction kinetics could be interpreted in terms of an initial reaction of the synthase with hydroperoxide to form an intermediate equivalent to horseradish peroxidase Compound I, followed by reduction of this intermediate by cosubstrate to regenerate the resting enzyme. The rate constants estimated for the generation of synthase Compound I were 7.1 X 10(7) M-1 s-1 with the lipid hydroperoxide and 9.1 X 10(4) M-1 s-1 with hydrogen peroxide. The rate constants estimated for the rate-determining step in the regeneration of resting enzyme by cosubstrate were 9.2 X 10(6) M-1 s-1 in the case of the reaction with lipid hydroperoxide and 3.5 X 10(6) M-1 s-1 in the case of reaction with hydrogen peroxide. The intrinsic affinities of the synthase peroxidase for substrate (Ks) were estimated to be on the order of 10(-8) M for lipid hydroperoxide and 10(-5) M for hydrogen peroxide. These affinities are quite similar to the reported affinities of the synthase for these hydroperoxides as activators of the cyclooxygenase. The peroxidase activity was found to be progressively inactivated during the peroxidase reaction. The rate of inactivation of the peroxidase was increased by increases in hydroperoxide level, and decreased by increases in peroxidase cosubstrate. The inactivation of the peroxidase appeared to occur by a hydroperoxide-dependent process, originating from synthase Compound I or Compound II.  相似文献   

4.
NADH chemistry ancillary to the oscillatory peroxidase-oxidase (PO) reaction has been reexamined. Previously, (NAD)2 has been thought of as a terminal, inert product of the PO reaction. We now show that (NAD)2 is a central reactant in this system. Although we found traces of the dimer after several hours of the PO reaction, no accumulation of the dimer occurred, regardless of the reaction time or the number of oscillations. (NAD)2 can convert horseradish peroxidase (HRP) compound I (CpI) to compound II (CpII) with apparent rate constant (2.7 +/- 0.2) x 105 M-1.s-1 and CpII to HRP at 1 x 105 M-1.s-1. Moreover, a reduction of HRP compound III (CpIII) to CpI by (NAD)2 occurs with a rate constant faster than 5 x 106 M-1.s-1. The (NAD)2 reduction of CpIII provides an alternative to the reduction by NAD radical suggested by Yokota and Yamazaki. HRP catalyzes oxidation of alpha-NADH, not only the beta anomer as previously assumed. Rate constants of alpha- and beta-NADH reactions with CpI are (7.4 +/- 0.4) x 105 M-1.s-1, and (1.7 +/- 0.2) x 105 M-1.s-1, and with CpII are estimated as 5 x 104 M-1.s-1, and 4 x 104 M-1.s-1. Apparent rate constants of reduction of methylene blue (MB) to leuco-methylene blue (MBH) are 3.8 x 104 M-1.s-1 for NADH and 6.4 x 104 M-1.s-1 for NAD dimer, (NAD)2, while reoxidation of MBH proceeds at (2.1 +/- 0.2) x 103 M-1.s-1 All the rates were measured in 0.1 M acetate buffer, pH 5.1.  相似文献   

5.
Elementary reactions have been studied quantitatively in the complex overall process catalyzed by horseradish peroxidase whereby isobutyraldehyde and molecular oxygen react to form triplet state acetone and formic acid. The rate constant for the reaction of the enol form of isobutyraldehyde with compound I of peroxidase is (8 +/- 1) X 10(6) M-1 s-1 and with compound II (1.3 +/- 0.3) X 10(6) M-1 s-1. Neither the enolate anion nor the keto form is reactive. The reactivity of enols with peroxidase parallels that of unionized phenols and a common mechanism is proposed. The overall catalyzed reaction of isobutyraldehyde and oxygen consists of an initial burst followed by a steady state phase. The burst is caused by the following sequence: 1) an initial high yield of compound I is formed from reaction of native enzyme with the autoxidation product of isobutyraldehyde, a peracid and 2) compound I rapidly depletes the equilibrium pool of enol which is present. After this burst a steady state phase is observed in which the rate-limiting step is the conversion of the keto to the enol form of the aldehyde catalyzed by phosphate buffer. The rate constant for the keto form reacting with phosphate is (8.7 +/- 0.6) X 10(-5) M-1 s-1. All constants were measured in dilute aqueous ethanol at 35 degrees C, pH 7.4, and ionic strength 0.67 M. Both the initial burst of light and the steady state emission from triplet acetone can be observed with the naked eye. Since the magnitude of the burst is a measure of the equilibrium amount of enol, the keto-enol equilibrium constant is readily calculated and hence also the rate constant for conversion of enol to keto. The keto-enol equilibrium constant is unaffected by phosphate which therefore acts as a true catalyst.  相似文献   

6.
Protease activity present in aerobically grown cells of Pseudomonas perfectomarina, protease apparently copurified with cytochrome c-552, and trypsin achieved a limited proteolysis of the diheme cytochrome c-552. That partial lysis conferred cytochrome c peroxidase activity upon cytochrome c-552. The removal of a 4000-Da peptide explains the structural changes in the cytochrome c-552 molecule that resulted in the appearance of both cytochrome c peroxidase activity (with optimum activity at pH 8.6) and a high-spin heme iron. The oxidized form of the modified cytochrome c-552 bound cyanide to the high-spin ferric heme with a rate constant of (2.1 +/- 0.1) X 10(3) M-1 s-1. The dissociation constant was 11.2 microM. Whereas the intact cytochrome c-552 molecule can be half-reduced by ascorbate, the cytochrome c peroxidase was not reducible by ascorbate, NADH, ferrocyanide, or reduced azurin. Dithionite reduced the intact protein completely but only half-reduced the modified form. The apparent second-order rate constant for dithionite reduction was (7.1 +/- 0.1) X 10(2) M-1 s-1 for the intact protein and (2.2 +/- 0.1) X 10(3) M-1 s-1 for the modified form. In contrast with other diheme cytochrome c peroxidases, reduction of the low-spin heme was not necessary to permit ligand binding by the high-spin heme iron.  相似文献   

7.
Previous studies have shown that chlorite serves as a halogenation substrate for horseradish peroxidase. In its substrate role, chlorite serves both as a halogen donor and as a source of oxidizing equivalents in the chlorination reaction. We now show that a new spectral intermediate, which we have termed Compound X, can be detected as the initial product of the reaction of chlorite with horseradish peroxidase. The reaction of chlorite with horseradish peroxidase to form Compound X is a relatively fast reaction especially at acidic pH values. The second order rate constant (Kf) for the formation of Compound X at pH 4.5 (optimum pH) is 0.9 X 10(6) M-1 S-1. Compound X, in the absence of a halogen acceptor, decomposes to Compound I and chloride ion. The first order rate constant (Kd) for the decay of Compound X to Compound I is 0.2 s-1 at pH 4.5. The pH optimum for enzymatic chlorination with chlorite compares favorably with the pH profile for the lifetime of Compound X (Kf/Kd). These observations indicate that Compound X is the halogenating intermediate in the chlorite reaction and that the rate of enzymatic chlorination is directly related to the stability of Compound X. We propose an -OCl ligand on a ferric heme as the most likely structure for Compound X.  相似文献   

8.
The reactions of the NAD radical (NAD.) with ferric horseradish peroxidase and with compounds I and II were investigated by pulse radiolysis. NAD. reacted with the ferric enzyme and with compound I to form the ferrous enzyme and compound II with second-order rate constants of 8 X 10(8) and 1.5 X 10(8) M-1 s-1, respectively, at pH 7.0. In contrast, no reaction of NAD. with native compound II at pH 10.0 nor with diacetyldeutero-compound II at pH 5.0-8.0 could be detected. Other reducing species generated by pulse radiolysis, such as hydrated electron (eaq-), superoxide anion (O2-), and benzoate anion radical, could not reduce compound II of the enzyme to the ferric state, although the methylviologen radical reduced it. The results are discussed in relation to the mechanism of catalysis of the one-electron oxidation of substrates by peroxidase.  相似文献   

9.
The monomeric heme octapeptide from cytochrome c, microperoxidase-8, (MP-8), coordinates CN- with log K = 7.55 +/- 0.04 at 25 degrees C in 20% (v/v) aqueous methanol. Log K values are independent of pH between 6 and 9. A spectrophotometric titration of cyanoMP-8 between pH 5.5 and 13.8 gave a single pKa greater than or equal to 13.5 ascribed to ionization of the proximal His ligand. A study of the kinetics of the reaction of MP-8 with cyanide between pH 5.5 and 12, at 25 degrees C and mu = 0.1, indicates that formation of cyanoMP-8 occurs via three routes: attack of CN- on Fe(III) (k1 = 6.0 +/- 0.3 X 10(5) M-1 sec-1); attack of HCN on Fe(III) (k2 = 4.8 +/- 2.0 X 10(3) M-1 sec-1), followed by deprotonation and isomerization to form the C-bound species; and displacement of OH- by CN- when the proximal His ligand is ionized (k5 = 1.8 +/- 0.1 X 10(5) M-1 sec-1). These results are compared with available data for the reaction of cyanide with aquocobalamin and with various hemoproteins.  相似文献   

10.
S Loo  J E Erman 《Biochemistry》1975,14(15):3467-3470
The rate of the reaction between cytochrome c peroxidase and hydrogen peroxide was investigated using the stopped-flow technique. The apparent bimolecular rate constant was determined between pH 3.3 and pH 11 as a function of ionic strength. The pH dependence of the apparent bimolecular rate constant can be explained by assuming that two ionizable groups on the enzyme strongly influence the rate of the reaction. At 0.1 M ionic strength, a group with a pKa of 5.5 must be unprotonated and a group with a pKa of 9.8 must be protonated for the enzyme to react rapidly with hydrogen peroxide. The apparent acid dissociation constants depend upon the ionic strength. The true bimolecular rate constant has a value of (4.5 +/- 0.3) X 10(7) M-1 sec-1 and is independent of ionic strength.  相似文献   

11.
A modified cytochrome c peroxidase was prepared by reconstituting apocytochrome c peroxidase with protoheme in which both heme propionic acid groups were converted to the methyl ester derivatives. The modified enzyme reacted with hydrogen peroxide with a rate constant of (1.3 +/- 0.2) x 10(7) M-1 s-1, which is 28% that of the native enzyme. The reaction between the modified enzyme and hydrogen peroxide was pH-dependent with an apparent pK of 5.1 +/- 0.1 compared to a value of 5.4 +/- 0.1 for the native enzyme. These observations support the conclusion that the apparent ionization near pH 5.4, which influences the hydrogen peroxide-cytochrome c peroxidase reaction is not due to the ionization of the propionate side chains of the heme group in the native enzyme. A second apparent ionization, with pK of 6.1 +/- 0.1, influences the spectrum of the modified enzyme which changes from a high spin type at low pH to a low spin type at high pH.  相似文献   

12.
The reaction between native myeloperoxidase and hydrogen peroxide, yielding Compound II, was investigated using the stopped-flow technique. The pH dependence of the apparent second-order rate constant showed the existence of a protonatable group on the enzyme with a pKa of 4.9. This group is ascribed to the distal histidine imidazole, which must be deprotonated to enable the reaction of Compound I with hydrogen peroxidase to take place. The rate constant for the formation of Compound II by hydrogen peroxide was 3.5.10(4) M-1.s-1. During the reaction of myeloperoxidase with H2O2, rapid reduction of added cytochrome c was observed. This reduction was inhibitable by superoxide dismutase, and this demonstrates that superoxide anion radicals are generated. When potassium ferrocyanide was used as an electron donor to generate Compound II from Compound I, the pH dependence of the apparent second-order rate constant indicated involvement of a group with a pKa of 4.5. However, with ferrocyanide as an electron donor, protonation of the group was necessary to enable the reaction to take place. The rate constant for the generation of Compound II by ferrocyanide was 1.6.10(7) M-1.s-1. We also investigated the reaction of Compound II with hydrogen peroxide, yielding Compound III. Formation of Compound III (k = 50 M-1.s-1) proceeded via two different pathways, one of which was inhibitable by tetranitromethane. We further investigated the stability of Compound II and Compound III as a function of pH, ionic strength and enzyme concentration. The half-life values of both Compound II and Compound III were independent of the enzyme concentration and ionic strength. The half-life value of Compound III was pH-dependent, showing a decreasing stability with increasing pH, whereas the stability of Compound II was independent of pH over the range 3-11.  相似文献   

13.
Rate constants for the reaction between horseradish peroxidase compound I and p-cresol have been determined at several values of pH between 2.98 and 10.81. These rate constants were used to construct a log (rate) versus pH profile from which it is readily seen that the most reactive form of the enzyme is its most basic form within this pH range so that base catalysis is occurring. At the maximum rate a second order rate constant of (5.1 +/- 0.3) x 10(-7) M-1 s-1 at 25 degrees is obtained. The activation energy of the reaction at the maximum rate was determined from an Arrhenius plot to be 5.0 +/- 0.5 kcal/mol. Evidence for an exception to the generally accepted enzymatic cycle of horseradish peroxidase is presented. One-half molar equivalent of p-cresol can convert compound I quantitatively to compound II at high pH, whereas usually this step requires 1 molar equivalent of reductant. The stoichiometry of this reaction is pH-dependent.  相似文献   

14.
T Araiso  I Yamazaki 《Biochemistry》1978,17(5):942-946
The nature of the acid-alkaline conversion of horseradish peroxidases was studied by measuring four rate constants in reactions, E + H+ (k1) in equilibrium (k2) EH+ and E + H2O (k3) in equilibrium (k4) EH+ + OH-, where EH+ and E denote the acid and alkaline forms of the enzymes. The values of k1, (k2 + k3), and k4 were obtained by measuring the relaxation rates of the acid leads to alkaline and alkaline leads to acid conversions by means of th pH jump method with a stopped-flow apparatus. The value of k3 could also be obtained by measuring the rate of reactions between hydrogen peroxide and peroxidases at alkaline pH. The measurements were conducted with four peroxidases having different pKa values: peroxidase A )pKa = 9.3), peroxidase C (pKa = 11.1), diacetyldeuteroperoxidase A (pKa = 7.7), and diacetyldeuteroperoxidase C (pKa = 9.1). The value of k1 was about 10(10) M-1 s-1 in the reaction of the four enzymes while k4 was quite different between the enzymes. The pKa was determined by k3 and k4 for the natural peroxidases and by k1 and k2 for the diacetyldeuteroperoxidases. The mechanism of the acid-alkaline conversion was discussed in comparison with that of metmyoglobin.  相似文献   

15.
Previous studies on the chlorination reaction catalyzed by horseradish peroxidase using chlorite as the source of chlorine detected the formation of a chlorinating intermediate that was termed Compound X (Shahangian, S., and Hager, L.P. (1982) J. Biol. Chem. 257, 11529-11533). These studies indicated that at pH 10.7, the optical absorption spectrum of Compound X was similar to the spectrum of horseradish peroxidase Compound II. Compound X was shown to be quite stable at alkaline pH values. This study was undertaken to examine the relationship between the oxidation state of the iron protoporphyrin IX heme prosthetic group in Compound X and the chemistry of the halogenating intermediate. The experimental results show that the optical absorption properties and the oxidation state of the heme prosthetic group in horseradish peroxidase are not directly related to the presence of the activated chlorine atom in the intermediate. The oxyferryl porphyrin heme group in alkaline Compound X can be reduced to a ferric heme species that still retains the activated chlorine atom. Furthermore, the reaction of chlorite with horseradish peroxidase at acidic pH leads to the secondary formation of a green intermediate that has the spectral properties of horseradish peroxidase Compound I (Theorell, H. (1941) Enzymologia 10, 250-252). The green intermediate also retains the activated chlorine atom. By analogy to peroxidase Compound I chemistry, the heme prosthetic group in the green chlorinating intermediate must be an oxyferryl porphyrin pi-cation radical species (Roberts, J. E., Hoffman, B. M., Rutter, R. J., and Hager, L. P. (1981) J. Am. Chem. Soc. 103, 7654-7656). To be consistent with traditional peroxidase nomenclature, the red alkaline form of Compound X has been renamed Compound XII, and the green acidic form has been named Compound XI. The transfer of chlorine from the chlorinating intermediate to an acceptor molecule follows an electrophilic (rather than a free radical) path. A mechanism for the reaction is proposed in which the activated chlorine atom is bonded to a heteroatom on an active-site amino acid side chain. Transient state kinetic studies show that the initial intermediate, Compound XII, is formed in a very fast reaction. The second-order rate constant for the formation of Compound XII is approximately 1.1 x 10(7) M-1 s-1. The rate of formation of Compound XII is strongly pH-dependent. At pH 9, the second-order rate constant for the formation of Compound XII drops to 1.5 M-1 s-1. At acidic pH values, Compound XII undergoes a spontaneous first-order decay to yield Compound XI.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The displacement of NADH from cytoplasmic aldehyde dehydrogenase (EC 1.2.1.3) from sheep liver was studied by using NAD+, 1,10-phenanthroline, ADP-ribose, deamino-NAD+ and pyridine-3-aldehyde-adenine dinucleotide as displacing agents, by following the decrease in fluorescence as a function of time. The data obtained could be fitted by assuming two first-order processes were occurring, a faster process with an apparent rate constant of 0.85 +/- 0.20 s-1 and a relative amplitude of 60 +/- 10% and a slower process with an apparent rate constant of 0.20 +/- 0.05 s-1 and a relative amplitude of 40 +/- 10% (except for pyridine-3-aldehyde-adenine dinucleotide, where the apparent rate constant for the slow process was 0.05 s-1). The displacement rates did not change significantly when the pH was varied from 6.0 to 9.0. Kinetic data are also reported for the dependence of the rate of binding of NADH to the enzyme on the total concentration of NADH. Detailed arguments are presented based on the isolation and purification procedures, the equilibrium coenzyme-binding studies and the kinetic data, which lead to the following model for the release of NADH from the enzyme: (formula: see article). The parameters that best fit the data are: k + 1 = 0.2 s-1; k - 1 = 0.05 s-1; k + 2 = 0.8 s-1 and k - 2 = 5 X 10(5)litre-mol-1-s-1. The slow phase of the NADH release is similar to the steady-state turnover number for substrates such as acetaldehyde and propionaldehyde and appears to contribute significantly to the limitation of the steady-state rate.  相似文献   

17.
Human class I beta 3 beta 3 is one of the alcohol dehydrogenase dimers that catalyzes the reversible oxidation of ethanol. The beta 3 subunit has a Cys substitution for Arg-369 (beta 369C) in the coenzyme-binding site of the beta1 subunit. Kinetic studies have demonstrated that this natural mutation in the coenzyme-binding site decreases affinity for NAD+ and NADH. Structural studies suggest that the enzyme isomerizes from an open to closed form with coenzyme binding. However, the extent to which this isomerization limits catalysis is not known. In this study, stopped-flow kinetics were used from pH 6 to 9 with recombinant beta 369C to evaluate rate-limiting steps in coenzyme association and catalysis. Association rates of NADH approached an apparent zero-order rate with increasing NADH concentrations at pH 7.5 (42 +/- 1 s-1). This observation is consistent with an NADH-induced isomerization of the enzyme from an open to closed conformation. The pH dependence of apparent zero-order rate constants fit best a model in which a single ionization limits diminishing rates (pKa = 7.2 +/- 0.1), and coincided with Vmax values for acetaldehyde reduction. This indicates that NADH-induced isomerization to a closed conformation may be rate-limiting for acetaldehyde reduction. The pH dependence of equilibrium NADH-binding constants fits best a model in which a single ionization leads to a loss in NADH affinity (pKa = 8.1 +/- 0. 2). Rate constants for isomerization from a closed to open conformation were also calculated, and these values coincided with Vmax for ethanol oxidation above pH 7.5. This suggests that NADH-induced isomerization of beta 369C from a closed to open conformation is rate-limiting for ethanol oxidation above pH 7.5.  相似文献   

18.
Stopped flow experiments were carried out with purified hog thyroid peroxidase (A413 nm/A280 nm = 0.42). It reacted with H2O2 to form Compound I with a rate constant of 7.8 X 10(6) M-1 s-1. Compound I was reduced to Compound II by endogeneous donor with a half-life of 0.36 s. Compound I was reduced by tyrosine directly to the ferric enzyme with a rate constant of 7.5 X 10(4) M-1 s-1. Tyrosine could also reduce Compound II to the ferric enzyme with a rate constant of 4.3 X 10(2) M-1 s-1. Methylmercaptoimidazole accelerated the conversion of Compound I to Compound II and reacted with Compound II to form an inactivated form, which was discernible spectrophotometrically. The reactions of thyroid peroxidase with methylmercaptoimidazole quite resembled those of lactoperoxidase, but occurred at higher speeds. The absorption spectra of thyroid peroxidase were similar to those of lactoperoxidase and intestinal peroxidase, but obviously different from those of metmyoglobin, horseradish peroxidase, and chloroperoxidase. Similarity and dissimilarity between thyroid peroxidase and lactoperoxidase are discussed.  相似文献   

19.
E P Lennette  B V Plapp 《Biochemistry》1979,18(18):3933-3938
The reaction of the imidazole group of histidine hydantoin with bromoacetate was studied as a model for carboxymethylation of histidine residues in proteins. pK values of 6.4 and 9.1 (25 degrees C) and apparent heats of ionization of 7.8 and 8.7 kcal/mol were determined for the imidazole and hydantoin rings, respectively. At pH values corresponding to the isoelectric points for histidine hydantoin, the rates of carboxymethylation at 12, 25, 37, and 50 degrees C were determined; the modified hydantoins were hydrolyzed to the corresponding histidine derivatives for quantitative amino acid analysis. At pH 7.72 and 25 degrees C, the imidazole tele-N was alkylated (k = 3.9 X 10(-5) M-1 s-1) twice as fast as the pros-N. The monocarboxymethyl derivatives were carboxymethylated at the same rate at the pros-N (k = 2.1 X 10(-5) M-1 s-1) but 3 times faster at the tele-N (k = 11 X 10(-5) M-1 s-1). The enthalpies of activation determined for carboxymethylation of the imidazole ring and its monocarboxymethyl derivatives were similar (15.9 +/- 0.7 kcal/mol). delta S for the four carboxymethylations was -25 +/- 2 eu. The electrostatic component of delta S (delta S es) was calculated from the influence of the dielectric constant on the reaction rate at 25 degrees C. delta S es was slightly negative (-4 +/- 1 eu) for mono- or dicarboxymethylations, indicating some charge separation in the transition state. The nonelectrostatic entropy of activation was -21 +/- 2 eu for all four carboxymethylations.  相似文献   

20.
One-electron oxidation of Trolox C (a vitamin E analogue) by peroxidases   总被引:1,自引:0,他引:1  
The oxidation mechanism of Trolox C (a vitamin E analogue) by peroxidases was examined by stopped flow and ESR techniques. The results revealed that during the oxidation of Trolox C, peroxidase Compound II was the catalytic intermediate. The rate constants for the reaction of Compound II with Trolox C, which should be the rate-determining step, were estimated to be 2.1 X 10(4) and 7.2 X 10(3) M-1.s-1 for horseradish peroxidase and lactoperoxidase, respectively, at pH 6.0. The formation of the Trolox C radical was followed by ESR. The time course of the signal was similar to that of the optical absorbance changes at 440 nm, assigned as the peak of the Trolox C radical. The signal exhibited a hyperfine structure characteristic of phenoxyl radicals. From an estimation of the radical concentration in the steady state and the velocity of the radical formation, the dismutation constant was calculated to be 5 X 10(5) M-1.s-1. The concentration of the signal in the steady state was reduced by the addition of GSH. The spectrum changed from that of the Trolox C radical to that of the ascorbate radical when the reaction was carried out in the presence of ascorbate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号